Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [1183,2,Mod(337,1183)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(1183, base_ring=CyclotomicField(2))
chi = DirichletCharacter(H, H._module([0, 1]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("1183.337");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 1183 = 7 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1183.c (of order \(2\), degree \(1\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(9.44630255912\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
337.1 | − | 2.62803i | −1.76762 | −4.90656 | 2.94291i | 4.64535i | 1.00000i | 7.63852i | 0.124466 | 7.73406 | |||||||||||||||||
337.2 | − | 2.58557i | 2.93994 | −4.68518 | 1.26031i | − | 7.60143i | − | 1.00000i | 6.94272i | 5.64327 | 3.25863 | |||||||||||||||
337.3 | − | 2.47725i | 0.982981 | −4.13677 | − | 1.35413i | − | 2.43509i | 1.00000i | 5.29330i | −2.03375 | −3.35452 | |||||||||||||||
337.4 | − | 2.23724i | 3.02592 | −3.00523 | 3.28547i | − | 6.76971i | 1.00000i | 2.24893i | 6.15622 | 7.35037 | ||||||||||||||||
337.5 | − | 2.07140i | −3.01646 | −2.29068 | − | 2.69245i | 6.24828i | − | 1.00000i | 0.602118i | 6.09903 | −5.57713 | |||||||||||||||
337.6 | − | 2.06743i | 2.11889 | −2.27425 | − | 2.43928i | − | 4.38065i | 1.00000i | 0.566992i | 1.48970 | −5.04303 | |||||||||||||||
337.7 | − | 1.35819i | 3.39737 | 0.155322 | − | 0.772491i | − | 4.61428i | − | 1.00000i | − | 2.92733i | 8.54215 | −1.04919 | |||||||||||||
337.8 | − | 1.10989i | 0.955760 | 0.768150 | − | 3.55862i | − | 1.06079i | − | 1.00000i | − | 3.07233i | −2.08652 | −3.94966 | |||||||||||||
337.9 | − | 0.983820i | −1.57171 | 1.03210 | − | 0.398447i | 1.54628i | 1.00000i | − | 2.98304i | −0.529731 | −0.392000 | |||||||||||||||
337.10 | − | 0.961590i | −1.98737 | 1.07534 | 3.39320i | 1.91103i | − | 1.00000i | − | 2.95722i | 0.949635 | 3.26287 | |||||||||||||||
337.11 | − | 0.842530i | 0.161973 | 1.29014 | 3.72786i | − | 0.136467i | 1.00000i | − | 2.77204i | −2.97376 | 3.14083 | |||||||||||||||
337.12 | − | 0.149660i | 2.76031 | 1.97760 | 4.13443i | − | 0.413107i | − | 1.00000i | − | 0.595288i | 4.61930 | 0.618759 | ||||||||||||||
337.13 | 0.149660i | 2.76031 | 1.97760 | − | 4.13443i | 0.413107i | 1.00000i | 0.595288i | 4.61930 | 0.618759 | |||||||||||||||||
337.14 | 0.842530i | 0.161973 | 1.29014 | − | 3.72786i | 0.136467i | − | 1.00000i | 2.77204i | −2.97376 | 3.14083 | ||||||||||||||||
337.15 | 0.961590i | −1.98737 | 1.07534 | − | 3.39320i | − | 1.91103i | 1.00000i | 2.95722i | 0.949635 | 3.26287 | ||||||||||||||||
337.16 | 0.983820i | −1.57171 | 1.03210 | 0.398447i | − | 1.54628i | − | 1.00000i | 2.98304i | −0.529731 | −0.392000 | ||||||||||||||||
337.17 | 1.10989i | 0.955760 | 0.768150 | 3.55862i | 1.06079i | 1.00000i | 3.07233i | −2.08652 | −3.94966 | ||||||||||||||||||
337.18 | 1.35819i | 3.39737 | 0.155322 | 0.772491i | 4.61428i | 1.00000i | 2.92733i | 8.54215 | −1.04919 | ||||||||||||||||||
337.19 | 2.06743i | 2.11889 | −2.27425 | 2.43928i | 4.38065i | − | 1.00000i | − | 0.566992i | 1.48970 | −5.04303 | ||||||||||||||||
337.20 | 2.07140i | −3.01646 | −2.29068 | 2.69245i | − | 6.24828i | 1.00000i | − | 0.602118i | 6.09903 | −5.57713 | ||||||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1183.2.c.j | 24 | |
13.b | even | 2 | 1 | inner | 1183.2.c.j | 24 | |
13.d | odd | 4 | 1 | 1183.2.a.q | ✓ | 12 | |
13.d | odd | 4 | 1 | 1183.2.a.r | yes | 12 | |
91.i | even | 4 | 1 | 8281.2.a.cn | 12 | ||
91.i | even | 4 | 1 | 8281.2.a.cq | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1183.2.a.q | ✓ | 12 | 13.d | odd | 4 | 1 | |
1183.2.a.r | yes | 12 | 13.d | odd | 4 | 1 | |
1183.2.c.j | 24 | 1.a | even | 1 | 1 | trivial | |
1183.2.c.j | 24 | 13.b | even | 2 | 1 | inner | |
8281.2.a.cn | 12 | 91.i | even | 4 | 1 | ||
8281.2.a.cq | 12 | 91.i | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{24} + 39 T_{2}^{22} + 661 T_{2}^{20} + 6390 T_{2}^{18} + 38898 T_{2}^{16} + 155486 T_{2}^{14} + \cdots + 841 \) acting on \(S_{2}^{\mathrm{new}}(1183, [\chi])\).