Properties

Label 1183.2.e.a.170.1
Level $1183$
Weight $2$
Character 1183.170
Analytic conductor $9.446$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1183,2,Mod(170,1183)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1183, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1183.170");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1183 = 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1183.e (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.44630255912\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 170.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1183.170
Dual form 1183.2.e.a.508.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 + 0.866025i) q^{2} +(1.50000 + 2.59808i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-1.50000 + 2.59808i) q^{5} -3.00000 q^{6} +(0.500000 - 2.59808i) q^{7} -3.00000 q^{8} +(-3.00000 + 5.19615i) q^{9} +O(q^{10})\) \(q+(-0.500000 + 0.866025i) q^{2} +(1.50000 + 2.59808i) q^{3} +(0.500000 + 0.866025i) q^{4} +(-1.50000 + 2.59808i) q^{5} -3.00000 q^{6} +(0.500000 - 2.59808i) q^{7} -3.00000 q^{8} +(-3.00000 + 5.19615i) q^{9} +(-1.50000 - 2.59808i) q^{10} +(1.50000 + 2.59808i) q^{11} +(-1.50000 + 2.59808i) q^{12} +(2.00000 + 1.73205i) q^{14} -9.00000 q^{15} +(0.500000 - 0.866025i) q^{16} +(1.00000 + 1.73205i) q^{17} +(-3.00000 - 5.19615i) q^{18} +(0.500000 - 0.866025i) q^{19} -3.00000 q^{20} +(7.50000 - 2.59808i) q^{21} -3.00000 q^{22} +(-4.50000 - 7.79423i) q^{24} +(-2.00000 - 3.46410i) q^{25} -9.00000 q^{27} +(2.50000 - 0.866025i) q^{28} +7.00000 q^{29} +(4.50000 - 7.79423i) q^{30} +(-1.50000 - 2.59808i) q^{31} +(-2.50000 - 4.33013i) q^{32} +(-4.50000 + 7.79423i) q^{33} -2.00000 q^{34} +(6.00000 + 5.19615i) q^{35} -6.00000 q^{36} +(-1.00000 + 1.73205i) q^{37} +(0.500000 + 0.866025i) q^{38} +(4.50000 - 7.79423i) q^{40} +3.00000 q^{41} +(-1.50000 + 7.79423i) q^{42} -7.00000 q^{43} +(-1.50000 + 2.59808i) q^{44} +(-9.00000 - 15.5885i) q^{45} +(-0.500000 + 0.866025i) q^{47} +3.00000 q^{48} +(-6.50000 - 2.59808i) q^{49} +4.00000 q^{50} +(-3.00000 + 5.19615i) q^{51} +(-1.50000 - 2.59808i) q^{53} +(4.50000 - 7.79423i) q^{54} -9.00000 q^{55} +(-1.50000 + 7.79423i) q^{56} +3.00000 q^{57} +(-3.50000 + 6.06218i) q^{58} +(2.00000 + 3.46410i) q^{59} +(-4.50000 - 7.79423i) q^{60} +(6.50000 - 11.2583i) q^{61} +3.00000 q^{62} +(12.0000 + 10.3923i) q^{63} +7.00000 q^{64} +(-4.50000 - 7.79423i) q^{66} +(1.50000 + 2.59808i) q^{67} +(-1.00000 + 1.73205i) q^{68} +(-7.50000 + 2.59808i) q^{70} +13.0000 q^{71} +(9.00000 - 15.5885i) q^{72} +(6.50000 + 11.2583i) q^{73} +(-1.00000 - 1.73205i) q^{74} +(6.00000 - 10.3923i) q^{75} +1.00000 q^{76} +(7.50000 - 2.59808i) q^{77} +(1.50000 - 2.59808i) q^{79} +(1.50000 + 2.59808i) q^{80} +(-4.50000 - 7.79423i) q^{81} +(-1.50000 + 2.59808i) q^{82} +(6.00000 + 5.19615i) q^{84} -6.00000 q^{85} +(3.50000 - 6.06218i) q^{86} +(10.5000 + 18.1865i) q^{87} +(-4.50000 - 7.79423i) q^{88} +(-3.00000 + 5.19615i) q^{89} +18.0000 q^{90} +(4.50000 - 7.79423i) q^{93} +(-0.500000 - 0.866025i) q^{94} +(1.50000 + 2.59808i) q^{95} +(7.50000 - 12.9904i) q^{96} -5.00000 q^{97} +(5.50000 - 4.33013i) q^{98} -18.0000 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + 3 q^{3} + q^{4} - 3 q^{5} - 6 q^{6} + q^{7} - 6 q^{8} - 6 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q - q^{2} + 3 q^{3} + q^{4} - 3 q^{5} - 6 q^{6} + q^{7} - 6 q^{8} - 6 q^{9} - 3 q^{10} + 3 q^{11} - 3 q^{12} + 4 q^{14} - 18 q^{15} + q^{16} + 2 q^{17} - 6 q^{18} + q^{19} - 6 q^{20} + 15 q^{21} - 6 q^{22} - 9 q^{24} - 4 q^{25} - 18 q^{27} + 5 q^{28} + 14 q^{29} + 9 q^{30} - 3 q^{31} - 5 q^{32} - 9 q^{33} - 4 q^{34} + 12 q^{35} - 12 q^{36} - 2 q^{37} + q^{38} + 9 q^{40} + 6 q^{41} - 3 q^{42} - 14 q^{43} - 3 q^{44} - 18 q^{45} - q^{47} + 6 q^{48} - 13 q^{49} + 8 q^{50} - 6 q^{51} - 3 q^{53} + 9 q^{54} - 18 q^{55} - 3 q^{56} + 6 q^{57} - 7 q^{58} + 4 q^{59} - 9 q^{60} + 13 q^{61} + 6 q^{62} + 24 q^{63} + 14 q^{64} - 9 q^{66} + 3 q^{67} - 2 q^{68} - 15 q^{70} + 26 q^{71} + 18 q^{72} + 13 q^{73} - 2 q^{74} + 12 q^{75} + 2 q^{76} + 15 q^{77} + 3 q^{79} + 3 q^{80} - 9 q^{81} - 3 q^{82} + 12 q^{84} - 12 q^{85} + 7 q^{86} + 21 q^{87} - 9 q^{88} - 6 q^{89} + 36 q^{90} + 9 q^{93} - q^{94} + 3 q^{95} + 15 q^{96} - 10 q^{97} + 11 q^{98} - 36 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1183\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(1016\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 + 0.866025i −0.353553 + 0.612372i −0.986869 0.161521i \(-0.948360\pi\)
0.633316 + 0.773893i \(0.281693\pi\)
\(3\) 1.50000 + 2.59808i 0.866025 + 1.50000i 0.866025 + 0.500000i \(0.166667\pi\)
1.00000i \(0.5\pi\)
\(4\) 0.500000 + 0.866025i 0.250000 + 0.433013i
\(5\) −1.50000 + 2.59808i −0.670820 + 1.16190i 0.306851 + 0.951757i \(0.400725\pi\)
−0.977672 + 0.210138i \(0.932609\pi\)
\(6\) −3.00000 −1.22474
\(7\) 0.500000 2.59808i 0.188982 0.981981i
\(8\) −3.00000 −1.06066
\(9\) −3.00000 + 5.19615i −1.00000 + 1.73205i
\(10\) −1.50000 2.59808i −0.474342 0.821584i
\(11\) 1.50000 + 2.59808i 0.452267 + 0.783349i 0.998526 0.0542666i \(-0.0172821\pi\)
−0.546259 + 0.837616i \(0.683949\pi\)
\(12\) −1.50000 + 2.59808i −0.433013 + 0.750000i
\(13\) 0 0
\(14\) 2.00000 + 1.73205i 0.534522 + 0.462910i
\(15\) −9.00000 −2.32379
\(16\) 0.500000 0.866025i 0.125000 0.216506i
\(17\) 1.00000 + 1.73205i 0.242536 + 0.420084i 0.961436 0.275029i \(-0.0886875\pi\)
