Properties

Label 1183.2.c.i.337.6
Level $1183$
Weight $2$
Character 1183.337
Analytic conductor $9.446$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1183,2,Mod(337,1183)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1183.337"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1183, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1183 = 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1183.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [12,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(3)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.44630255912\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: 12.0.58891012706304.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 5x^{10} - 2x^{9} + 15x^{8} + 2x^{7} - 30x^{6} + 4x^{5} + 60x^{4} - 16x^{3} - 80x^{2} + 64 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{6} \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 337.6
Root \(1.34408 + 0.439820i\) of defining polynomial
Character \(\chi\) \(=\) 1183.337
Dual form 1183.2.c.i.337.7

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-0.120360i q^{2} -0.582292 q^{3} +1.98551 q^{4} +1.68817i q^{5} +0.0700846i q^{6} -1.00000i q^{7} -0.479696i q^{8} -2.66094 q^{9} +0.203187 q^{10} -0.364618i q^{11} -1.15615 q^{12} -0.120360 q^{14} -0.983005i q^{15} +3.91329 q^{16} +3.18555 q^{17} +0.320270i q^{18} -1.44391i q^{19} +3.35188i q^{20} +0.582292i q^{21} -0.0438854 q^{22} +5.08321 q^{23} +0.279323i q^{24} +2.15010 q^{25} +3.29632 q^{27} -1.98551i q^{28} +8.19662 q^{29} -0.118314 q^{30} +4.69775i q^{31} -1.43040i q^{32} +0.212314i q^{33} -0.383412i q^{34} +1.68817 q^{35} -5.28332 q^{36} +6.31584i q^{37} -0.173789 q^{38} +0.809806 q^{40} -5.82732i q^{41} +0.0700846 q^{42} +0.773122 q^{43} -0.723954i q^{44} -4.49210i q^{45} -0.611815i q^{46} +12.7905i q^{47} -2.27868 q^{48} -1.00000 q^{49} -0.258786i q^{50} -1.85492 q^{51} +1.37110 q^{53} -0.396744i q^{54} +0.615536 q^{55} -0.479696 q^{56} +0.840776i q^{57} -0.986544i q^{58} +9.36197i q^{59} -1.95177i q^{60} -9.02484 q^{61} +0.565421 q^{62} +2.66094i q^{63} +7.65442 q^{64} +0.0255541 q^{66} -13.4759i q^{67} +6.32495 q^{68} -2.95991 q^{69} -0.203187i q^{70} +7.08115i q^{71} +1.27644i q^{72} -2.16083i q^{73} +0.760173 q^{74} -1.25198 q^{75} -2.86690i q^{76} -0.364618 q^{77} -6.88781 q^{79} +6.60628i q^{80} +6.06339 q^{81} -0.701376 q^{82} -0.567380i q^{83} +1.15615i q^{84} +5.37773i q^{85} -0.0930528i q^{86} -4.77282 q^{87} -0.174906 q^{88} -1.13893i q^{89} -0.540669 q^{90} +10.0928 q^{92} -2.73547i q^{93} +1.53947 q^{94} +2.43755 q^{95} +0.832908i q^{96} -7.92785i q^{97} +0.120360i q^{98} +0.970225i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 8 q^{4} + 8 q^{9} - 24 q^{10} - 4 q^{12} - 8 q^{14} + 16 q^{16} + 8 q^{17} - 12 q^{22} + 24 q^{23} - 20 q^{25} + 12 q^{27} - 16 q^{29} - 16 q^{30} - 12 q^{35} + 20 q^{36} + 4 q^{38} + 92 q^{40} - 8 q^{42}+ \cdots + 44 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1183\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(1016\)
\(\chi(n)\) \(1\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 0.120360i − 0.0851073i −0.999094 0.0425536i \(-0.986451\pi\)
0.999094 0.0425536i \(-0.0135493\pi\)
\(3\) −0.582292 −0.336186 −0.168093 0.985771i \(-0.553761\pi\)
−0.168093 + 0.985771i \(0.553761\pi\)
\(4\) 1.98551 0.992757
\(5\) 1.68817i 0.754971i 0.926016 + 0.377485i \(0.123211\pi\)
−0.926016 + 0.377485i \(0.876789\pi\)
\(6\) 0.0700846i 0.0286119i
\(7\) − 1.00000i − 0.377964i
\(8\) − 0.479696i − 0.169598i
\(9\) −2.66094 −0.886979
\(10\) 0.203187 0.0642535
\(11\) − 0.364618i − 0.109936i −0.998488 0.0549682i \(-0.982494\pi\)
0.998488 0.0549682i \(-0.0175058\pi\)
\(12\) −1.15615 −0.333751
\(13\) 0 0
\(14\) −0.120360 −0.0321675
\(15\) − 0.983005i − 0.253811i
\(16\) 3.91329 0.978323
\(17\) 3.18555 0.772609 0.386304 0.922371i \(-0.373751\pi\)
0.386304 + 0.922371i \(0.373751\pi\)
\(18\) 0.320270i 0.0754884i
\(19\) − 1.44391i − 0.331255i −0.986188 0.165628i \(-0.947035\pi\)
0.986188 0.165628i \(-0.0529649\pi\)
\(20\) 3.35188i 0.749502i
\(21\) 0.582292i 0.127067i
\(22\) −0.0438854 −0.00935640
\(23\) 5.08321 1.05992 0.529962 0.848022i \(-0.322206\pi\)
0.529962 + 0.848022i \(0.322206\pi\)
\(24\) 0.279323i 0.0570166i
\(25\) 2.15010 0.430020
\(26\) 0 0
\(27\) 3.29632 0.634377
\(28\) − 1.98551i − 0.375227i
\(29\) 8.19662 1.52207 0.761037 0.648709i \(-0.224691\pi\)
0.761037 + 0.648709i \(0.224691\pi\)
\(30\) −0.118314 −0.0216012
\(31\) 4.69775i 0.843742i 0.906656 + 0.421871i \(0.138626\pi\)
−0.906656 + 0.421871i \(0.861374\pi\)
\(32\) − 1.43040i − 0.252861i
\(33\) 0.212314i 0.0369592i
\(34\) − 0.383412i − 0.0657546i
\(35\) 1.68817 0.285352
\(36\) −5.28332 −0.880554
\(37\) 6.31584i 1.03832i 0.854678 + 0.519159i \(0.173755\pi\)
−0.854678 + 0.519159i \(0.826245\pi\)
\(38\) −0.173789 −0.0281922
\(39\) 0 0
\(40\) 0.809806 0.128042
\(41\) − 5.82732i − 0.910074i −0.890472 0.455037i \(-0.849626\pi\)
0.890472 0.455037i \(-0.150374\pi\)
\(42\) 0.0700846 0.0108143
\(43\) 0.773122 0.117900 0.0589500 0.998261i \(-0.481225\pi\)
0.0589500 + 0.998261i \(0.481225\pi\)
\(44\) − 0.723954i − 0.109140i
\(45\) − 4.49210i − 0.669643i
\(46\) − 0.611815i − 0.0902072i
\(47\) 12.7905i 1.86569i 0.360275 + 0.932846i \(0.382683\pi\)
−0.360275 + 0.932846i \(0.617317\pi\)
\(48\) −2.27868 −0.328899
\(49\) −1.00000 −0.142857
\(50\) − 0.258786i − 0.0365978i
\(51\) −1.85492 −0.259741
\(52\) 0 0
\(53\) 1.37110 0.188334 0.0941672 0.995556i \(-0.469981\pi\)
