Properties

Label 1183.2.e.d
Level $1183$
Weight $2$
Character orbit 1183.e
Analytic conductor $9.446$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1183,2,Mod(170,1183)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1183, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1183.170");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1183 = 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1183.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.44630255912\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + 2x^{2} + x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \beta_{3} - \beta_1 - 1) q^{2} + (\beta_{3} - 2 \beta_{2} - 2 \beta_1) q^{3} + (3 \beta_{2} + 3 \beta_1) q^{4} + ( - \beta_{3} + 2 \beta_1 - 1) q^{5} + (3 \beta_{2} - 1) q^{6} + ( - 2 \beta_{3} + 1) q^{7} + ( - 4 \beta_{2} + 1) q^{8} + ( - 2 \beta_{3} - 2) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \beta_{3} - \beta_1 - 1) q^{2} + (\beta_{3} - 2 \beta_{2} - 2 \beta_1) q^{3} + (3 \beta_{2} + 3 \beta_1) q^{4} + ( - \beta_{3} + 2 \beta_1 - 1) q^{5} + (3 \beta_{2} - 1) q^{6} + ( - 2 \beta_{3} + 1) q^{7} + ( - 4 \beta_{2} + 1) q^{8} + ( - 2 \beta_{3} - 2) q^{9} + ( - \beta_{3} - 3 \beta_{2} - 3 \beta_1) q^{10} + 3 \beta_{3} q^{11} + (6 \beta_{3} + 3 \beta_1 + 6) q^{12} + ( - \beta_{3} + 2 \beta_{2} - \beta_1 - 3) q^{14} + 5 q^{15} + ( - 5 \beta_{3} - 3 \beta_1 - 5) q^{16} + ( - 5 \beta_{3} + 4 \beta_{2} + 4 \beta_1) q^{17} + (2 \beta_{3} + 2 \beta_{2} + 2 \beta_1) q^{18} + (3 \beta_{3} + 3) q^{19} + (3 \beta_{2} - 6) q^{20} + (3 \beta_{3} - 2 \beta_{2} - 6 \beta_1 + 2) q^{21} + ( - 3 \beta_{2} + 3) q^{22} + (5 \beta_{3} + 2 \beta_1 + 5) q^{23} + ( - 7 \beta_{3} - 6 \beta_{2} - 6 \beta_1) q^{24} + ( - 2 \beta_{2} - 1) q^{27} + (3 \beta_{2} + 9 \beta_1) q^{28} + ( - 4 \beta_{2} - 2) q^{29} + ( - 5 \beta_{3} - 5 \beta_1 - 5) q^{30} - 5 \beta_{3} q^{31} + (6 \beta_{3} + 3 \beta_{2} + 3 \beta_1) q^{32} + ( - 3 \beta_{3} + 6 \beta_1 - 3) q^{33} + ( - 3 \beta_{2} - 1) q^{34} + ( - \beta_{3} - 4 \beta_{2} + 2 \beta_1 - 3) q^{35} - 6 \beta_{2} q^{36} + ( - 5 \beta_{3} + 6 \beta_1 - 5) q^{37} + ( - 3 \beta_{3} - 3 \beta_{2} - 3 \beta_1) q^{38} + (7 \beta_{3} + 6 \beta_1 + 7) q^{40} + ( - 4 \beta_{2} - 2) q^{41} + (2 \beta_{3} + 9 \beta_{2} + 6 \beta_1 - 1) q^{42} - 8 q^{43} - 9 \beta_1 q^{44} + (2 \beta_{3} - 4 \beta_{2} - 4 \beta_1) q^{45} + ( - 7 \beta_{3} - 9 \beta_{2} - 9 \beta_1) q^{46} + ( - \beta_{3} - 4 \beta_1 - 1) q^{47} + (13 \beta_{2} - 1) q^{48} + ( - 8 \beta_{3} - 3) q^{49} + (13 \beta_{3} - 6 \beta_1 + 13) q^{51} + ( - \beta_{3} - 4 \beta_{2} - 4 \beta_1) q^{53} + ( - \beta_{3} - 3 \beta_1 - 1) q^{54} + (6 \beta_{2} + 3) q^{55} + ( - 2 \beta_{3} - 12 \beta_{2} + \cdots + 1) q^{56}+ \cdots + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 3 q^{2} - 3 q^{4} - 10 q^{6} + 8 q^{7} + 12 q^{8} - 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q - 3 q^{2} - 3 q^{4} - 10 q^{6} + 8 q^{7} + 12 q^{8} - 4 q^{9} + 5 q^{10} - 6 q^{11} + 15 q^{12} - 15 q^{14} + 20 q^{15} - 13 q^{16} + 6 q^{17} - 6 q^{18} + 6 q^{19} - 30 q^{20} + 18 q^{22} + 12 q^{23} + 20 q^{24} + 3 q^{28} - 15 q^{30} + 10 q^{31} - 15 q^{32} + 2 q^{34} + 12 q^{36} - 4 q^{37} + 9 q^{38} + 20 q^{40} - 20 q^{42} - 32 q^{43} - 9 q^{44} + 23 q^{46} - 6 q^{47} - 30 q^{48} + 4 q^{49} + 20 q^{51} + 6 q^{53} - 5 q^{54} + 24 q^{56} - 10 q^{58} + 6 q^{59} - 15 q^{60} - 6 q^{61} - 30 q^{62} - 20 q^{63} + 8 q^{64} + 15 q^{66} - 6 q^{67} - 21 q^{68} + 20 q^{69} - 5 q^{70} - 12 q^{72} + 8 q^{73} + 9 q^{74} - 18 q^{76} + 6 q^{77} - 8 q^{79} + 15 q^{80} + 22 q^{81} - 10 q^{82} + 75 q^{84} - 40 q^{85} + 24 q^{86} + 20 q^{87} - 18 q^{88} - 20 q^{90} - 66 q^{92} - 19 q^{94} + 15 q^{96} + 16 q^{97} - 39 q^{98} + 24 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - x^{3} + 2x^{2} + x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 1 ) / 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 2\nu^{2} - 2\nu - 1 ) / 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{3} + \beta_{2} + \beta_1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( 2\beta_{2} - 1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1183\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(1016\)