−0.718900 + 0.695113i \(0.755354\pi\)
\(18\) −3.00000 5.19615i −0.707107 1.22474i
\(19\) 0.500000 0.866025i 0.114708 0.198680i −0.802955 0.596040i \(-0.796740\pi\)
0.917663 + 0.397360i \(0.130073\pi\)
\(20\) −3.00000 −0.670820
\(21\) 7.50000 2.59808i 1.63663 0.566947i
\(22\) −3.00000 −0.639602
\(23\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(24\) −4.50000 7.79423i −0.918559 1.59099i
\(25\) −2.00000 3.46410i −0.400000 0.692820i
\(26\) 0 0
\(27\) −9.00000 −1.73205
\(28\) 2.50000 0.866025i 0.472456 0.163663i
\(29\) 7.00000 1.29987 0.649934 0.759991i \(-0.274797\pi\)
0.649934 + 0.759991i \(0.274797\pi\)
\(30\) 4.50000 7.79423i 0.821584 1.42302i
\(31\) −1.50000 2.59808i −0.269408 0.466628i 0.699301 0.714827i \(-0.253495\pi\)
−0.968709 + 0.248199i \(0.920161\pi\)
\(32\) −2.50000 4.33013i −0.441942 0.765466i
\(33\) −4.50000 + 7.79423i −0.783349 + 1.35680i
\(34\) −2.00000 −0.342997
\(35\) 6.00000 + 5.19615i 1.01419 + 0.878310i
\(36\) −6.00000 −1.00000
\(37\) −1.00000 + 1.73205i −0.164399 + 0.284747i −0.936442 0.350823i \(-0.885902\pi\)
0.772043 + 0.635571i \(0.219235\pi\)
\(38\) 0.500000 + 0.866025i 0.0811107 + 0.140488i
\(39\) 0 0
\(40\) 4.50000 7.79423i 0.711512 1.23238i
\(41\) 3.00000 0.468521 0.234261 0.972174i \(-0.424733\pi\)
0.234261 + 0.972174i \(0.424733\pi\)
\(42\) −1.50000 + 7.79423i −0.231455 + 1.20268i
\(43\) −7.00000 −1.06749 −0.533745 0.845645i \(-0.679216\pi\)
−0.533745 + 0.845645i \(0.679216\pi\)
\(44\) −1.50000 + 2.59808i −0.226134 + 0.391675i
\(45\) −9.00000 15.5885i −1.34164 2.32379i
\(46\) 0 0
\(47\) −0.500000 + 0.866025i −0.0729325 + 0.126323i −0.900185 0.435507i \(-0.856569\pi\)
0.827253 + 0.561830i \(0.189902\pi\)
\(48\) 3.00000 0.433013
\(49\) −6.50000 2.59808i −0.928571 0.371154i
\(50\) 4.00000 0.565685
\(51\) −3.00000 + 5.19615i −0.420084 + 0.727607i
\(52\) 0 0
\(53\) −1.50000 2.59808i −0.206041 0.356873i 0.744423 0.667708i \(-0.232725\pi\)
−0.950464 + 0.310835i \(0.899391\pi\)
\(54\) 4.50000 7.79423i 0.612372 1.06066i
\(55\) −9.00000 −1.21356
\(56\) −1.50000 + 7.79423i −0.200446 + 1.04155i
\(57\) 3.00000 0.397360
\(58\) −3.50000 + 6.06218i −0.459573 + 0.796003i
\(59\) 2.00000 + 3.46410i 0.260378 + 0.450988i 0.966342 0.257260i \(-0.0828195\pi\)
−0.705965 + 0.708247i \(0.749486\pi\)
\(60\) −4.50000 7.79423i −0.580948 1.00623i
\(61\) 6.50000 11.2583i 0.832240 1.44148i −0.0640184 0.997949i \(-0.520392\pi\)
0.896258 0.443533i \(-0.146275\pi\)
\(62\) 3.00000 0.381000
\(63\) 12.0000 + 10.3923i 1.51186 + 1.30931i
\(64\) 7.00000 0.875000
\(65\) 0 0
\(66\) −4.50000 7.79423i −0.553912 0.959403i
\(67\) 1.50000 + 2.59808i 0.183254 + 0.317406i 0.942987 0.332830i \(-0.108004\pi\)
−0.759733 + 0.650236i \(0.774670\pi\)
\(68\) −1.00000 + 1.73205i −0.121268 + 0.210042i
\(69\) 0 0
\(70\) −7.50000 + 2.59808i −0.896421 + 0.310530i
\(71\) 13.0000 1.54282 0.771408 0.636341i \(-0.219553\pi\)
0.771408 + 0.636341i \(0.219553\pi\)
\(72\) 9.00000 15.5885i 1.06066 1.83712i
\(73\) 6.50000 + 11.2583i 0.760767 + 1.31769i 0.942455 + 0.334332i \(0.108511\pi\)
−0.181688 + 0.983356i \(0.558156\pi\)
\(74\) −1.00000 1.73205i −0.116248 0.201347i
\(75\) 6.00000 10.3923i 0.692820 1.20000i
\(76\) 1.00000 0.114708
\(77\) 7.50000 2.59808i 0.854704 0.296078i
\(78\) 0 0
\(79\) 1.50000 2.59808i 0.168763 0.292306i −0.769222 0.638982i \(-0.779356\pi\)
0.937985 + 0.346675i \(0.112689\pi\)
\(80\) 1.50000 + 2.59808i 0.167705 + 0.290474i
\(81\) −4.50000 7.79423i −0.500000 0.866025i
\(82\) −1.50000 + 2.59808i −0.165647 + 0.286910i
\(83\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(84\) 6.00000 + 5.19615i 0.654654 + 0.566947i
\(85\) −6.00000 −0.650791
\(86\) 3.50000 6.06218i 0.377415 0.653701i
\(87\) 10.5000 + 18.1865i 1.12572 + 1.94980i
\(88\) −4.50000 7.79423i −0.479702 0.830868i
\(89\) −3.00000 + 5.19615i −0.317999 + 0.550791i −0.980071 0.198650i \(-0.936344\pi\)
0.662071 + 0.749441i \(0.269678\pi\)
\(90\) 18.0000 1.89737
\(91\) 0 0
\(92\) 0 0
\(93\) 4.50000 7.79423i 0.466628 0.808224i
\(94\) −0.500000 0.866025i −0.0515711 0.0893237i
\(95\) 1.50000 + 2.59808i 0.153897 + 0.266557i
\(96\) 7.50000 12.9904i 0.765466 1.32583i
\(97\) −5.00000 −0.507673 −0.253837 0.967247i \(-0.581693\pi\)
−0.253837 + 0.967247i \(0.581693\pi\)
\(98\) 5.50000 4.33013i 0.555584 0.437409i
\(99\) −18.0000 −1.80907
\(100\) 2.00000 3.46410i 0.200000 0.346410i
\(101\) 2.50000 + 4.33013i 0.248759 + 0.430864i 0.963182 0.268851i \(-0.0866439\pi\)
−0.714423 + 0.699715i \(0.753311\pi\)
\(102\) −3.00000 5.19615i −0.297044 0.514496i
\(103\) −2.50000 + 4.33013i −0.246332 + 0.426660i −0.962505 0.271263i \(-0.912559\pi\)
0.716173 + 0.697923i \(0.245892\pi\)
\(104\) 0 0
\(105\) −4.50000 + 23.3827i −0.439155 + 2.28192i
\(106\) 3.00000 0.291386
\(107\) −4.00000 + 6.92820i −0.386695 + 0.669775i −0.992003 0.126217i \(-0.959717\pi\)
0.605308 + 0.795991i \(0.293050\pi\)
\(108\) −4.50000 7.79423i −0.433013 0.750000i
\(109\) −3.50000 6.06218i −0.335239 0.580651i 0.648292 0.761392i \(-0.275484\pi\)
−0.983531 + 0.180741i \(0.942150\pi\)
\(110\) 4.50000 7.79423i 0.429058 0.743151i
\(111\) −6.00000 −0.569495
\(112\) −2.00000 1.73205i −0.188982 0.163663i
\(113\) 15.0000 1.41108 0.705541 0.708669i \(-0.250704\pi\)
0.705541 + 0.708669i \(0.250704\pi\)
\(114\) −1.50000 + 2.59808i −0.140488 + 0.243332i
\(115\) 0 0
\(116\) 3.50000 + 6.06218i 0.324967 + 0.562859i
\(117\) 0 0
\(118\) −4.00000 −0.368230
\(119\) 5.00000 1.73205i 0.458349 0.158777i