0.0941672 + 0.995556i \(0.469981\pi\)
\(54\) − 0.396744i − 0.0539901i
\(55\) 0.615536 0.0829988
\(56\) −0.479696 −0.0641021
\(57\) 0.840776i 0.111363i
\(58\) − 0.986544i − 0.129540i
\(59\) 9.36197i 1.21882i 0.792854 + 0.609412i \(0.208595\pi\)
−0.792854 + 0.609412i \(0.791405\pi\)
\(60\) − 1.95177i − 0.251972i
\(61\) −9.02484 −1.15551 −0.577756 0.816209i \(-0.696072\pi\)
−0.577756 + 0.816209i \(0.696072\pi\)
\(62\) 0.565421 0.0718086
\(63\) 2.66094i 0.335246i
\(64\) 7.65442 0.956802
\(65\) 0 0
\(66\) 0.0255541 0.00314549
\(67\) − 13.4759i − 1.64635i −0.567789 0.823174i \(-0.692201\pi\)
0.567789 0.823174i \(-0.307799\pi\)
\(68\) 6.32495 0.767013
\(69\) −2.95991 −0.356332
\(70\) − 0.203187i − 0.0242855i
\(71\) 7.08115i 0.840378i 0.907437 + 0.420189i \(0.138036\pi\)
−0.907437 + 0.420189i \(0.861964\pi\)
\(72\) 1.27644i 0.150430i
\(73\) − 2.16083i − 0.252906i −0.991973 0.126453i \(-0.959641\pi\)
0.991973 0.126453i \(-0.0403592\pi\)
\(74\) 0.760173 0.0883684
\(75\) −1.25198 −0.144567
\(76\) − 2.86690i − 0.328856i
\(77\) −0.364618 −0.0415521
\(78\) 0 0
\(79\) −6.88781 −0.774940 −0.387470 0.921882i \(-0.626651\pi\)
−0.387470 + 0.921882i \(0.626651\pi\)
\(80\) 6.60628i 0.738605i
\(81\) 6.06339 0.673710
\(82\) −0.701376 −0.0774540
\(83\) − 0.567380i − 0.0622780i −0.999515 0.0311390i \(-0.990087\pi\)
0.999515 0.0311390i \(-0.00991345\pi\)
\(84\) 1.15615i 0.126146i
\(85\) 5.37773i 0.583297i
\(86\) − 0.0930528i − 0.0100341i
\(87\) −4.77282 −0.511700
\(88\) −0.174906 −0.0186450
\(89\) − 1.13893i − 0.120727i −0.998176 0.0603634i \(-0.980774\pi\)
0.998176 0.0603634i \(-0.0192260\pi\)
\(90\) −0.540669 −0.0569915
\(91\) 0 0
\(92\) 10.0928 1.05225
\(93\) − 2.73547i − 0.283655i
\(94\) 1.53947 0.158784
\(95\) 2.43755 0.250088
\(96\) 0.832908i 0.0850083i
\(97\) − 7.92785i − 0.804952i −0.915431 0.402476i \(-0.868150\pi\)
0.915431 0.402476i \(-0.131850\pi\)
\(98\) 0.120360i 0.0121582i
\(99\) 0.970225i 0.0975113i
\(100\) 4.26905 0.426905
\(101\) 15.5464 1.54693 0.773465 0.633839i \(-0.218522\pi\)
0.773465 + 0.633839i \(0.218522\pi\)
\(102\) 0.223258i 0.0221058i
\(103\) −10.2982 −1.01471 −0.507354 0.861738i \(-0.669376\pi\)
−0.507354 + 0.861738i \(0.669376\pi\)
\(104\) 0 0
\(105\) −0.983005 −0.0959315
\(106\) − 0.165025i − 0.0160286i
\(107\) −13.1244 −1.26878 −0.634391 0.773012i \(-0.718749\pi\)
−0.634391 + 0.773012i \(0.718749\pi\)
\(108\) 6.54488 0.629782
\(109\) − 10.4459i − 1.00054i −0.865871 0.500268i \(-0.833235\pi\)
0.865871 0.500268i \(-0.166765\pi\)
\(110\) − 0.0740858i − 0.00706380i
\(111\) − 3.67766i − 0.349068i
\(112\) − 3.91329i − 0.369771i
\(113\) 4.95262 0.465903 0.232952 0.972488i \(-0.425162\pi\)
0.232952 + 0.972488i \(0.425162\pi\)
\(114\) 0.101196 0.00947784
\(115\) 8.58130i 0.800211i
\(116\) 16.2745 1.51105
\(117\) 0 0
\(118\) 1.12681 0.103731
\(119\) − 3.18555i − 0.292019i
\(120\) −0.471544 −0.0430458
\(121\) 10.8671 0.987914
\(122\) 1.08623i 0.0983425i
\(123\) 3.39320i 0.305955i
\(124\) 9.32746i 0.837630i
\(125\) 12.0705i 1.07962i
\(126\) 0.320270 0.0285319
\(127\) −8.06731 −0.715858 −0.357929 0.933749i \(-0.616517\pi\)
−0.357929 + 0.933749i \(0.616517\pi\)
\(128\) − 3.78208i − 0.334291i
\(129\) −0.450183 −0.0396364
\(130\) 0 0
\(131\) 18.9039 1.65164 0.825820 0.563934i \(-0.190713\pi\)
0.825820 + 0.563934i \(0.190713\pi\)
\(132\) 0.421553i 0.0366915i
\(133\) −1.44391 −0.125203
\(134\) −1.62196 −0.140116
\(135\) 5.56473i 0.478936i
\(136\) − 1.52809i − 0.131033i
\(137\) − 18.2255i − 1.55711i −0.627577 0.778554i \(-0.715953\pi\)
0.627577 0.778554i \(-0.284047\pi\)
\(138\) 0.356255i 0.0303264i
\(139\) 5.25085 0.445371 0.222686 0.974890i \(-0.428518\pi\)
0.222686 + 0.974890i \(0.428518\pi\)
\(140\) 3.35188 0.283285
\(141\) − 7.44783i − 0.627220i
\(142\) 0.852287 0.0715223
\(143\) 0 0
\(144\) −10.4130 −0.867751
\(145\) 13.8372i 1.14912i
\(146\) −0.260077 −0.0215241
\(147\) 0.582292 0.0480266
\(148\) 12.5402i 1.03080i
\(149\) − 9.27309i − 0.759681i −0.925052 0.379841i \(-0.875979\pi\)
0.925052 0.379841i \(-0.124021\pi\)
\(150\) 0.150689i 0.0123037i
\(151\) − 14.0132i − 1.14038i −0.821513 0.570189i \(-0.806870\pi\)
0.821513 0.570189i \(-0.193130\pi\)
\(152\) −0.692636 −0.0561802
\(153\) −8.47654 −0.685287
\(154\) 0.0438854i 0.00353639i
\(155\) −7.93059 −0.637000
\(156\) 0 0
\(157\) −17.1825 −1.37131 −0.685656 0.727925i \(-0.740485\pi\)
−0.685656 + 0.727925i \(0.740485\pi\)
\(158\) 0.829017i 0.0659530i
\(159\) −0.798378 −0.0633155
\(160\) 2.41474 0.190902
\(161\) − 5.08321i − 0.400613i
\(162\) − 0.729789i − 0.0573376i
\(163\) − 11.7927i − 0.923679i −0.886963 0.461840i \(-0.847190\pi\)
0.886963 0.461840i \(-0.152810\pi\)
\(164\) − 11.5702i − 0.903482i
\(165\) −0.358422 −0.0279031
\(166\) −0.0682898 −0.00530031
\(167\) 4.31687i 0.334049i 0.985953 + 0.167025i \(0.0534159\pi\)
−0.985953 + 0.167025i \(0.946584\pi\)
\(168\) 0.279323 0.0215502
\(169\) 0 0
\(170\) 0.647263 0.0496428
\(171\) 3.84214i 0.293816i
\(172\) 1.53504 0.117046
\(173\) −12.5197 −0.951855 −0.475928 0.879484i \(-0.657888\pi\)
−0.475928 + 0.879484i \(0.657888\pi\)
\(174\) 0.574457i 0.0435494i
\(175\) − 2.15010i − 0.162532i
\(176\) − 1.42686i − 0.107553i
\(177\) − 5.45140i − 0.409752i
\(178\) −0.137082 −0.0102747
\(179\) 6.59534 0.492959 0.246479 0.969148i \(-0.420726\pi\)
0.246479 + 0.969148i \(0.420726\pi\)
\(180\) − 8.91913i − 0.664792i
\(181\) −11.0157 −0.818791 −0.409395 0.912357i \(-0.634260\pi\)
−0.409395 + 0.912357i \(0.634260\pi\)
\(182\) 0 0
\(183\) 5.25509 0.388468
\(184\) − 2.43840i − 0.179761i