\(\chi(n)\) \(-1 - \beta_{3}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
170.1
0.809017 1.40126i
−0.309017 + 0.535233i
0.809017 + 1.40126i
−0.309017 0.535233i
−1.30902 + 2.26728i 1.11803 + 1.93649i −2.42705 4.20378i 1.11803 1.93649i −5.85410 2.00000 + 1.73205i 7.47214 −1.00000 + 1.73205i 2.92705 + 5.06980i
170.2 −0.190983 + 0.330792i −1.11803 1.93649i 0.927051 + 1.60570i −1.11803 + 1.93649i 0.854102 2.00000 + 1.73205i −1.47214 −1.00000 + 1.73205i −0.427051 0.739674i
508.1 −1.30902 2.26728i 1.11803 1.93649i −2.42705 + 4.20378i 1.11803 + 1.93649i −5.85410 2.00000 1.73205i 7.47214 −1.00000 1.73205i 2.92705 5.06980i
508.2 −0.190983 0.330792i −1.11803 + 1.93649i 0.927051 1.60570i −1.11803 1.93649i 0.854102 2.00000 1.73205i −1.47214 −1.00000 1.73205i −0.427051 + 0.739674i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1183.2.e.d 4
7.c even 3 1 inner 1183.2.e.d 4
7.c even 3 1 8281.2.a.z 2
7.d odd 6 1 8281.2.a.ba 2
13.b even 2 1 91.2.e.b 4
39.d odd 2 1 819.2.j.c 4
52.b odd 2 1 1456.2.r.j 4
91.b odd 2 1 637.2.e.h 4
91.r even 6 1 91.2.e.b 4
91.r even 6 1 637.2.a.f 2
91.s odd 6 1 637.2.a.e 2
91.s odd 6 1 637.2.e.h 4
273.w odd 6 1 819.2.j.c 4
273.w odd 6 1 5733.2.a.v 2
273.ba even 6 1 5733.2.a.w 2
364.bl odd 6 1 1456.2.r.j 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
91.2.e.b 4 13.b even 2 1
91.2.e.b 4 91.r even 6 1
637.2.a.e 2 91.s odd 6 1
637.2.a.f 2 91.r even 6 1
637.2.e.h 4 91.b odd 2 1
637.2.e.h 4 91.s odd 6 1
819.2.j.c 4 39.d odd 2 1
819.2.j.c 4 273.w odd 6 1
1183.2.e.d 4 1.a even 1 1 trivial
1183.2.e.d 4 7.c even 3 1 inner
1456.2.r.j 4 52.b odd 2 1
1456.2.r.j 4 364.bl odd 6 1
5733.2.a.v 2 273.w odd 6 1
5733.2.a.w 2 273.ba even 6 1
8281.2.a.z 2 7.c even 3 1
8281.2.a.ba 2 7.d odd 6 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1183, [\chi])\):

\( T_{2}^{4} + 3T_{2}^{3} + 8T_{2}^{2} + 3T_{2} + 1 \) Copy content Toggle raw display
\( T_{3}^{4} + 5T_{3}^{2} + 25 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} + 3 T^{3} + \cdots + 1 \) Copy content Toggle raw display
$3$ \( T^{4} + 5T^{2} + 25 \) Copy content Toggle raw display
$5$ \( T^{4} + 5T^{2} + 25 \) Copy content Toggle raw display
$7$ \( (T^{2} - 4 T + 7)^{2} \) Copy content Toggle raw display
$11$ \( (T^{2} + 3 T + 9)^{2} \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( T^{4} - 6 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$19$ \( (T^{2} - 3 T + 9)^{2} \) Copy content Toggle raw display
$23$ \( T^{4} - 12 T^{3} + \cdots + 961 \) Copy content Toggle raw display
$29$ \( (T^{2} - 20)^{2} \) Copy content Toggle raw display
$31$ \( (T^{2} - 5 T + 25)^{2} \) Copy content Toggle raw display
$37$ \( T^{4} + 4 T^{3} + \cdots + 1681 \) Copy content Toggle raw display
$41$ \( (T^{2} - 20)^{2} \) Copy content Toggle raw display
$43$ \( (T + 8)^{4} \) Copy content Toggle raw display
$47$ \( T^{4} + 6 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$53$ \( T^{4} - 6 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$59$ \( T^{4} - 6 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$61$ \( (T^{2} + 3 T + 9)^{2} \) Copy content Toggle raw display
$67$ \( (T^{2} + 3 T + 9)^{2} \) Copy content Toggle raw display
$71$ \( (T^{2} - 80)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} - 8 T^{3} + \cdots + 841 \) Copy content Toggle raw display
$79$ \( T^{4} + 8 T^{3} + \cdots + 841 \) Copy content Toggle raw display
$83$ \( T^{4} \) Copy content Toggle raw display
$89$ \( T^{4} + 5T^{2} + 25 \) Copy content Toggle raw display
$97$ \( (T^{2} - 8 T - 164)^{2} \) Copy content Toggle raw display
show more
show less