\(120\) 27.0000 2.46475
\(121\) 1.00000 1.73205i 0.0909091 0.157459i
\(122\) 6.50000 + 11.2583i 0.588482 + 1.01928i
\(123\) 4.50000 + 7.79423i 0.405751 + 0.702782i
\(124\) 1.50000 2.59808i 0.134704 0.233314i
\(125\) −3.00000 −0.268328
\(126\) −15.0000 + 5.19615i −1.33631 + 0.462910i
\(127\) 11.0000 0.976092 0.488046 0.872818i \(-0.337710\pi\)
0.488046 + 0.872818i \(0.337710\pi\)
\(128\) 1.50000 2.59808i 0.132583 0.229640i
\(129\) −10.5000 18.1865i −0.924473 1.60123i
\(130\) 0 0
\(131\) −2.50000 + 4.33013i −0.218426 + 0.378325i −0.954327 0.298764i \(-0.903426\pi\)
0.735901 + 0.677089i \(0.236759\pi\)
\(132\) −9.00000 −0.783349
\(133\) −2.00000 1.73205i −0.173422 0.150188i
\(134\) −3.00000 −0.259161
\(135\) 13.5000 23.3827i 1.16190 2.01246i
\(136\) −3.00000 5.19615i −0.257248 0.445566i
\(137\) −5.00000 8.66025i −0.427179 0.739895i 0.569442 0.822031i \(-0.307159\pi\)
−0.996621 + 0.0821359i \(0.973826\pi\)
\(138\) 0 0
\(139\) −15.0000 −1.27228 −0.636142 0.771572i \(-0.719471\pi\)
−0.636142 + 0.771572i \(0.719471\pi\)
\(140\) −1.50000 + 7.79423i −0.126773 + 0.658733i
\(141\) −3.00000 −0.252646
\(142\) −6.50000 + 11.2583i −0.545468 + 0.944778i
\(143\) 0 0
\(144\) 3.00000 + 5.19615i 0.250000 + 0.433013i
\(145\) −10.5000 + 18.1865i −0.871978 + 1.51031i
\(146\) −13.0000 −1.07589
\(147\) −3.00000 20.7846i −0.247436 1.71429i
\(148\) −2.00000 −0.164399
\(149\) −7.50000 + 12.9904i −0.614424 + 1.06421i 0.376061 + 0.926595i \(0.377278\pi\)
−0.990485 + 0.137619i \(0.956055\pi\)
\(150\) 6.00000 + 10.3923i 0.489898 + 0.848528i
\(151\) 10.5000 + 18.1865i 0.854478 + 1.48000i 0.877129 + 0.480256i \(0.159456\pi\)
−0.0226507 + 0.999743i \(0.507211\pi\)
\(152\) −1.50000 + 2.59808i −0.121666 + 0.210732i
\(153\) −12.0000 −0.970143
\(154\) −1.50000 + 7.79423i −0.120873 + 0.628077i
\(155\) 9.00000 0.722897
\(156\) 0 0
\(157\) −9.50000 16.4545i −0.758183 1.31321i −0.943777 0.330584i \(-0.892754\pi\)
0.185594 0.982627i \(-0.440579\pi\)
\(158\) 1.50000 + 2.59808i 0.119334 + 0.206692i
\(159\) 4.50000 7.79423i 0.356873 0.618123i
\(160\) 15.0000 1.18585
\(161\) 0 0
\(162\) 9.00000 0.707107
\(163\) 0.500000 0.866025i 0.0391630 0.0678323i −0.845780 0.533533i \(-0.820864\pi\)
0.884943 + 0.465700i \(0.154198\pi\)
\(164\) 1.50000 + 2.59808i 0.117130 + 0.202876i
\(165\) −13.5000 23.3827i −1.05097 1.82034i
\(166\) 0 0
\(167\) −13.0000 −1.00597 −0.502985 0.864295i \(-0.667765\pi\)
−0.502985 + 0.864295i \(0.667765\pi\)
\(168\) −22.5000 + 7.79423i −1.73591 + 0.601338i
\(169\) 0 0
\(170\) 3.00000 5.19615i 0.230089 0.398527i
\(171\) 3.00000 + 5.19615i 0.229416 + 0.397360i
\(172\) −3.50000 6.06218i −0.266872 0.462237i
\(173\) −9.50000 + 16.4545i −0.722272 + 1.25101i 0.237816 + 0.971310i \(0.423569\pi\)
−0.960087 + 0.279701i \(0.909765\pi\)
\(174\) −21.0000 −1.59201
\(175\) −10.0000 + 3.46410i −0.755929 + 0.261861i
\(176\) 3.00000 0.226134
\(177\) −6.00000 + 10.3923i −0.450988 + 0.781133i
\(178\) −3.00000 5.19615i −0.224860 0.389468i
\(179\) −8.50000 14.7224i −0.635320 1.10041i −0.986447 0.164079i \(-0.947535\pi\)
0.351127 0.936328i \(-0.385798\pi\)
\(180\) 9.00000 15.5885i 0.670820 1.16190i
\(181\) −22.0000 −1.63525 −0.817624 0.575753i \(-0.804709\pi\)
−0.817624 + 0.575753i \(0.804709\pi\)
\(182\) 0 0
\(183\) 39.0000 2.88296
\(184\) 0 0
\(185\) −3.00000 5.19615i −0.220564 0.382029i
\(186\) 4.50000 + 7.79423i 0.329956 + 0.571501i
\(187\) −3.00000 + 5.19615i −0.219382 + 0.379980i
\(188\) −1.00000 −0.0729325
\(189\) −4.50000 + 23.3827i −0.327327 + 1.70084i
\(190\) −3.00000 −0.217643
\(191\) 8.50000 14.7224i 0.615038 1.06528i −0.375339 0.926887i \(-0.622474\pi\)
0.990378 0.138390i \(-0.0441928\pi\)
\(192\) 10.5000 + 18.1865i 0.757772 + 1.31250i
\(193\) −3.50000 6.06218i −0.251936 0.436365i 0.712123 0.702055i \(-0.247734\pi\)
−0.964059 + 0.265689i \(0.914400\pi\)
\(194\) 2.50000 4.33013i 0.179490 0.310885i
\(195\) 0 0
\(196\) −1.00000 6.92820i −0.0714286 0.494872i
\(197\) −1.00000 −0.0712470 −0.0356235 0.999365i \(-0.511342\pi\)
−0.0356235 + 0.999365i \(0.511342\pi\)
\(198\) 9.00000 15.5885i 0.639602 1.10782i
\(199\) 10.0000 + 17.3205i 0.708881 + 1.22782i 0.965272 + 0.261245i \(0.0841331\pi\)
−0.256391 + 0.966573i \(0.582534\pi\)
\(200\) 6.00000 + 10.3923i 0.424264 + 0.734847i
\(201\) −4.50000 + 7.79423i −0.317406 + 0.549762i
\(202\) −5.00000 −0.351799
\(203\) 3.50000 18.1865i 0.245652 1.27644i
\(204\) −6.00000 −0.420084
\(205\) −4.50000 + 7.79423i −0.314294 + 0.544373i
\(206\) −2.50000 4.33013i −0.174183 0.301694i
\(207\) 0 0
\(208\) 0 0
\(209\) 3.00000 0.207514
\(210\) −18.0000 15.5885i −1.24212 1.07571i
\(211\) 7.00000 0.481900 0.240950 0.970538i \(-0.422541\pi\)
0.240950 + 0.970538i \(0.422541\pi\)
\(212\) 1.50000 2.59808i 0.103020 0.178437i
\(213\) 19.5000 + 33.7750i 1.33612 + 2.31422i
\(214\) −4.00000 6.92820i −0.273434 0.473602i
\(215\) 10.5000 18.1865i 0.716094 1.24031i
\(216\) 27.0000 1.83712
\(217\) −7.50000 + 2.59808i −0.509133 + 0.176369i
\(218\) 7.00000 0.474100
\(219\) −19.5000 + 33.7750i −1.31769 + 2.28230i
\(220\) −4.50000 7.79423i −0.303390 0.525487i
\(221\) 0 0
\(222\) 3.00000 5.19615i 0.201347 0.348743i
\(223\) −9.00000 −0.602685 −0.301342 0.953516i \(-0.597435\pi\)
−0.301342 + 0.953516i \(0.597435\pi\)
\(224\) −12.5000 + 4.33013i −0.835191 + 0.289319i
\(225\) 24.0000 1.60000
\(226\) −7.50000 + 12.9904i −0.498893 + 0.864107i
\(227\) 2.00000 + 3.46410i 0.132745 + 0.229920i 0.924734 0.380615i \(-0.124288\pi\)