\(185\) −10.6622 −0.783899
\(186\) −0.329240 −0.0241411
\(187\) − 1.16151i − 0.0849379i
\(188\) 25.3958i 1.85218i
\(189\) − 3.29632i − 0.239772i
\(190\) − 0.293384i − 0.0212843i
\(191\) 5.93213 0.429234 0.214617 0.976698i \(-0.431150\pi\)
0.214617 + 0.976698i \(0.431150\pi\)
\(192\) −4.45711 −0.321664
\(193\) 4.19595i 0.302031i 0.988531 + 0.151016i \(0.0482544\pi\)
−0.988531 + 0.151016i \(0.951746\pi\)
\(194\) −0.954196 −0.0685073
\(195\) 0 0
\(196\) −1.98551 −0.141822
\(197\) 5.78494i 0.412160i 0.978535 + 0.206080i \(0.0660707\pi\)
−0.978535 + 0.206080i \(0.933929\pi\)
\(198\) 0.116776 0.00829893
\(199\) −11.9598 −0.847805 −0.423903 0.905708i \(-0.639340\pi\)
−0.423903 + 0.905708i \(0.639340\pi\)
\(200\) − 1.03139i − 0.0729305i
\(201\) 7.84693i 0.553480i
\(202\) − 1.87117i − 0.131655i
\(203\) − 8.19662i − 0.575290i
\(204\) −3.68297 −0.257859
\(205\) 9.83748 0.687079
\(206\) 1.23949i 0.0863590i
\(207\) −13.5261 −0.940129
\(208\) 0 0
\(209\) −0.526475 −0.0364170
\(210\) 0.118314i 0.00816447i
\(211\) −8.23591 −0.566983 −0.283492 0.958975i \(-0.591493\pi\)
−0.283492 + 0.958975i \(0.591493\pi\)
\(212\) 2.72233 0.186970
\(213\) − 4.12330i − 0.282524i
\(214\) 1.57965i 0.107983i
\(215\) 1.30516i 0.0890110i
\(216\) − 1.58123i − 0.107589i
\(217\) 4.69775 0.318904
\(218\) −1.25727 −0.0851528
\(219\) 1.25823i 0.0850234i
\(220\) 1.22215 0.0823976
\(221\) 0 0
\(222\) −0.442643 −0.0297082
\(223\) 15.3015i 1.02466i 0.858788 + 0.512331i \(0.171218\pi\)
−0.858788 + 0.512331i \(0.828782\pi\)
\(224\) −1.43040 −0.0955723
\(225\) −5.72127 −0.381418
\(226\) − 0.596097i − 0.0396518i
\(227\) 6.95467i 0.461598i 0.973002 + 0.230799i \(0.0741339\pi\)
−0.973002 + 0.230799i \(0.925866\pi\)
\(228\) 1.66937i 0.110557i
\(229\) 27.4219i 1.81209i 0.423180 + 0.906045i \(0.360914\pi\)
−0.423180 + 0.906045i \(0.639086\pi\)
\(230\) 1.03284 0.0681038
\(231\) 0.212314 0.0139693
\(232\) − 3.93188i − 0.258141i
\(233\) 6.85333 0.448976 0.224488 0.974477i \(-0.427929\pi\)
0.224488 + 0.974477i \(0.427929\pi\)
\(234\) 0 0
\(235\) −21.5926 −1.40854
\(236\) 18.5883i 1.21000i
\(237\) 4.01072 0.260524
\(238\) −0.383412 −0.0248529
\(239\) − 22.0754i − 1.42794i −0.700177 0.713970i \(-0.746895\pi\)
0.700177 0.713970i \(-0.253105\pi\)
\(240\) − 3.84679i − 0.248309i
\(241\) − 15.7971i − 1.01758i −0.860890 0.508790i \(-0.830093\pi\)
0.860890 0.508790i \(-0.169907\pi\)
\(242\) − 1.30796i − 0.0840787i
\(243\) −13.4196 −0.860869
\(244\) −17.9189 −1.14714
\(245\) − 1.68817i − 0.107853i
\(246\) 0.408405 0.0260390
\(247\) 0 0
\(248\) 2.25349 0.143097
\(249\) 0.330381i 0.0209370i
\(250\) 1.45281 0.0918838
\(251\) −22.5567 −1.42376 −0.711882 0.702299i \(-0.752157\pi\)
−0.711882 + 0.702299i \(0.752157\pi\)
\(252\) 5.28332i 0.332818i
\(253\) − 1.85343i − 0.116524i
\(254\) 0.970981i 0.0609247i
\(255\) − 3.13141i − 0.196097i
\(256\) 14.8536 0.928352
\(257\) −20.4129 −1.27332 −0.636660 0.771145i \(-0.719685\pi\)
−0.636660 + 0.771145i \(0.719685\pi\)
\(258\) 0.0541839i 0.00337334i
\(259\) 6.31584 0.392447
\(260\) 0 0
\(261\) −21.8107 −1.35005
\(262\) − 2.27527i − 0.140567i
\(263\) −29.5402 −1.82153 −0.910764 0.412927i \(-0.864506\pi\)
−0.910764 + 0.412927i \(0.864506\pi\)
\(264\) 0.101846 0.00626820
\(265\) 2.31464i 0.142187i
\(266\) 0.173789i 0.0106557i
\(267\) 0.663193i 0.0405867i
\(268\) − 26.7567i − 1.63442i
\(269\) 27.9163 1.70209 0.851043 0.525096i \(-0.175971\pi\)
0.851043 + 0.525096i \(0.175971\pi\)
\(270\) 0.669770 0.0407609
\(271\) − 29.4491i − 1.78890i −0.447165 0.894451i \(-0.647566\pi\)
0.447165 0.894451i \(-0.352434\pi\)
\(272\) 12.4660 0.755861
\(273\) 0 0
\(274\) −2.19362 −0.132521
\(275\) − 0.783965i − 0.0472748i
\(276\) −5.87695 −0.353751
\(277\) −6.85854 −0.412090 −0.206045 0.978543i \(-0.566059\pi\)
−0.206045 + 0.978543i \(0.566059\pi\)
\(278\) − 0.631992i − 0.0379043i
\(279\) − 12.5004i − 0.748381i
\(280\) − 0.809806i − 0.0483952i
\(281\) 29.0940i 1.73561i 0.496909 + 0.867803i \(0.334468\pi\)
−0.496909 + 0.867803i \(0.665532\pi\)
\(282\) −0.896420 −0.0533810
\(283\) −11.6102 −0.690156 −0.345078 0.938574i \(-0.612147\pi\)
−0.345078 + 0.938574i \(0.612147\pi\)
\(284\) 14.0597i 0.834291i
\(285\) −1.41937 −0.0840761
\(286\) 0 0
\(287\) −5.82732 −0.343976
\(288\) 3.80619i 0.224282i
\(289\) −6.85229 −0.403076
\(290\) 1.66545 0.0977985
\(291\) 4.61633i 0.270614i
\(292\) − 4.29035i − 0.251074i
\(293\) 17.7886i 1.03922i 0.854403 + 0.519610i \(0.173923\pi\)
−0.854403 + 0.519610i \(0.826077\pi\)
\(294\) − 0.0700846i − 0.00408742i
\(295\) −15.8046 −0.920177
\(296\) 3.02968 0.176097
\(297\) − 1.20190i − 0.0697412i
\(298\) −1.11611 −0.0646544
\(299\) 0 0
\(300\) −2.48583 −0.143520
\(301\) − 0.773122i − 0.0445620i
\(302\) −1.68663 −0.0970546
\(303\) −9.05257 −0.520057
\(304\) − 5.65043i − 0.324074i
\(305\) − 15.2354i − 0.872378i
\(306\) 1.02024i 0.0583230i
\(307\) − 9.07966i − 0.518204i −0.965850 0.259102i \(-0.916573\pi\)
0.965850 0.259102i \(-0.0834265\pi\)
\(308\) −0.723954 −0.0412511
\(309\) 5.99654 0.341131
\(310\) 0.954525i 0.0542134i
\(311\) −1.57073 −0.0890677 −0.0445338 0.999008i \(-0.514180\pi\)
−0.0445338 + 0.999008i \(0.514180\pi\)
\(312\) 0 0
\(313\) 20.6232 1.16569 0.582846 0.812582i \(-0.301939\pi\)
0.582846 + 0.812582i \(0.301939\pi\)
\(314\) 2.06808i 0.116709i
\(315\) −4.49210 −0.253101
\(316\) −13.6758 −0.769327
\(317\) − 30.5435i − 1.71549i −0.514072 0.857747i \(-0.671863\pi\)
0.514072 0.857747i \(-0.328137\pi\)
\(318\) 0.0960927i 0.00538861i
\(319\) − 2.98863i − 0.167331i
\(320\) 12.9219i 0.722358i