−0.791989 + 0.610535i \(0.790954\pi\)
\(228\) 1.50000 + 2.59808i 0.0993399 + 0.172062i
\(229\) 6.50000 11.2583i 0.429532 0.743971i −0.567300 0.823511i \(-0.692012\pi\)
0.996832 + 0.0795401i \(0.0253452\pi\)
\(230\) 0 0
\(231\) 18.0000 + 15.5885i 1.18431 + 1.02565i
\(232\) −21.0000 −1.37872
\(233\) 10.5000 18.1865i 0.687878 1.19144i −0.284645 0.958633i \(-0.591876\pi\)
0.972523 0.232806i \(-0.0747909\pi\)
\(234\) 0 0
\(235\) −1.50000 2.59808i −0.0978492 0.169480i
\(236\) −2.00000 + 3.46410i −0.130189 + 0.225494i
\(237\) 9.00000 0.584613
\(238\) −1.00000 + 5.19615i −0.0648204 + 0.336817i
\(239\) −4.00000 −0.258738 −0.129369 0.991596i \(-0.541295\pi\)
−0.129369 + 0.991596i \(0.541295\pi\)
\(240\) −4.50000 + 7.79423i −0.290474 + 0.503115i
\(241\) 13.0000 + 22.5167i 0.837404 + 1.45043i 0.892058 + 0.451920i \(0.149261\pi\)
−0.0546547 + 0.998505i \(0.517406\pi\)
\(242\) 1.00000 + 1.73205i 0.0642824 + 0.111340i
\(243\) 0 0
\(244\) 13.0000 0.832240
\(245\) 16.5000 12.9904i 1.05415 0.829925i
\(246\) −9.00000 −0.573819
\(247\) 0 0
\(248\) 4.50000 + 7.79423i 0.285750 + 0.494934i
\(249\) 0 0
\(250\) 1.50000 2.59808i 0.0948683 0.164317i
\(251\) −23.0000 −1.45175 −0.725874 0.687828i \(-0.758564\pi\)
−0.725874 + 0.687828i \(0.758564\pi\)
\(252\) −3.00000 + 15.5885i −0.188982 + 0.981981i
\(253\) 0 0
\(254\) −5.50000 + 9.52628i −0.345101 + 0.597732i
\(255\) −9.00000 15.5885i −0.563602 0.976187i
\(256\) 8.50000 + 14.7224i 0.531250 + 0.920152i
\(257\) 1.00000 1.73205i 0.0623783 0.108042i −0.833150 0.553047i \(-0.813465\pi\)
0.895528 + 0.445005i \(0.146798\pi\)
\(258\) 21.0000 1.30740
\(259\) 4.00000 + 3.46410i 0.248548 + 0.215249i
\(260\) 0 0
\(261\) −21.0000 + 36.3731i −1.29987 + 2.25144i
\(262\) −2.50000 4.33013i −0.154451 0.267516i
\(263\) 13.5000 + 23.3827i 0.832446 + 1.44184i 0.896093 + 0.443866i \(0.146393\pi\)
−0.0636476 + 0.997972i \(0.520273\pi\)
\(264\) 13.5000 23.3827i 0.830868 1.43910i
\(265\) 9.00000 0.552866
\(266\) 2.50000 0.866025i 0.153285 0.0530994i
\(267\) −18.0000 −1.10158
\(268\) −1.50000 + 2.59808i −0.0916271 + 0.158703i
\(269\) −9.00000 15.5885i −0.548740 0.950445i −0.998361 0.0572259i \(-0.981774\pi\)
0.449622 0.893219i \(-0.351559\pi\)
\(270\) 13.5000 + 23.3827i 0.821584 + 1.42302i
\(271\) 8.00000 13.8564i 0.485965 0.841717i −0.513905 0.857847i \(-0.671801\pi\)
0.999870 + 0.0161307i \(0.00513477\pi\)
\(272\) 2.00000 0.121268
\(273\) 0 0
\(274\) 10.0000 0.604122
\(275\) 6.00000 10.3923i 0.361814 0.626680i
\(276\) 0 0
\(277\) −11.0000 19.0526i −0.660926 1.14476i −0.980373 0.197153i \(-0.936830\pi\)
0.319447 0.947604i \(-0.396503\pi\)
\(278\) 7.50000 12.9904i 0.449820 0.779111i
\(279\) 18.0000 1.07763
\(280\) −18.0000 15.5885i −1.07571 0.931589i
\(281\) −18.0000 −1.07379 −0.536895 0.843649i \(-0.680403\pi\)
−0.536895 + 0.843649i \(0.680403\pi\)
\(282\) 1.50000 2.59808i 0.0893237 0.154713i
\(283\) −0.500000 0.866025i −0.0297219 0.0514799i 0.850782 0.525519i \(-0.176129\pi\)
−0.880504 + 0.474039i \(0.842796\pi\)
\(284\) 6.50000 + 11.2583i 0.385704 + 0.668059i
\(285\) −4.50000 + 7.79423i −0.266557 + 0.461690i
\(286\) 0 0
\(287\) 1.50000 7.79423i 0.0885422 0.460079i
\(288\) 30.0000 1.76777
\(289\) 6.50000 11.2583i 0.382353 0.662255i
\(290\) −10.5000 18.1865i −0.616581 1.06795i
\(291\) −7.50000 12.9904i −0.439658 0.761510i
\(292\) −6.50000 + 11.2583i −0.380384 + 0.658844i
\(293\) 11.0000 0.642627 0.321313 0.946973i \(-0.395876\pi\)
0.321313 + 0.946973i \(0.395876\pi\)
\(294\) 19.5000 + 7.79423i 1.13726 + 0.454569i
\(295\) −12.0000 −0.698667
\(296\) 3.00000 5.19615i 0.174371 0.302020i
\(297\) −13.5000 23.3827i −0.783349 1.35680i
\(298\) −7.50000 12.9904i −0.434463 0.752513i
\(299\) 0 0
\(300\) 12.0000 0.692820
\(301\) −3.50000 + 18.1865i −0.201737 + 1.04825i
\(302\) −21.0000 −1.20841
\(303\) −7.50000 + 12.9904i −0.430864 + 0.746278i
\(304\) −0.500000 0.866025i −0.0286770 0.0496700i
\(305\) 19.5000 + 33.7750i 1.11657 + 1.93395i
\(306\) 6.00000 10.3923i 0.342997 0.594089i
\(307\) 12.0000 0.684876 0.342438 0.939540i \(-0.388747\pi\)
0.342438 + 0.939540i \(0.388747\pi\)
\(308\) 6.00000 + 5.19615i 0.341882 + 0.296078i
\(309\) −15.0000 −0.853320
\(310\) −4.50000 + 7.79423i −0.255583 + 0.442682i
\(311\) 4.50000 + 7.79423i 0.255172 + 0.441970i 0.964942 0.262463i \(-0.0845347\pi\)
−0.709771 + 0.704433i \(0.751201\pi\)
\(312\) 0 0
\(313\) −9.50000 + 16.4545i −0.536972 + 0.930062i 0.462093 + 0.886831i \(0.347098\pi\)
−0.999065 + 0.0432311i \(0.986235\pi\)
\(314\) 19.0000 1.07223
\(315\) −45.0000 + 15.5885i −2.53546 + 0.878310i
\(316\) 3.00000 0.168763
\(317\) 4.50000 7.79423i 0.252745 0.437767i −0.711535 0.702650i \(-0.752000\pi\)
0.964281 + 0.264883i \(0.0853332\pi\)
\(318\) 4.50000 + 7.79423i 0.252347 + 0.437079i
\(319\) 10.5000 + 18.1865i 0.587887 + 1.01825i
\(320\) −10.5000 + 18.1865i −0.586968 + 1.01666i
\(321\) −24.0000 −1.33955
\(322\) 0 0
\(323\) 2.00000 0.111283
\(324\) 4.50000 7.79423i 0.250000 0.433013i
\(325\) 0 0
\(326\) 0.500000 + 0.866025i 0.0276924 + 0.0479647i
\(327\) 10.5000 18.1865i 0.580651 1.00572i
\(328\) −9.00000 −0.496942
\(329\) 2.00000 + 1.73205i 0.110264 + 0.0954911i
\(330\) 27.0000 1.48630
\(331\) 14.5000 25.1147i 0.796992 1.38043i −0.124574 0.992210i \(-0.539757\pi\)
0.921567 0.388221i \(-0.126910\pi\)
\(332\) 0 0
\(333\) −6.00000 10.3923i −0.328798 0.569495i
\(334\) 6.50000 11.2583i 0.355664 0.616028i
\(335\) −9.00000 −0.491723
\(336\) 1.50000 7.79423i 0.0818317 0.425210i
\(337\) 14.0000 0.762629 0.381314 0.924445i \(-0.375472\pi\)
0.381314 + 0.924445i \(0.375472\pi\)
\(338\) 0 0
\(339\) 22.5000 + 38.9711i 1.22203 + 2.11662i
\(340\) −3.00000 5.19615i −0.162698 0.281801i
\(341\) 4.50000 7.79423i 0.243689 0.422081i
\(342\) −6.00000 −0.324443
\(343\) −10.0000 + 15.5885i −0.539949 + 0.841698i
\(344\) 21.0000 1.13224
\(345\) 0 0
\(346\) −9.50000 16.4545i −0.510723 0.884598i
\(347\) 4.00000 + 6.92820i 0.214731 + 0.371925i 0.953189 0.302374i \(-0.0977791\pi\)
−0.738458 + 0.674299i \(0.764446\pi\)
\(348\) −10.5000 + 18.1865i −0.562859 + 0.974901i
\(349\) 23.0000 1.23116 0.615581 0.788074i \(-0.288921\pi\)
0.615581 + 0.788074i \(0.288921\pi\)
\(350\) 2.00000 10.3923i 0.106904 0.555492i
\(351\) 0 0
\(352\) 7.50000 12.9904i 0.399751 0.692390i
\(353\) 12.5000 + 21.6506i 0.665308 + 1.15235i 0.979202 + 0.202889i \(0.0650330\pi\)
−0.313894 + 0.949458i \(0.601634\pi\)
\(354\) −6.00000 10.3923i −0.318896 0.552345i
\(355\) −19.5000 + 33.7750i −1.03495 + 1.79259i
\(356\) −6.00000 −0.317999
\(357\) 12.0000 + 10.3923i 0.635107 + 0.550019i
\(358\) 17.0000 0.898478
\(359\) −8.50000 + 14.7224i −0.448613 + 0.777020i −0.998296 0.0583530i \(-0.981415\pi\)
0.549683 + 0.835373i \(0.314748\pi\)
\(360\) 27.0000 + 46.7654i 1.42302 + 2.46475i
\(361\) 9.00000 + 15.5885i 0.473684 + 0.820445i
\(362\) 11.0000 19.0526i 0.578147 1.00138i
\(363\) 6.00000 0.314918
\(364\) 0 0
\(365\) −39.0000 −2.04135
\(366\) −19.5000 + 33.7750i −1.01928 + 1.76545i
\(367\) 15.5000 + 26.8468i 0.809093 + 1.40139i 0.913493 + 0.406855i \(0.133375\pi\)
−0.104399 + 0.994535i \(0.533292\pi\)
\(368\) 0 0
\(369\) −9.00000 + 15.5885i −0.468521 + 0.811503i
\(370\) 6.00000 0.311925
\(371\) −7.50000 + 2.59808i −0.389381 + 0.134885i
\(372\) 9.00000 0.466628
\(373\) 4.50000 7.79423i 0.233001 0.403570i −0.725689 0.688023i \(-0.758479\pi\)
0.958690 + 0.284453i \(0.0918121\pi\)
\(374\) −3.00000 5.19615i −0.155126 0.268687i
\(375\) −4.50000 7.79423i −0.232379 0.402492i
\(376\) 1.50000 2.59808i 0.0773566 0.133986i
\(377\) 0 0
\(378\) −18.0000 15.5885i −0.925820 0.801784i
\(379\) −33.0000 −1.69510 −0.847548 0.530719i \(-0.821922\pi\)
−0.847548 + 0.530719i \(0.821922\pi\)
\(380\) −1.50000 + 2.59808i −0.0769484 + 0.133278i
\(381\) 16.5000 + 28.5788i 0.845321 + 1.46414i
\(382\) 8.50000 + 14.7224i 0.434898 + 0.753265i
\(383\) 10.5000 18.1865i 0.536525 0.929288i −0.462563 0.886586i \(-0.653070\pi\)
0.999088 0.0427020i \(-0.0135966\pi\)
\(384\) 9.00000 0.459279
\(385\) −4.50000 + 23.3827i −0.229341 + 1.19169i
\(386\) 7.00000 0.356291
\(387\) 21.0000 36.3731i 1.06749 1.84895i
\(388\) −2.50000 4.33013i −0.126918 0.219829i
\(389\) 16.5000 + 28.5788i 0.836583 + 1.44900i 0.892735 + 0.450582i \(0.148784\pi\)
−0.0561516 + 0.998422i \(0.517883\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 19.5000 + 7.79423i 0.984899 + 0.393668i
\(393\) −15.0000 −0.756650
\(394\) 0.500000 0.866025i 0.0251896 0.0436297i
\(395\) 4.50000 + 7.79423i 0.226420 + 0.392170i
\(396\) −9.00000 15.5885i −0.452267 0.783349i
\(397\) 0.500000 0.866025i 0.0250943 0.0434646i −0.853206 0.521575i \(-0.825345\pi\)
0.878300 + 0.478110i \(0.158678\pi\)
\(398\) −20.0000 −1.00251
\(399\) 1.50000 7.79423i 0.0750939 0.390199i
\(400\) −4.00000 −0.200000
\(401\) 1.00000 1.73205i 0.0499376 0.0864945i −0.839976 0.542623i \(-0.817431\pi\)
0.889914 + 0.456129i \(0.150764\pi\)
\(402\) −4.50000 7.79423i −0.224440 0.388741i
\(403\) 0 0
\(404\) −2.50000 + 4.33013i −0.124380 + 0.215432i
\(405\) 27.0000 1.34164
\(406\) 14.0000 + 12.1244i 0.694808 + 0.601722i
\(407\) −6.00000 −0.297409
\(408\) 9.00000 15.5885i 0.445566 0.771744i
\(409\) −7.00000 12.1244i −0.346128 0.599511i 0.639430 0.768849i \(-0.279170\pi\)
−0.985558 + 0.169338i \(0.945837\pi\)
\(410\) −4.50000 7.79423i −0.222239 0.384930i
\(411\) 15.0000 25.9808i 0.739895 1.28154i
\(412\) −5.00000 −0.246332
\(413\) 10.0000 3.46410i 0.492068 0.170457i
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) −22.5000 38.9711i −1.10183 1.90843i
\(418\) −1.50000 + 2.59808i −0.0733674 + 0.127076i
\(419\) −25.0000 −1.22133 −0.610665 0.791889i \(-0.709098\pi\)
−0.610665 + 0.791889i \(0.709098\pi\)
\(420\) −22.5000 + 7.79423i −1.09789 + 0.380319i
\(421\) 18.0000 0.877266 0.438633 0.898666i \(-0.355463\pi\)
0.438633 + 0.898666i \(0.355463\pi\)
\(422\) −3.50000 + 6.06218i −0.170377 + 0.295102i
\(423\) −3.00000 5.19615i −0.145865 0.252646i
\(424\) 4.50000 + 7.79423i 0.218539 + 0.378521i
\(425\) 4.00000 6.92820i 0.194029 0.336067i
\(426\) −39.0000 −1.88956
\(427\) −26.0000 22.5167i −1.25823 1.08966i
\(428\) −8.00000 −0.386695
\(429\) 0 0
\(430\) 10.5000 + 18.1865i 0.506355 + 0.877033i
\(431\) −4.50000 7.79423i −0.216757 0.375435i 0.737057 0.675830i \(-0.236215\pi\)
−0.953815 + 0.300395i \(0.902881\pi\)
\(432\) −4.50000 + 7.79423i −0.216506 + 0.375000i
\(433\) 27.0000 1.29754 0.648769 0.760986i \(-0.275284\pi\)
0.648769 + 0.760986i \(0.275284\pi\)
\(434\) 1.50000 7.79423i 0.0720023 0.374135i
\(435\) −63.0000 −3.02062
\(436\) 3.50000 6.06218i 0.167620 0.290326i
\(437\) 0 0
\(438\) −19.5000 33.7750i −0.931746 1.61383i
\(439\) 8.00000 13.8564i 0.381819 0.661330i −0.609503 0.792784i \(-0.708631\pi\)
0.991322 + 0.131453i \(0.0419644\pi\)
\(440\) 27.0000 1.28717
\(441\) 33.0000 25.9808i 1.57143 1.23718i
\(442\) 0 0
\(443\) 5.50000 9.52628i 0.261313 0.452607i −0.705278 0.708931i \(-0.749178\pi\)