\(321\) 7.64223 0.426548
\(322\) −0.611815 −0.0340951
\(323\) − 4.59964i − 0.255931i
\(324\) 12.0389 0.668830
\(325\) 0 0
\(326\) −1.41937 −0.0786118
\(327\) 6.08256i 0.336366i
\(328\) −2.79534 −0.154347
\(329\) 12.7905 0.705165
\(330\) 0.0431396i 0.00237476i
\(331\) 25.8531i 1.42101i 0.703690 + 0.710507i \(0.251534\pi\)
−0.703690 + 0.710507i \(0.748466\pi\)
\(332\) − 1.12654i − 0.0618269i
\(333\) − 16.8060i − 0.920965i
\(334\) 0.519578 0.0284300
\(335\) 22.7496 1.24294
\(336\) 2.27868i 0.124312i
\(337\) −21.3954 −1.16548 −0.582742 0.812657i \(-0.698020\pi\)
−0.582742 + 0.812657i \(0.698020\pi\)
\(338\) 0 0
\(339\) −2.88387 −0.156630
\(340\) 10.6776i 0.579072i
\(341\) 1.71289 0.0927580
\(342\) 0.462440 0.0250059
\(343\) 1.00000i 0.0539949i
\(344\) − 0.370863i − 0.0199956i
\(345\) − 4.99682i − 0.269020i
\(346\) 1.50687i 0.0810098i
\(347\) 2.20883 0.118576 0.0592882 0.998241i \(-0.481117\pi\)
0.0592882 + 0.998241i \(0.481117\pi\)
\(348\) −9.47651 −0.507994
\(349\) − 11.2912i − 0.604402i −0.953244 0.302201i \(-0.902279\pi\)
0.953244 0.302201i \(-0.0977214\pi\)
\(350\) −0.258786 −0.0138327
\(351\) 0 0
\(352\) −0.521548 −0.0277986
\(353\) − 35.6433i − 1.89710i −0.316623 0.948552i \(-0.602549\pi\)
0.316623 0.948552i \(-0.397451\pi\)
\(354\) −0.656130 −0.0348729
\(355\) −11.9542 −0.634461
\(356\) − 2.26137i − 0.119852i
\(357\) 1.85492i 0.0981727i
\(358\) − 0.793815i − 0.0419544i
\(359\) − 19.3218i − 1.01976i −0.860244 0.509882i \(-0.829689\pi\)
0.860244 0.509882i \(-0.170311\pi\)
\(360\) −2.15484 −0.113570
\(361\) 16.9151 0.890270
\(362\) 1.32585i 0.0696851i
\(363\) −6.32780 −0.332123
\(364\) 0 0
\(365\) 3.64783 0.190936
\(366\) − 0.632502i − 0.0330614i
\(367\) −3.72065 −0.194216 −0.0971082 0.995274i \(-0.530959\pi\)
−0.0971082 + 0.995274i \(0.530959\pi\)
\(368\) 19.8921 1.03695
\(369\) 15.5061i 0.807217i
\(370\) 1.28330i 0.0667155i
\(371\) − 1.37110i − 0.0711837i
\(372\) − 5.43130i − 0.281600i
\(373\) −3.51276 −0.181884 −0.0909420 0.995856i \(-0.528988\pi\)
−0.0909420 + 0.995856i \(0.528988\pi\)
\(374\) −0.139799 −0.00722884
\(375\) − 7.02858i − 0.362954i
\(376\) 6.13557 0.316418
\(377\) 0 0
\(378\) −0.396744 −0.0204063
\(379\) 25.0163i 1.28500i 0.766285 + 0.642500i \(0.222103\pi\)
−0.766285 + 0.642500i \(0.777897\pi\)
\(380\) 4.83980 0.248276
\(381\) 4.69753 0.240662
\(382\) − 0.713990i − 0.0365309i
\(383\) 22.4654i 1.14793i 0.818881 + 0.573964i \(0.194595\pi\)
−0.818881 + 0.573964i \(0.805405\pi\)
\(384\) 2.20227i 0.112384i
\(385\) − 0.615536i − 0.0313706i
\(386\) 0.505024 0.0257051
\(387\) −2.05723 −0.104575
\(388\) − 15.7409i − 0.799121i
\(389\) 13.3364 0.676184 0.338092 0.941113i \(-0.390219\pi\)
0.338092 + 0.941113i \(0.390219\pi\)
\(390\) 0 0
\(391\) 16.1928 0.818906
\(392\) 0.479696i 0.0242283i
\(393\) −11.0076 −0.555259
\(394\) 0.696274 0.0350778
\(395\) − 11.6278i − 0.585057i
\(396\) 1.92640i 0.0968050i
\(397\) 25.8333i 1.29654i 0.761412 + 0.648268i \(0.224506\pi\)
−0.761412 + 0.648268i \(0.775494\pi\)
\(398\) 1.43948i 0.0721544i
\(399\) 0.840776 0.0420914
\(400\) 8.41396 0.420698
\(401\) 17.5605i 0.876930i 0.898748 + 0.438465i \(0.144478\pi\)
−0.898748 + 0.438465i \(0.855522\pi\)
\(402\) 0.944456 0.0471052
\(403\) 0 0
\(404\) 30.8677 1.53572
\(405\) 10.2360i 0.508631i
\(406\) −0.986544 −0.0489613
\(407\) 2.30287 0.114149
\(408\) 0.889797i 0.0440515i
\(409\) − 14.5282i − 0.718373i −0.933266 0.359186i \(-0.883054\pi\)
0.933266 0.359186i \(-0.116946\pi\)
\(410\) − 1.18404i − 0.0584755i
\(411\) 10.6126i 0.523479i
\(412\) −20.4471 −1.00736
\(413\) 9.36197 0.460672
\(414\) 1.62800i 0.0800119i
\(415\) 0.957831 0.0470181
\(416\) 0 0
\(417\) −3.05753 −0.149728
\(418\) 0.0633664i 0.00309935i
\(419\) −4.60192 −0.224819 −0.112409 0.993662i \(-0.535857\pi\)
−0.112409 + 0.993662i \(0.535857\pi\)
\(420\) −1.95177 −0.0952366
\(421\) 19.2645i 0.938895i 0.882960 + 0.469447i \(0.155547\pi\)
−0.882960 + 0.469447i \(0.844453\pi\)
\(422\) 0.991273i 0.0482544i
\(423\) − 34.0348i − 1.65483i
\(424\) − 0.657709i − 0.0319412i
\(425\) 6.84924 0.332237
\(426\) −0.496280 −0.0240448
\(427\) 9.02484i 0.436743i
\(428\) −26.0587 −1.25959
\(429\) 0 0
\(430\) 0.157089 0.00757548
\(431\) − 28.3651i − 1.36630i −0.730279 0.683149i \(-0.760610\pi\)
0.730279 0.683149i \(-0.239390\pi\)
\(432\) 12.8995 0.620625
\(433\) 12.5203 0.601686 0.300843 0.953674i \(-0.402732\pi\)
0.300843 + 0.953674i \(0.402732\pi\)
\(434\) − 0.565421i − 0.0271411i
\(435\) − 8.05732i − 0.386319i
\(436\) − 20.7405i − 0.993288i
\(437\) − 7.33969i − 0.351105i
\(438\) 0.151441 0.00723611
\(439\) −31.7273 −1.51426 −0.757132 0.653262i \(-0.773400\pi\)
−0.757132 + 0.653262i \(0.773400\pi\)
\(440\) − 0.295270i − 0.0140764i
\(441\) 2.66094 0.126711
\(442\) 0 0
\(443\) 1.73048 0.0822177 0.0411088 0.999155i \(-0.486911\pi\)
0.0411088 + 0.999155i \(0.486911\pi\)
\(444\) − 7.30205i − 0.346540i
\(445\) 1.92271 0.0911452
\(446\) 1.84168 0.0872062
\(447\) 5.39965i 0.255394i
\(448\) − 7.65442i − 0.361637i
\(449\) 10.5564i 0.498186i 0.968480 + 0.249093i \(0.0801325\pi\)
−0.968480 + 0.249093i \(0.919868\pi\)
\(450\) 0.688612i 0.0324615i
\(451\) −2.12475 −0.100050
\(452\) 9.83349 0.462528
\(453\) 8.15978i 0.383380i
\(454\) 0.837063 0.0392853
\(455\) 0 0
\(456\) 0.403317 0.0188870
\(457\) − 7.94894i − 0.371836i −0.982565 0.185918i \(-0.940474\pi\)
0.982565 0.185918i \(-0.0595259\pi\)
\(458\) 3.30050 0.154222
\(459\) 10.5006 0.490125
\(460\) 17.0383i 0.794415i
\(461\) − 10.8918i − 0.507284i −0.967298 0.253642i \(-0.918371\pi\)
0.967298 0.253642i \(-0.0816285\pi\)
\(462\) − 0.0255541i − 0.00118889i
\(463\) 35.8227i 1.66482i 0.554158 + 0.832411i \(0.313040\pi\)
−0.554158 + 0.832411i \(0.686960\pi\)
\(464\) 32.0757 1.48908
\(465\) 4.61792 0.214151
\(466\) − 0.824866i − 0.0382112i
\(467\) −19.8983 −0.920785 −0.460393 0.887715i \(-0.652291\pi\)
−0.460393 + 0.887715i \(0.652291\pi\)
\(468\) 0 0
\(469\) −13.4759 −0.622261
\(470\) 2.59888i 0.119877i
\(471\) 10.0052 0.461017
\(472\) 4.49090 0.206710
\(473\) − 0.281894i − 0.0129615i
\(474\) − 0.482730i − 0.0221725i
\(475\) − 3.10454i − 0.142446i
\(476\) − 6.32495i − 0.289904i
\(477\) −3.64840 −0.167049
\(478\) −2.65699 −0.121528
\(479\) 26.2902i 1.20123i 0.799538 + 0.600615i \(0.205078\pi\)
−0.799538 + 0.600615i \(0.794922\pi\)
\(480\) −1.40609 −0.0641788
\(481\) 0 0
\(482\) −1.90134 −0.0866035
\(483\) 2.95991i 0.134681i
\(484\) 21.5767 0.980758
\(485\) 13.3835 0.607715
\(486\) 1.61518i 0.0732662i
\(487\) − 6.37962i − 0.289088i −0.989498 0.144544i \(-0.953828\pi\)
0.989498 0.144544i \(-0.0461716\pi\)
\(488\) 4.32918i 0.195973i
\(489\) 6.86682i 0.310528i
\(490\) −0.203187 −0.00917907
\(491\) 2.96768 0.133929 0.0669647 0.997755i \(-0.478669\pi\)
0.0669647 + 0.997755i \(0.478669\pi\)
\(492\) 6.73725i 0.303739i
\(493\) 26.1107 1.17597
\(494\) 0 0
\(495\) −1.63790 −0.0736182
\(496\) 18.3837i 0.825452i
\(497\) 7.08115 0.317633
\(498\) 0.0397646 0.00178189
\(499\) 28.1331i 1.25941i 0.776835 + 0.629704i \(0.216824\pi\)
−0.776835 + 0.629704i \(0.783176\pi\)
\(500\) 23.9662i 1.07180i
\(501\) − 2.51368i − 0.112303i
\(502\) 2.71492i 0.121173i
\(503\) −31.5376 −1.40619 −0.703097 0.711094i \(-0.748200\pi\)
−0.703097 + 0.711094i \(0.748200\pi\)
\(504\) 1.27644 0.0568572
\(505\) 26.2450i 1.16789i
\(506\) −0.223079 −0.00991706
\(507\) 0 0
\(508\) −16.0178 −0.710673
\(509\) 13.5944i 0.602560i 0.953536 + 0.301280i \(0.0974139\pi\)
−0.953536 + 0.301280i \(0.902586\pi\)
\(510\) −0.376896 −0.0166892
\(511\) −2.16083 −0.0955893
\(512\) − 9.35193i − 0.413301i
\(513\) − 4.75958i − 0.210140i
\(514\) 2.45689i 0.108369i
\(515\) − 17.3850i − 0.766074i
\(516\) −0.893844 −0.0393493
\(517\) 4.66366 0.205108
\(518\) − 0.760173i − 0.0334001i
\(519\) 7.29012 0.320001
\(520\) 0 0
\(521\) 8.78344 0.384810 0.192405 0.981316i \(-0.438371\pi\)
0.192405 + 0.981316i \(0.438371\pi\)
\(522\) 2.62513i 0.114899i
\(523\) 32.5698 1.42418 0.712088 0.702090i \(-0.247749\pi\)
0.712088 + 0.702090i \(0.247749\pi\)
\(524\) 37.5339 1.63968
\(525\) 1.25198i 0.0546411i
\(526\) 3.55546i 0.155025i
\(527\) 14.9649i 0.651882i
\(528\) 0.830847i 0.0361580i
\(529\) 2.83905 0.123437
\(530\) 0.278589 0.0121011
\(531\) − 24.9116i − 1.08107i
\(532\) −2.86690 −0.124296
\(533\) 0 0
\(534\) 0.0798218 0.00345423
\(535\) − 22.1561i − 0.957894i
\(536\) −6.46435 −0.279218
\(537\) −3.84041 −0.165726
\(538\) − 3.36000i − 0.144860i
\(539\) 0.364618i 0.0157052i
\(540\) 11.0488i 0.475467i
\(541\) 6.94870i 0.298748i 0.988781 + 0.149374i \(0.0477258\pi\)
−0.988781 + 0.149374i \(0.952274\pi\)
\(542\) −3.54448 −0.152249
\(543\) 6.41436 0.275266
\(544\) − 4.55659i − 0.195362i
\(545\) 17.6344 0.755375
\(546\) 0 0
\(547\) 10.9095 0.466457 0.233229 0.972422i \(-0.425071\pi\)
0.233229 + 0.972422i \(0.425071\pi\)
\(548\) − 36.1870i − 1.54583i
\(549\) 24.0145 1.02491
\(550\) −0.0943579 −0.00402343
\(551\) − 11.8352i − 0.504194i
\(552\) 1.41986i 0.0604332i
\(553\) 6.88781i 0.292900i
\(554\) 0.825493i 0.0350718i
\(555\) 6.20850 0.263536
\(556\) 10.4256 0.442145
\(557\) 34.6295i 1.46730i 0.679527 + 0.733650i \(0.262185\pi\)
−0.679527 + 0.733650i \(0.737815\pi\)
\(558\) −1.50455 −0.0636927
\(559\) 0 0
\(560\) 6.60628 0.279166
\(561\) 0.676337i 0.0285550i
\(562\) 3.50176 0.147713
\(563\) −9.13679 −0.385070 −0.192535 0.981290i \(-0.561671\pi\)
−0.192535 + 0.981290i \(0.561671\pi\)
\(564\) − 14.7878i − 0.622677i
\(565\) 8.36084i 0.351743i
\(566\) 1.39740i 0.0587373i
\(567\) − 6.06339i − 0.254638i
\(568\) 3.39680 0.142527
\(569\) −18.3000 −0.767176 −0.383588 0.923504i \(-0.625312\pi\)
−0.383588 + 0.923504i \(0.625312\pi\)
\(570\) 0.170835i 0.00715549i
\(571\) −10.1791 −0.425981 −0.212990 0.977054i \(-0.568320\pi\)
−0.212990 + 0.977054i \(0.568320\pi\)
\(572\) 0 0
\(573\) −3.45423 −0.144303
\(574\) 0.701376i 0.0292748i
\(575\) 10.9294 0.455788
\(576\) −20.3679 −0.848663
\(577\) − 19.5165i − 0.812482i −0.913766 0.406241i \(-0.866839\pi\)
0.913766 0.406241i \(-0.133161\pi\)
\(578\) 0.824740i 0.0343047i
\(579\) − 2.44327i − 0.101539i
\(580\) 27.4740i 1.14080i
\(581\) −0.567380 −0.0235389
\(582\) 0.555621 0.0230312
\(583\) − 0.499926i − 0.0207048i
\(584\) −1.03654 −0.0428923
\(585\) 0 0
\(586\) 2.14103 0.0884453
\(587\) − 35.3900i − 1.46070i −0.683072 0.730351i \(-0.739357\pi\)
0.683072 0.730351i \(-0.260643\pi\)
\(588\) 1.15615 0.0476788
\(589\) 6.78312 0.279494
\(590\) 1.90223i 0.0783137i
\(591\) − 3.36852i − 0.138562i
\(592\) 24.7157i 1.01581i
\(593\) 18.0881i 0.742790i 0.928475 + 0.371395i \(0.121120\pi\)
−0.928475 + 0.371395i \(0.878880\pi\)
\(594\) −0.144660 −0.00593548
\(595\) 5.37773 0.220465
\(596\) − 18.4118i − 0.754179i
\(597\) 6.96407 0.285021
\(598\) 0 0
\(599\) 9.05992 0.370178 0.185089 0.982722i \(-0.440743\pi\)
0.185089 + 0.982722i \(0.440743\pi\)
\(600\) 0.600572i 0.0245182i
\(601\) 29.2881 1.19469 0.597343 0.801986i \(-0.296223\pi\)
0.597343 + 0.801986i \(0.296223\pi\)
\(602\) −0.0930528 −0.00379255
\(603\) 35.8586i 1.46028i
\(604\) − 27.8234i − 1.13212i
\(605\) 18.3454i 0.745846i
\(606\) 1.08957i 0.0442606i