0.966591 + 0.256323i \(0.0825112\pi\)
\(444\) −3.00000 5.19615i −0.142374 0.246598i
\(445\) −9.00000 15.5885i −0.426641 0.738964i
\(446\) 4.50000 7.79423i 0.213081 0.369067i
\(447\) −45.0000 −2.12843
\(448\) 3.50000 18.1865i 0.165359 0.859233i
\(449\) 15.0000 0.707894 0.353947 0.935266i \(-0.384839\pi\)
0.353947 + 0.935266i \(0.384839\pi\)
\(450\) −12.0000 + 20.7846i −0.565685 + 0.979796i
\(451\) 4.50000 + 7.79423i 0.211897 + 0.367016i
\(452\) 7.50000 + 12.9904i 0.352770 + 0.611016i
\(453\) −31.5000 + 54.5596i −1.48000 + 2.56343i
\(454\) −4.00000 −0.187729
\(455\) 0 0
\(456\) −9.00000 −0.421464
\(457\) 9.00000 15.5885i 0.421002 0.729197i −0.575036 0.818128i \(-0.695012\pi\)
0.996038 + 0.0889312i \(0.0283451\pi\)
\(458\) 6.50000 + 11.2583i 0.303725 + 0.526067i
\(459\) −9.00000 15.5885i −0.420084 0.727607i
\(460\) 0 0
\(461\) 35.0000 1.63011 0.815056 0.579382i \(-0.196706\pi\)
0.815056 + 0.579382i \(0.196706\pi\)
\(462\) −22.5000 + 7.79423i −1.04679 + 0.362620i
\(463\) −8.00000 −0.371792 −0.185896 0.982569i \(-0.559519\pi\)
−0.185896 + 0.982569i \(0.559519\pi\)
\(464\) 3.50000 6.06218i 0.162483 0.281430i
\(465\) 13.5000 + 23.3827i 0.626048 + 1.08435i
\(466\) 10.5000 + 18.1865i 0.486403 + 0.842475i
\(467\) 3.50000 6.06218i 0.161961 0.280524i −0.773611 0.633661i \(-0.781552\pi\)
0.935572 + 0.353137i \(0.114885\pi\)
\(468\) 0 0
\(469\) 7.50000 2.59808i 0.346318 0.119968i
\(470\) 3.00000 0.138380
\(471\) 28.5000 49.3634i 1.31321 2.27455i
\(472\) −6.00000 10.3923i −0.276172 0.478345i
\(473\) −10.5000 18.1865i −0.482791 0.836218i
\(474\) −4.50000 + 7.79423i −0.206692 + 0.358001i
\(475\) −4.00000 −0.183533
\(476\) 4.00000 + 3.46410i 0.183340 + 0.158777i
\(477\) 18.0000 0.824163
\(478\) 2.00000 3.46410i 0.0914779 0.158444i
\(479\) 17.5000 + 30.3109i 0.799595 + 1.38494i 0.919880 + 0.392200i \(0.128286\pi\)
−0.120284 + 0.992739i \(0.538381\pi\)
\(480\) 22.5000 + 38.9711i 1.02698 + 1.77878i
\(481\) 0 0
\(482\) −26.0000 −1.18427
\(483\) 0 0
\(484\) 2.00000 0.0909091
\(485\) 7.50000 12.9904i 0.340557 0.589863i
\(486\) 0 0
\(487\) −8.00000 13.8564i −0.362515 0.627894i 0.625859 0.779936i \(-0.284748\pi\)
−0.988374 + 0.152042i \(0.951415\pi\)
\(488\) −19.5000 + 33.7750i −0.882724 + 1.52892i
\(489\) 3.00000 0.135665
\(490\) 3.00000 + 20.7846i 0.135526 + 0.938953i
\(491\) 15.0000 0.676941 0.338470 0.940977i \(-0.390091\pi\)
0.338470 + 0.940977i \(0.390091\pi\)
\(492\) −4.50000 + 7.79423i −0.202876 + 0.351391i
\(493\) 7.00000 + 12.1244i 0.315264 + 0.546054i
\(494\) 0 0
\(495\) 27.0000 46.7654i 1.21356 2.10195i
\(496\) −3.00000 −0.134704
\(497\) 6.50000 33.7750i 0.291565 1.51502i
\(498\) 0 0
\(499\) 15.5000 26.8468i 0.693875 1.20183i −0.276683 0.960961i \(-0.589235\pi\)
0.970558 0.240866i \(-0.0774314\pi\)
\(500\) −1.50000 2.59808i −0.0670820 0.116190i
\(501\) −19.5000 33.7750i −0.871196 1.50896i
\(502\) 11.5000 19.9186i 0.513270 0.889010i
\(503\) −31.0000 −1.38222 −0.691111 0.722749i \(-0.742878\pi\)
−0.691111 + 0.722749i \(0.742878\pi\)
\(504\) −36.0000 31.1769i −1.60357 1.38873i
\(505\) −15.0000 −0.667491
\(506\) 0 0
\(507\) 0 0
\(508\) 5.50000 + 9.52628i 0.244023 + 0.422660i
\(509\) 17.0000 29.4449i 0.753512 1.30512i −0.192599 0.981278i \(-0.561692\pi\)
0.946111 0.323843i \(-0.104975\pi\)
\(510\) 18.0000 0.797053
\(511\) 32.5000 11.2583i 1.43772 0.498039i
\(512\) −11.0000 −0.486136
\(513\) −4.50000 + 7.79423i −0.198680 + 0.344124i
\(514\) 1.00000 + 1.73205i 0.0441081 + 0.0763975i
\(515\) −7.50000 12.9904i −0.330489 0.572425i
\(516\) 10.5000 18.1865i 0.462237 0.800617i
\(517\) −3.00000 −0.131940
\(518\) −5.00000 + 1.73205i −0.219687 + 0.0761019i
\(519\) −57.0000 −2.50202
\(520\) 0 0
\(521\) 8.50000 + 14.7224i 0.372392 + 0.645001i 0.989933 0.141537i \(-0.0452044\pi\)
−0.617541 + 0.786539i \(0.711871\pi\)
\(522\) −21.0000 36.3731i −0.919145 1.59201i
\(523\) −2.00000 + 3.46410i −0.0874539 + 0.151475i −0.906434 0.422347i \(-0.861206\pi\)
0.818980 + 0.573822i \(0.194540\pi\)
\(524\) −5.00000 −0.218426
\(525\) −24.0000 20.7846i −1.04745 0.907115i
\(526\) −27.0000 −1.17726
\(527\) 3.00000 5.19615i 0.130682 0.226348i
\(528\) 4.50000 + 7.79423i 0.195837 + 0.339200i
\(529\) 11.5000 + 19.9186i 0.500000 + 0.866025i
\(530\) −4.50000 + 7.79423i −0.195468 + 0.338560i
\(531\) −24.0000 −1.04151
\(532\) 0.500000 2.59808i 0.0216777 0.112641i
\(533\) 0 0
\(534\) 9.00000 15.5885i 0.389468 0.674579i
\(535\) −12.0000 20.7846i −0.518805 0.898597i
\(536\) −4.50000 7.79423i −0.194370 0.336659i
\(537\) 25.5000 44.1673i 1.10041 1.90596i
\(538\) 18.0000 0.776035
\(539\) −3.00000 20.7846i −0.129219 0.895257i
\(540\) 27.0000 1.16190
\(541\) 18.5000 32.0429i 0.795377 1.37763i −0.127222 0.991874i \(-0.540606\pi\)
0.922599 0.385759i \(-0.126061\pi\)
\(542\) 8.00000 + 13.8564i 0.343629 + 0.595184i
\(543\) −33.0000 57.1577i −1.41617 2.45287i
\(544\) 5.00000 8.66025i 0.214373 0.371305i
\(545\) 21.0000 0.899541
\(546\) 0 0
\(547\) −28.0000 −1.19719 −0.598597 0.801050i \(-0.704275\pi\)
−0.598597 + 0.801050i \(0.704275\pi\)
\(548\) 5.00000 8.66025i 0.213589 0.369948i
\(549\) 39.0000 + 67.5500i 1.66448 + 2.88296i
\(550\) 6.00000 + 10.3923i 0.255841 + 0.443129i
\(551\) 3.50000 6.06218i 0.149105 0.258257i
\(552\) 0 0
\(553\) −6.00000 5.19615i −0.255146 0.220963i
\(554\) 22.0000 0.934690
\(555\) 9.00000 15.5885i 0.382029 0.661693i
\(556\) −7.50000 12.9904i −0.318071 0.550915i