\(607\) −39.3650 −1.59777 −0.798887 0.601481i \(-0.794578\pi\)
−0.798887 + 0.601481i \(0.794578\pi\)
\(608\) −2.06536 −0.0837613
\(609\) 4.77282i 0.193405i
\(610\) −1.83373 −0.0742457
\(611\) 0 0
\(612\) −16.8303 −0.680324
\(613\) 5.53316i 0.223482i 0.993737 + 0.111741i \(0.0356427\pi\)
−0.993737 + 0.111741i \(0.964357\pi\)
\(614\) −1.09283 −0.0441029
\(615\) −5.72829 −0.230987
\(616\) 0.174906i 0.00704716i
\(617\) − 12.5815i − 0.506514i −0.967399 0.253257i \(-0.918498\pi\)
0.967399 0.253257i \(-0.0815018\pi\)
\(618\) − 0.721742i − 0.0290327i
\(619\) − 22.3955i − 0.900149i −0.892991 0.450075i \(-0.851397\pi\)
0.892991 0.450075i \(-0.148603\pi\)
\(620\) −15.7463 −0.632386
\(621\) 16.7559 0.672390
\(622\) 0.189052i 0.00758031i
\(623\) −1.13893 −0.0456305
\(624\) 0 0
\(625\) −9.62659 −0.385064
\(626\) − 2.48221i − 0.0992090i
\(627\) 0.306562 0.0122429
\(628\) −34.1161 −1.36138
\(629\) 20.1194i 0.802213i
\(630\) 0.540669i 0.0215408i
\(631\) − 1.94888i − 0.0775836i −0.999247 0.0387918i \(-0.987649\pi\)
0.999247 0.0387918i \(-0.0123509\pi\)
\(632\) 3.30406i 0.131428i
\(633\) 4.79570 0.190612
\(634\) −3.67621 −0.146001
\(635\) − 13.6190i − 0.540452i
\(636\) −1.58519 −0.0628569
\(637\) 0 0
\(638\) −0.359712 −0.0142411
\(639\) − 18.8425i − 0.745397i
\(640\) 6.38477 0.252380
\(641\) −10.4210 −0.411605 −0.205803 0.978594i \(-0.565981\pi\)
−0.205803 + 0.978594i \(0.565981\pi\)
\(642\) − 0.919818i − 0.0363023i
\(643\) − 15.2706i − 0.602214i −0.953590 0.301107i \(-0.902644\pi\)
0.953590 0.301107i \(-0.0973562\pi\)
\(644\) − 10.0928i − 0.397712i
\(645\) − 0.759983i − 0.0299243i
\(646\) −0.553612 −0.0217816
\(647\) −17.5066 −0.688254 −0.344127 0.938923i \(-0.611825\pi\)
−0.344127 + 0.938923i \(0.611825\pi\)
\(648\) − 2.90858i − 0.114260i
\(649\) 3.41354 0.133993
\(650\) 0 0
\(651\) −2.73547 −0.107211
\(652\) − 23.4147i − 0.916989i
\(653\) −10.1834 −0.398506 −0.199253 0.979948i \(-0.563852\pi\)
−0.199253 + 0.979948i \(0.563852\pi\)
\(654\) 0.732096 0.0286272
\(655\) 31.9129i 1.24694i
\(656\) − 22.8040i − 0.890346i
\(657\) 5.74982i 0.224322i
\(658\) − 1.53947i − 0.0600147i
\(659\) −43.8587 −1.70849 −0.854247 0.519867i \(-0.825981\pi\)
−0.854247 + 0.519867i \(0.825981\pi\)
\(660\) −0.711651 −0.0277010
\(661\) − 32.9270i − 1.28071i −0.768078 0.640356i \(-0.778787\pi\)
0.768078 0.640356i \(-0.221213\pi\)
\(662\) 3.11167 0.120939
\(663\) 0 0
\(664\) −0.272170 −0.0105622
\(665\) − 2.43755i − 0.0945243i
\(666\) −2.02277 −0.0783808
\(667\) 41.6651 1.61328
\(668\) 8.57120i 0.331630i
\(669\) − 8.90992i − 0.344478i
\(670\) − 2.73814i − 0.105784i
\(671\) 3.29062i 0.127033i
\(672\) 0.832908 0.0321301
\(673\) −26.6845 −1.02861 −0.514307 0.857606i \(-0.671951\pi\)
−0.514307 + 0.857606i \(0.671951\pi\)
\(674\) 2.57515i 0.0991912i
\(675\) 7.08740 0.272794
\(676\) 0 0
\(677\) 29.5328 1.13504 0.567519 0.823361i \(-0.307904\pi\)
0.567519 + 0.823361i \(0.307904\pi\)
\(678\) 0.347102i 0.0133304i
\(679\) −7.92785 −0.304243
\(680\) 2.57968 0.0989261
\(681\) − 4.04965i − 0.155183i
\(682\) − 0.206163i − 0.00789438i
\(683\) 18.2880i 0.699771i 0.936793 + 0.349885i \(0.113779\pi\)
−0.936793 + 0.349885i \(0.886221\pi\)
\(684\) 7.62863i 0.291688i
\(685\) 30.7676 1.17557
\(686\) 0.120360 0.00459536
\(687\) − 15.9676i − 0.609200i
\(688\) 3.02545 0.115344
\(689\) 0 0
\(690\) −0.601417 −0.0228956
\(691\) − 10.3406i − 0.393376i −0.980466 0.196688i \(-0.936981\pi\)
0.980466 0.196688i \(-0.0630186\pi\)
\(692\) −24.8580 −0.944961
\(693\) 0.970225 0.0368558
\(694\) − 0.265855i − 0.0100917i
\(695\) 8.86430i 0.336242i
\(696\) 2.28950i 0.0867834i
\(697\) − 18.5632i − 0.703131i
\(698\) −1.35900 −0.0514390
\(699\) −3.99064 −0.150940
\(700\) − 4.26905i − 0.161355i
\(701\) 41.6959 1.57483 0.787415 0.616423i \(-0.211419\pi\)
0.787415 + 0.616423i \(0.211419\pi\)
\(702\) 0 0
\(703\) 9.11948 0.343948
\(704\) − 2.79094i − 0.105188i
\(705\) 12.5732 0.473533
\(706\) −4.29003 −0.161457
\(707\) − 15.5464i − 0.584684i
\(708\) − 10.8238i − 0.406784i
\(709\) − 0.0109463i 0 0.000411095i −1.00000 0.000205548i \(-0.999935\pi\)
1.00000 0.000205548i \(-6.54279e-5\pi\)
\(710\) 1.43880i 0.0539972i
\(711\) 18.3280 0.687355
\(712\) −0.546342 −0.0204750
\(713\) 23.8797i 0.894301i
\(714\) 0.223258 0.00835521
\(715\) 0 0
\(716\) 13.0951 0.489388
\(717\) 12.8543i 0.480054i
\(718\) −2.32557 −0.0867894
\(719\) 25.4660 0.949722 0.474861 0.880061i \(-0.342498\pi\)
0.474861 + 0.880061i \(0.342498\pi\)
\(720\) − 17.5789i − 0.655127i
\(721\) 10.2982i 0.383523i
\(722\) − 2.03590i − 0.0757685i
\(723\) 9.19853i 0.342097i
\(724\) −21.8718 −0.812860
\(725\) 17.6235 0.654521
\(726\) 0.761613i 0.0282661i
\(727\) −23.5565 −0.873663 −0.436831 0.899543i \(-0.643899\pi\)
−0.436831 + 0.899543i \(0.643899\pi\)
\(728\) 0 0
\(729\) −10.3760 −0.384297
\(730\) − 0.439053i − 0.0162501i
\(731\) 2.46282 0.0910905
\(732\) 10.4341 0.385654
\(733\) − 6.23249i − 0.230202i −0.993354 0.115101i \(-0.963281\pi\)
0.993354 0.115101i \(-0.0367192\pi\)
\(734\) 0.447817i 0.0165292i
\(735\) 0.983005i 0.0362587i
\(736\) − 7.27100i − 0.268013i
\(737\) −4.91357 −0.180994
\(738\) 1.86632 0.0687000
\(739\) 1.29718i 0.0477174i 0.999715 + 0.0238587i \(0.00759517\pi\)
−0.999715 + 0.0238587i \(0.992405\pi\)
\(740\) −21.1699 −0.778221
\(741\) 0 0
\(742\) −0.165025 −0.00605825
\(743\) 6.06942i 0.222665i 0.993783 + 0.111333i \(0.0355119\pi\)
−0.993783 + 0.111333i \(0.964488\pi\)
\(744\) −1.31219 −0.0481073
\(745\) 15.6545 0.573537
\(746\) 0.422796i 0.0154797i
\(747\) 1.50976i 0.0552393i
\(748\) − 2.30619i − 0.0843227i
\(749\) 13.1244i 0.479555i
\(750\) −0.845960 −0.0308901
\(751\) 36.6046 1.33572 0.667860 0.744287i \(-0.267210\pi\)
0.667860 + 0.744287i \(0.267210\pi\)
\(752\) 50.0531i 1.82525i
\(753\) 13.1346 0.478650
\(754\) 0 0
\(755\) 23.6566 0.860952
\(756\) − 6.54488i − 0.238035i
\(757\) 11.6798 0.424510 0.212255 0.977214i \(-0.431919\pi\)
0.212255 + 0.977214i \(0.431919\pi\)
\(758\) 3.01096 0.109363
\(759\) 1.07924i 0.0391739i
\(760\) − 1.16928i − 0.0424144i
\(761\) 39.7688i 1.44162i 0.693133 + 0.720810i \(0.256230\pi\)
−0.693133 + 0.720810i \(0.743770\pi\)
\(762\) − 0.565394i − 0.0204821i
\(763\) −10.4459 −0.378167
\(764\) 11.7783 0.426125
\(765\) − 14.3098i − 0.517372i
\(766\) 2.70393 0.0976970
\(767\) 0 0
\(768\) −8.64915 −0.312099
\(769\) − 9.95937i − 0.359144i −0.983745 0.179572i \(-0.942529\pi\)
0.983745 0.179572i \(-0.0574713\pi\)
\(770\) −0.0740858 −0.00266987
\(771\) 11.8863 0.428073
\(772\) 8.33112i 0.299843i
\(773\) − 12.7518i − 0.458649i −0.973350 0.229324i \(-0.926348\pi\)
0.973350 0.229324i \(-0.0736517\pi\)
\(774\) 0.247608i 0.00890007i
\(775\) 10.1006i 0.362825i
\(776\) −3.80296 −0.136518
\(777\) −3.67766 −0.131935
\(778\) − 1.60517i − 0.0575482i
\(779\) −8.41411 −0.301467
\(780\) 0 0
\(781\) 2.58192 0.0923882
\(782\) − 1.94897i − 0.0696949i
\(783\) 27.0186 0.965568
\(784\) −3.91329 −0.139760
\(785\) − 29.0069i − 1.03530i
\(786\) 1.32487i 0.0472566i
\(787\) − 8.68773i − 0.309684i −0.987939 0.154842i \(-0.950513\pi\)
0.987939 0.154842i \(-0.0494869\pi\)
\(788\) 11.4861i 0.409174i
\(789\) 17.2010 0.612373
\(790\) −1.39952 −0.0497926
\(791\) − 4.95262i − 0.176095i
\(792\) 0.465413 0.0165377
\(793\) 0 0
\(794\) 3.10929 0.110345
\(795\) − 1.34779i − 0.0478013i
\(796\) −23.7463 −0.841664
\(797\) −38.7438 −1.37237 −0.686187 0.727425i \(-0.740717\pi\)
−0.686187 + 0.727425i \(0.740717\pi\)
\(798\) − 0.101196i − 0.00358229i
\(799\) 40.7449i 1.44145i
\(800\) − 3.07549i − 0.108735i
\(801\) 3.03063i 0.107082i
\(802\) 2.11358 0.0746331
\(803\) −0.787876 −0.0278036
\(804\) 15.5802i 0.549471i
\(805\) 8.58130 0.302451
\(806\) 0 0
\(807\) −16.2554 −0.572218
\(808\) − 7.45757i − 0.262356i
\(809\) 28.8550 1.01449 0.507244 0.861802i \(-0.330664\pi\)
0.507244 + 0.861802i \(0.330664\pi\)
\(810\) 1.23200 0.0432882
\(811\) 12.3917i 0.435131i 0.976046 + 0.217566i \(0.0698116\pi\)
−0.976046 + 0.217566i \(0.930188\pi\)
\(812\) − 16.2745i − 0.571123i
\(813\) 17.1479i 0.601405i
\(814\) − 0.277173i − 0.00971491i
\(815\) 19.9081 0.697351
\(816\) −7.25884 −0.254110
\(817\) − 1.11632i − 0.0390549i
\(818\) −1.74861 −0.0611388
\(819\) 0 0
\(820\) 19.5324 0.682103
\(821\) 41.0238i 1.43174i 0.698233 + 0.715870i \(0.253970\pi\)
−0.698233 + 0.715870i \(0.746030\pi\)
\(822\) 1.27733 0.0445519
\(823\) 2.13613 0.0744608 0.0372304 0.999307i \(-0.488146\pi\)
0.0372304 + 0.999307i \(0.488146\pi\)
\(824\) 4.93999i 0.172093i
\(825\) 0.456496i 0.0158932i
\(826\) − 1.12681i − 0.0392066i
\(827\) − 8.54938i − 0.297291i −0.988891 0.148645i \(-0.952509\pi\)
0.988891 0.148645i \(-0.0474913\pi\)
\(828\) −26.8563 −0.933320
\(829\) 14.7569 0.512528 0.256264 0.966607i \(-0.417508\pi\)
0.256264 + 0.966607i \(0.417508\pi\)
\(830\) − 0.115284i − 0.00400158i
\(831\) 3.99367 0.138539
\(832\) 0 0
\(833\) −3.18555 −0.110373
\(834\) 0.368004i 0.0127429i
\(835\) −7.28758 −0.252197
\(836\) −1.04532 −0.0361532
\(837\) 15.4853i 0.535250i
\(838\) 0.553887i 0.0191337i
\(839\) − 26.9716i − 0.931164i −0.885005 0.465582i \(-0.845845\pi\)
0.885005 0.465582i \(-0.154155\pi\)
\(840\) 0.471544i 0.0162698i
\(841\) 38.1845 1.31671
\(842\) 2.31867 0.0799068
\(843\) − 16.9412i − 0.583487i
\(844\) −16.3525 −0.562877
\(845\) 0 0
\(846\) −4.09643 −0.140838
\(847\) − 10.8671i − 0.373396i
\(848\) 5.36549 0.184252
\(849\) 6.76053 0.232021
\(850\) − 0.824374i − 0.0282758i
\(851\) 32.1047i 1.10054i
\(852\) − 8.18686i − 0.280477i
\(853\) − 25.6332i − 0.877665i −0.898569 0.438832i \(-0.855392\pi\)
0.898569 0.438832i \(-0.144608\pi\)
\(854\) 1.08623 0.0371700
\(855\) −6.48618 −0.221823
\(856\) 6.29572i 0.215183i
\(857\) −11.7653 −0.401894 −0.200947 0.979602i \(-0.564402\pi\)
−0.200947 + 0.979602i \(0.564402\pi\)
\(858\) 0 0
\(859\) −21.7761 −0.742992 −0.371496 0.928435i \(-0.621155\pi\)
−0.371496 + 0.928435i \(0.621155\pi\)
\(860\) 2.59141i 0.0883663i
\(861\) 3.39320 0.115640
\(862\) −3.41402 −0.116282
\(863\) − 41.0575i − 1.39761i −0.715310 0.698807i \(-0.753715\pi\)
0.715310 0.698807i \(-0.246285\pi\)
\(864\) − 4.71504i − 0.160409i
\(865\) − 21.1353i − 0.718623i
\(866\) − 1.50694i − 0.0512079i
\(867\) 3.99003 0.135509
\(868\) 9.32746 0.316594
\(869\) 2.51142i 0.0851942i
\(870\) −0.969778 −0.0328785
\(871\) 0 0
\(872\) −5.01085 −0.169689
\(873\) 21.0955i 0.713975i
\(874\) −0.883404 −0.0298816
\(875\) 12.0705 0.408059
\(876\) 2.49824i 0.0844076i
\(877\) − 6.89112i − 0.232696i −0.993208 0.116348i \(-0.962881\pi\)
0.993208 0.116348i \(-0.0371189\pi\)
\(878\) 3.81870i 0.128875i
\(879\) − 10.3582i − 0.349372i
\(880\) 2.40877 0.0811996
\(881\) 10.6458 0.358665 0.179332 0.983789i \(-0.442606\pi\)
0.179332 + 0.983789i \(0.442606\pi\)
\(882\) − 0.320270i − 0.0107841i
\(883\) 21.3844 0.719641 0.359821 0.933022i \(-0.382838\pi\)
0.359821 + 0.933022i \(0.382838\pi\)
\(884\) 0 0
\(885\) 9.20286 0.309351
\(886\) − 0.208281i − 0.00699732i
\(887\) −34.1150 −1.14547 −0.572735 0.819740i \(-0.694118\pi\)
−0.572735 + 0.819740i \(0.694118\pi\)
\(888\) −1.76416 −0.0592013
\(889\) 8.06731i 0.270569i
\(890\) − 0.231417i − 0.00775712i