\(557\) −1.50000 2.59808i −0.0635570 0.110084i 0.832496 0.554031i \(-0.186911\pi\)
−0.896053 + 0.443947i \(0.853578\pi\)
\(558\) −9.00000 + 15.5885i −0.381000 + 0.659912i
\(559\) 0 0
\(560\) 7.50000 2.59808i 0.316933 0.109789i
\(561\) −18.0000 −0.759961
\(562\) 9.00000 15.5885i 0.379642 0.657559i
\(563\) −2.00000 3.46410i −0.0842900 0.145994i 0.820798 0.571218i \(-0.193529\pi\)
−0.905088 + 0.425223i \(0.860196\pi\)
\(564\) −1.50000 2.59808i −0.0631614 0.109399i
\(565\) −22.5000 + 38.9711i −0.946582 + 1.63953i
\(566\) 1.00000 0.0420331
\(567\) −22.5000 + 7.79423i −0.944911 + 0.327327i
\(568\) −39.0000 −1.63640
\(569\) −5.00000 + 8.66025i −0.209611 + 0.363057i −0.951592 0.307364i \(-0.900553\pi\)
0.741981 + 0.670421i \(0.233886\pi\)
\(570\) −4.50000 7.79423i −0.188484 0.326464i
\(571\) −21.5000 37.2391i −0.899747 1.55841i −0.827817 0.560998i \(-0.810418\pi\)
−0.0719297 0.997410i \(-0.522916\pi\)
\(572\) 0 0
\(573\) 51.0000 2.13056
\(574\) 6.00000 + 5.19615i 0.250435 + 0.216883i
\(575\) 0 0
\(576\) −21.0000 + 36.3731i −0.875000 + 1.51554i
\(577\) 0.500000 + 0.866025i 0.0208153 + 0.0360531i 0.876245 0.481865i \(-0.160040\pi\)
−0.855430 + 0.517918i \(0.826707\pi\)
\(578\) 6.50000 + 11.2583i 0.270364 + 0.468285i
\(579\) 10.5000 18.1865i 0.436365 0.755807i
\(580\) −21.0000 −0.871978
\(581\) 0 0
\(582\) 15.0000 0.621770
\(583\) 4.50000 7.79423i 0.186371 0.322804i
\(584\) −19.5000 33.7750i −0.806916 1.39762i
\(585\) 0 0
\(586\) −5.50000 + 9.52628i −0.227203 + 0.393527i
\(587\) −33.0000 −1.36206 −0.681028 0.732257i \(-0.738467\pi\)
−0.681028 + 0.732257i \(0.738467\pi\)
\(588\) 16.5000 12.9904i 0.680449 0.535714i
\(589\) −3.00000 −0.123613
\(590\) 6.00000 10.3923i 0.247016 0.427844i
\(591\) −1.50000 2.59808i −0.0617018 0.106871i
\(592\) 1.00000 + 1.73205i 0.0410997 + 0.0711868i
\(593\) −13.5000 + 23.3827i −0.554379 + 0.960212i 0.443573 + 0.896238i \(0.353711\pi\)
−0.997952 + 0.0639736i \(0.979623\pi\)
\(594\) 27.0000 1.10782
\(595\) −3.00000 + 15.5885i −0.122988 + 0.639064i
\(596\) −15.0000 −0.614424
\(597\) −30.0000 + 51.9615i −1.22782 + 2.12664i
\(598\) 0 0
\(599\) 12.5000 + 21.6506i 0.510736 + 0.884621i 0.999923 + 0.0124417i \(0.00396043\pi\)
−0.489186 + 0.872179i \(0.662706\pi\)
\(600\) −18.0000 + 31.1769i −0.734847 + 1.27279i
\(601\) 35.0000 1.42768 0.713840 0.700309i \(-0.246954\pi\)
0.713840 + 0.700309i \(0.246954\pi\)
\(602\) −14.0000 12.1244i −0.570597 0.494152i
\(603\) −18.0000 −0.733017
\(604\) −10.5000 + 18.1865i −0.427239 + 0.740000i
\(605\) 3.00000 + 5.19615i 0.121967 + 0.211254i
\(606\) −7.50000 12.9904i −0.304667 0.527698i
\(607\) −5.50000 + 9.52628i −0.223238 + 0.386660i −0.955789 0.294052i \(-0.904996\pi\)
0.732551 + 0.680712i \(0.238329\pi\)
\(608\) −5.00000 −0.202777
\(609\) 52.5000 18.1865i 2.12741 0.736956i
\(610\) −39.0000 −1.57906
\(611\) 0 0
\(612\) −6.00000 10.3923i −0.242536 0.420084i
\(613\) 12.5000 + 21.6506i 0.504870 + 0.874461i 0.999984 + 0.00563283i \(0.00179300\pi\)
−0.495114 + 0.868828i \(0.664874\pi\)
\(614\) −6.00000 + 10.3923i −0.242140 + 0.419399i
\(615\) −27.0000 −1.08875
\(616\) −22.5000 + 7.79423i −0.906551 + 0.314038i
\(617\) −33.0000 −1.32853 −0.664265 0.747497i \(-0.731255\pi\)
−0.664265 + 0.747497i \(0.731255\pi\)
\(618\) 7.50000 12.9904i 0.301694 0.522550i
\(619\) −5.50000 9.52628i −0.221064 0.382893i 0.734068 0.679076i \(-0.237620\pi\)
−0.955131 + 0.296183i \(0.904286\pi\)
\(620\) 4.50000 + 7.79423i 0.180724 + 0.313024i
\(621\) 0 0
\(622\) −9.00000 −0.360867
\(623\) 12.0000 + 10.3923i 0.480770 + 0.416359i
\(624\) 0 0
\(625\) 14.5000 25.1147i 0.580000 1.00459i
\(626\) −9.50000 16.4545i −0.379696 0.657653i
\(627\) 4.50000 + 7.79423i 0.179713 + 0.311272i
\(628\) 9.50000 16.4545i 0.379091 0.656605i
\(629\) −4.00000 −0.159490
\(630\) 9.00000 46.7654i 0.358569 1.86318i
\(631\) 25.0000 0.995234 0.497617 0.867397i \(-0.334208\pi\)
0.497617 + 0.867397i \(0.334208\pi\)
\(632\) −4.50000 + 7.79423i −0.179000 + 0.310038i
\(633\) 10.5000 + 18.1865i 0.417338 + 0.722850i
\(634\) 4.50000 + 7.79423i 0.178718 + 0.309548i
\(635\) −16.5000 + 28.5788i −0.654783 + 1.13412i
\(636\) 9.00000 0.356873
\(637\) 0 0
\(638\) −21.0000 −0.831398
\(639\) −39.0000 + 67.5500i −1.54282 + 2.67224i
\(640\) 4.50000 + 7.79423i 0.177878 + 0.308094i
\(641\) 9.00000 + 15.5885i 0.355479 + 0.615707i 0.987200 0.159489i \(-0.0509845\pi\)
−0.631721 + 0.775196i \(0.717651\pi\)
\(642\) 12.0000 20.7846i 0.473602 0.820303i
\(643\) −19.0000 −0.749287 −0.374643 0.927169i \(-0.622235\pi\)
−0.374643 + 0.927169i \(0.622235\pi\)
\(644\) 0 0
\(645\) 63.0000 2.48062
\(646\) −1.00000 + 1.73205i −0.0393445 + 0.0681466i
\(647\) −4.50000 7.79423i −0.176913 0.306423i 0.763908 0.645325i \(-0.223278\pi\)
−0.940822 + 0.338902i \(0.889945\pi\)
\(648\) 13.5000 + 23.3827i 0.530330 + 0.918559i
\(649\) −6.00000 + 10.3923i −0.235521 + 0.407934i
\(650\) 0 0
\(651\) −18.0000 15.5885i −0.705476 0.610960i
\(652\) 1.00000 0.0391630
\(653\) −9.00000 + 15.5885i −0.352197 + 0.610023i −0.986634 0.162951i \(-0.947899\pi\)
0.634437 + 0.772975i \(0.281232\pi\)
\(654\) 10.5000 + 18.1865i 0.410582 + 0.711150i
\(655\) −7.50000 12.9904i −0.293049 0.507576i
\(656\) 1.50000 2.59808i 0.0585652 0.101438i
\(657\) −78.0000 −3.04307
\(658\) −2.50000 + 0.866025i −0.0974601 + 0.0337612i
\(659\) 29.0000 1.12968 0.564840 0.825201i \(-0.308938\pi\)
0.564840 + 0.825201i \(0.308938\pi\)
\(660\) 13.5000 23.3827i 0.525487 0.910170i