\(891\) − 2.21082i − 0.0740653i
\(892\) 30.3813i 1.01724i
\(893\) 18.4684 0.618020
\(894\) 0.649901 0.0217359
\(895\) 11.1340i 0.372169i
\(896\) −3.78208 −0.126350
\(897\) 0 0
\(898\) 1.27056 0.0423992
\(899\) 38.5057i 1.28424i
\(900\) −11.3597 −0.378655
\(901\) 4.36769 0.145509
\(902\) 0.255734i 0.00851502i
\(903\) 0.450183i 0.0149811i
\(904\) − 2.37575i − 0.0790163i
\(905\) − 18.5963i − 0.618163i
\(906\) 0.982110 0.0326284
\(907\) −42.1515 −1.39962 −0.699810 0.714329i \(-0.746732\pi\)
−0.699810 + 0.714329i \(0.746732\pi\)
\(908\) 13.8086i 0.458254i
\(909\) −41.3681 −1.37209
\(910\) 0 0
\(911\) 20.9947 0.695584 0.347792 0.937572i \(-0.386932\pi\)
0.347792 + 0.937572i \(0.386932\pi\)
\(912\) 3.29020i 0.108949i
\(913\) −0.206877 −0.00684663
\(914\) −0.956734 −0.0316459
\(915\) 8.87147i 0.293282i
\(916\) 54.4466i 1.79897i
\(917\) − 18.9039i − 0.624261i
\(918\) − 1.26385i − 0.0417132i
\(919\) −14.2940 −0.471515 −0.235757 0.971812i \(-0.575757\pi\)
−0.235757 + 0.971812i \(0.575757\pi\)
\(920\) 4.11642 0.135714
\(921\) 5.28701i 0.174213i
\(922\) −1.31094 −0.0431736
\(923\) 0 0
\(924\) 0.421553 0.0138681
\(925\) 13.5797i 0.446497i
\(926\) 4.31162 0.141689
\(927\) 27.4027 0.900024
\(928\) − 11.7244i − 0.384872i
\(929\) − 6.80723i − 0.223338i −0.993745 0.111669i \(-0.964380\pi\)
0.993745 0.111669i \(-0.0356197\pi\)
\(930\) − 0.555812i − 0.0182258i
\(931\) 1.44391i 0.0473221i
\(932\) 13.6074 0.445724
\(933\) 0.914621 0.0299433
\(934\) 2.39496i 0.0783655i
\(935\) 1.96082 0.0641256
\(936\) 0 0
\(937\) −5.22890 −0.170821 −0.0854104 0.996346i \(-0.527220\pi\)
−0.0854104 + 0.996346i \(0.527220\pi\)
\(938\) 1.62196i 0.0529590i
\(939\) −12.0087 −0.391890
\(940\) −42.8723 −1.39834
\(941\) 56.4403i 1.83990i 0.392033 + 0.919951i \(0.371772\pi\)
−0.392033 + 0.919951i \(0.628228\pi\)
\(942\) − 1.20423i − 0.0392359i
\(943\) − 29.6215i − 0.964609i
\(944\) 36.6361i 1.19240i
\(945\) 5.56473 0.181021
\(946\) −0.0339287 −0.00110312
\(947\) − 5.85027i − 0.190108i −0.995472 0.0950541i \(-0.969698\pi\)
0.995472 0.0950541i \(-0.0303024\pi\)
\(948\) 7.96334 0.258637
\(949\) 0 0
\(950\) −0.373662 −0.0121232
\(951\) 17.7852i 0.576726i
\(952\) −1.52809 −0.0495258
\(953\) 21.7484 0.704499 0.352249 0.935906i \(-0.385417\pi\)
0.352249 + 0.935906i \(0.385417\pi\)
\(954\) 0.439121i 0.0142171i
\(955\) 10.0144i 0.324059i
\(956\) − 43.8310i − 1.41760i
\(957\) 1.74026i 0.0562546i
\(958\) 3.16429 0.102233
\(959\) −18.2255 −0.588532
\(960\) − 7.52433i − 0.242847i
\(961\) 8.93110 0.288100
\(962\) 0 0
\(963\) 34.9232 1.12538
\(964\) − 31.3654i − 1.01021i
\(965\) −7.08346 −0.228025
\(966\) 0.356255 0.0114623
\(967\) − 13.3251i − 0.428507i −0.976778 0.214253i \(-0.931268\pi\)
0.976778 0.214253i \(-0.0687318\pi\)
\(968\) − 5.21288i − 0.167548i
\(969\) 2.67833i 0.0860404i
\(970\) − 1.61084i − 0.0517210i
\(971\) 7.46185 0.239462 0.119731 0.992806i \(-0.461797\pi\)
0.119731 + 0.992806i \(0.461797\pi\)
\(972\) −26.6448 −0.854633
\(973\) − 5.25085i − 0.168335i
\(974\) −0.767850 −0.0246035
\(975\) 0 0
\(976\) −35.3168 −1.13046
\(977\) − 10.9605i − 0.350656i −0.984510 0.175328i \(-0.943901\pi\)
0.984510 0.175328i \(-0.0560986\pi\)
\(978\) 0.826490 0.0264282
\(979\) −0.415276 −0.0132723
\(980\) − 3.35188i − 0.107072i
\(981\) 27.7959i 0.887453i
\(982\) − 0.357189i − 0.0113984i
\(983\) − 16.1441i − 0.514918i −0.966289 0.257459i \(-0.917115\pi\)
0.966289 0.257459i \(-0.0828852\pi\)
\(984\) 1.62771 0.0518893
\(985\) −9.76593 −0.311168
\(986\) − 3.14268i − 0.100083i
\(987\) −7.44783 −0.237067
\(988\) 0 0
\(989\) 3.92994 0.124965
\(990\) 0.197138i 0.00626544i
\(991\) 6.71496 0.213308 0.106654 0.994296i \(-0.465986\pi\)
0.106654 + 0.994296i \(0.465986\pi\)
\(992\) 6.71965 0.213349
\(993\) − 15.0540i − 0.477725i
\(994\) − 0.852287i − 0.0270329i
\(995\) − 20.1901i − 0.640068i
\(996\) 0.655975i 0.0207854i
\(997\) −18.4411 −0.584037 −0.292018 0.956413i \(-0.594327\pi\)
−0.292018 + 0.956413i \(0.594327\pi\)
\(998\) 3.38609 0.107185
\(999\) 20.8190i 0.658684i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1183.2.c.i.337.6 12
13.5 odd 4 1183.2.a.m.1.4 6
13.8 odd 4 1183.2.a.p.1.3 6
13.9 even 3 91.2.q.a.36.3 12
13.10 even 6 91.2.q.a.43.3 yes 12
13.12 even 2 inner 1183.2.c.i.337.7 12
39.23 odd 6 819.2.ct.a.316.4 12
39.35 odd 6 819.2.ct.a.127.4 12
52.23 odd 6 1456.2.cc.c.225.3 12
52.35 odd 6 1456.2.cc.c.673.3 12
91.9 even 3 637.2.u.h.361.4 12
91.10 odd 6 637.2.u.i.30.4 12
91.23 even 6 637.2.k.h.459.4 12
91.34 even 4 8281.2.a.ch.1.3 6
91.48 odd 6 637.2.q.h.491.3 12
91.61 odd 6 637.2.u.i.361.4 12
91.62 odd 6 637.2.q.h.589.3 12
91.74 even 3 637.2.k.h.569.3 12
91.75 odd 6 637.2.k.g.459.4 12
91.83 even 4 8281.2.a.by.1.4 6
91.87 odd 6 637.2.k.g.569.3 12
91.88 even 6 637.2.u.h.30.4 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
91.2.q.a.36.3 12 13.9 even 3
91.2.q.a.43.3 yes 12 13.10 even 6
637.2.k.g.459.4 12 91.75 odd 6
637.2.k.g.569.3 12 91.87 odd 6
637.2.k.h.459.4 12 91.23 even 6
637.2.k.h.569.3 12 91.74 even 3
637.2.q.h.491.3 12 91.48 odd 6
637.2.q.h.589.3 12 91.62 odd 6
637.2.u.h.30.4 12 91.88 even 6
637.2.u.h.361.4 12 91.9 even 3
637.2.u.i.30.4 12 91.10 odd 6
637.2.u.i.361.4 12 91.61 odd 6
819.2.ct.a.127.4 12 39.35 odd 6
819.2.ct.a.316.4 12 39.23 odd 6
1183.2.a.m.1.4 6 13.5 odd 4
1183.2.a.p.1.3 6 13.8 odd 4
1183.2.c.i.337.6 12 1.1 even 1 trivial
1183.2.c.i.337.7 12 13.12 even 2 inner
1456.2.cc.c.225.3 12 52.23 odd 6
1456.2.cc.c.673.3 12 52.35 odd 6
8281.2.a.by.1.4 6 91.83 even 4
8281.2.a.ch.1.3 6 91.34 even 4