\(661\) 4.50000 + 7.79423i 0.175030 + 0.303160i 0.940172 0.340701i \(-0.110665\pi\)
−0.765142 + 0.643862i \(0.777331\pi\)
\(662\) 14.5000 + 25.1147i 0.563559 + 0.976112i
\(663\) 0 0
\(664\) 0 0
\(665\) 7.50000 2.59808i 0.290838 0.100749i
\(666\) 12.0000 0.464991
\(667\) 0 0
\(668\) −6.50000 11.2583i −0.251493 0.435598i
\(669\) −13.5000 23.3827i −0.521940 0.904027i
\(670\) 4.50000 7.79423i 0.173850 0.301117i
\(671\) 39.0000 1.50558
\(672\) −30.0000 25.9808i −1.15728 1.00223i
\(673\) −41.0000 −1.58043 −0.790217 0.612827i \(-0.790032\pi\)
−0.790217 + 0.612827i \(0.790032\pi\)
\(674\) −7.00000 + 12.1244i −0.269630 + 0.467013i
\(675\) 18.0000 + 31.1769i 0.692820 + 1.20000i
\(676\) 0 0
\(677\) −3.50000 + 6.06218i −0.134516 + 0.232988i −0.925412 0.378962i \(-0.876281\pi\)
0.790897 + 0.611950i \(0.209615\pi\)
\(678\) −45.0000 −1.72821
\(679\) −2.50000 + 12.9904i −0.0959412 + 0.498525i
\(680\) 18.0000 0.690268
\(681\) −6.00000 + 10.3923i −0.229920 + 0.398234i
\(682\) 4.50000 + 7.79423i 0.172314 + 0.298456i
\(683\) −6.00000 10.3923i −0.229584 0.397650i 0.728101 0.685470i \(-0.240403\pi\)
−0.957685 + 0.287819i \(0.907070\pi\)
\(684\) −3.00000 + 5.19615i −0.114708 + 0.198680i
\(685\) 30.0000 1.14624
\(686\) −8.50000 16.4545i −0.324532 0.628235i
\(687\) 39.0000 1.48794
\(688\) −3.50000 + 6.06218i −0.133436 + 0.231118i
\(689\) 0 0
\(690\) 0 0
\(691\) 2.00000 3.46410i 0.0760836 0.131781i −0.825473 0.564441i \(-0.809092\pi\)
0.901557 + 0.432660i \(0.142425\pi\)
\(692\) −19.0000 −0.722272
\(693\) −9.00000 + 46.7654i −0.341882 + 1.77647i
\(694\) −8.00000 −0.303676
\(695\) 22.5000 38.9711i 0.853474 1.47826i
\(696\) −31.5000 54.5596i −1.19400 2.06808i
\(697\) 3.00000 + 5.19615i 0.113633 + 0.196818i
\(698\) −11.5000 + 19.9186i −0.435281 + 0.753930i
\(699\) 63.0000 2.38288
\(700\) −8.00000 6.92820i −0.302372 0.261861i
\(701\) 42.0000 1.58632 0.793159 0.609015i \(-0.208435\pi\)
0.793159 + 0.609015i \(0.208435\pi\)
\(702\) 0 0
\(703\) 1.00000 + 1.73205i 0.0377157 + 0.0653255i
\(704\) 10.5000 + 18.1865i 0.395734 + 0.685431i
\(705\) 4.50000 7.79423i 0.169480 0.293548i
\(706\) −25.0000 −0.940887
\(707\) 12.5000 4.33013i 0.470111 0.162851i
\(708\) −12.0000 −0.450988
\(709\) −5.50000 + 9.52628i −0.206557 + 0.357767i −0.950628 0.310334i \(-0.899559\pi\)
0.744071 + 0.668101i \(0.232892\pi\)
\(710\) −19.5000 33.7750i −0.731822 1.26755i
\(711\) 9.00000 + 15.5885i 0.337526 + 0.584613i
\(712\) 9.00000 15.5885i 0.337289 0.584202i
\(713\) 0 0
\(714\) −15.0000 + 5.19615i −0.561361 + 0.194461i
\(715\) 0 0
\(716\) 8.50000 14.7224i 0.317660 0.550203i
\(717\) −6.00000 10.3923i −0.224074 0.388108i
\(718\) −8.50000 14.7224i −0.317217 0.549436i
\(719\) 4.50000 7.79423i 0.167822 0.290676i −0.769832 0.638247i \(-0.779660\pi\)
0.937654 + 0.347571i \(0.112993\pi\)
\(720\) −18.0000 −0.670820
\(721\) 10.0000 + 8.66025i 0.372419 + 0.322525i
\(722\) −18.0000 −0.669891
\(723\) −39.0000 + 67.5500i −1.45043 + 2.51221i
\(724\) −11.0000 19.0526i −0.408812 0.708083i
\(725\) −14.0000 24.2487i −0.519947 0.900575i
\(726\) −3.00000 + 5.19615i −0.111340 + 0.192847i
\(727\) −8.00000 −0.296704 −0.148352 0.988935i \(-0.547397\pi\)
−0.148352 + 0.988935i \(0.547397\pi\)
\(728\) 0 0
\(729\) −27.0000 −1.00000
\(730\) 19.5000 33.7750i 0.721727 1.25007i
\(731\) −7.00000 12.1244i −0.258904 0.448435i
\(732\) 19.5000 + 33.7750i 0.720741 + 1.24836i
\(733\) 4.50000 7.79423i 0.166211 0.287886i −0.770873 0.636988i \(-0.780180\pi\)
0.937085 + 0.349102i \(0.113513\pi\)
\(734\) −31.0000 −1.14423
\(735\) 58.5000 + 23.3827i 2.15781 + 0.862483i
\(736\) 0 0
\(737\) −4.50000 + 7.79423i −0.165760 + 0.287104i
\(738\) −9.00000 15.5885i −0.331295 0.573819i
\(739\) −0.500000 0.866025i −0.0183928 0.0318573i 0.856683 0.515844i \(-0.172522\pi\)
−0.875075 + 0.483987i \(0.839188\pi\)
\(740\) 3.00000 5.19615i 0.110282 0.191014i
\(741\) 0 0
\(742\) 1.50000 7.79423i 0.0550667 0.286135i
\(743\) 51.0000 1.87101 0.935504 0.353315i \(-0.114946\pi\)
0.935504 + 0.353315i \(0.114946\pi\)
\(744\) −13.5000 + 23.3827i −0.494934 + 0.857251i
\(745\) −22.5000 38.9711i −0.824336 1.42779i
\(746\) 4.50000 + 7.79423i 0.164757 + 0.285367i
\(747\) 0 0
\(748\) −6.00000 −0.219382
\(749\) 16.0000 + 13.8564i 0.584627 + 0.506302i
\(750\) 9.00000 0.328634
\(751\) −14.0000 + 24.2487i −0.510867 + 0.884848i 0.489053 + 0.872254i \(0.337342\pi\)
−0.999921 + 0.0125942i \(0.995991\pi\)
\(752\) 0.500000 + 0.866025i 0.0182331 + 0.0315807i
\(753\) −34.5000 59.7558i −1.25725 2.17762i
\(754\) 0 0
\(755\) −63.0000 −2.29280
\(756\) −22.5000 + 7.79423i −0.818317 + 0.283473i
\(757\) 3.00000 0.109037 0.0545184 0.998513i \(-0.482638\pi\)
0.0545184 + 0.998513i \(0.482638\pi\)
\(758\) 16.5000 28.5788i 0.599307 1.03803i
\(759\) 0 0
\(760\) −4.50000 7.79423i −0.163232 0.282726i
\(761\) 4.50000 7.79423i 0.163125 0.282541i −0.772863 0.634573i \(-0.781176\pi\)
0.935988 + 0.352032i \(0.114509\pi\)
\(762\) −33.0000 −1.19546
\(763\) −17.5000 + 6.06218i −0.633543 + 0.219466i
\(764\) 17.0000 0.615038
\(765\) 18.0000 31.1769i 0.650791 1.12720i
\(766\) 10.5000 + 18.1865i 0.379380 + 0.657106i
\(767\) 0 0
\(768\) −25.5000 + 44.1673i −0.920152 + 1.59375i
\(769\) 19.0000 0.685158 0.342579 0.939489i \(-0.388700\pi\)
0.342579 + 0.939489i \(0.388700\pi\)
\(770\) −18.0000 15.5885i −0.648675 0.561769i
\(771\) 6.00000 0.216085
\(772\) 3.50000 6.06218i 0.125968 0.218183i
\(773\) 3.00000 + 5.19615i 0.107903 + 0.186893i 0.914920 0.403634i \(-0.132253\pi\)