Newspace parameters
Level: | \( N \) | \(=\) | \( 1183 = 7 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1183.c (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(9.44630255912\) |
Analytic rank: | \(0\) |
Dimension: | \(12\) |
Coefficient field: | 12.0.58891012706304.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{12} - 5x^{10} - 2x^{9} + 15x^{8} + 2x^{7} - 30x^{6} + 4x^{5} + 60x^{4} - 16x^{3} - 80x^{2} + 64 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 2^{6} \) |
Twist minimal: | no (minimal twist has level 91) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{12} - 5x^{10} - 2x^{9} + 15x^{8} + 2x^{7} - 30x^{6} + 4x^{5} + 60x^{4} - 16x^{3} - 80x^{2} + 64 \)
:
\(\beta_{1}\) | \(=\) |
\( ( \nu^{11} - 5\nu^{9} - 2\nu^{8} + 15\nu^{7} + 2\nu^{6} - 30\nu^{5} + 4\nu^{4} + 60\nu^{3} - 16\nu^{2} - 48\nu ) / 32 \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{10} - 3\nu^{9} - \nu^{8} + 9\nu^{7} + \nu^{6} - 23\nu^{5} + 16\nu^{4} + 26\nu^{3} - 32\nu^{2} - 28\nu + 48 ) / 8 \)
|
\(\beta_{3}\) | \(=\) |
\( ( \nu^{11} + 6 \nu^{10} - 5 \nu^{9} - 24 \nu^{8} + 3 \nu^{7} + 52 \nu^{6} - 34 \nu^{5} - 88 \nu^{4} + 100 \nu^{3} + 168 \nu^{2} - 112 \nu - 160 ) / 32 \)
|
\(\beta_{4}\) | \(=\) |
\( ( \nu^{11} + 4 \nu^{10} - 17 \nu^{9} - 6 \nu^{8} + 51 \nu^{7} + 6 \nu^{6} - 122 \nu^{5} + 68 \nu^{4} + 164 \nu^{3} - 144 \nu^{2} - 224 \nu + 192 ) / 32 \)
|
\(\beta_{5}\) | \(=\) |
\( ( - \nu^{11} - 2 \nu^{10} + 17 \nu^{9} - 4 \nu^{8} - 55 \nu^{7} + 24 \nu^{6} + 126 \nu^{5} - 128 \nu^{4} - 156 \nu^{3} + 232 \nu^{2} + 192 \nu - 288 ) / 32 \)
|
\(\beta_{6}\) | \(=\) |
\( ( \nu^{11} - 8 \nu^{10} - 5 \nu^{9} + 30 \nu^{8} + 15 \nu^{7} - 78 \nu^{6} + 18 \nu^{5} + 124 \nu^{4} - 68 \nu^{3} - 192 \nu^{2} + 112 \nu + 96 ) / 32 \)
|
\(\beta_{7}\) | \(=\) |
\( ( - 5 \nu^{11} + 2 \nu^{10} + 17 \nu^{9} - 8 \nu^{8} - 39 \nu^{7} + 44 \nu^{6} + 50 \nu^{5} - 88 \nu^{4} - 68 \nu^{3} + 120 \nu^{2} + 16 \nu - 32 ) / 32 \)
|
\(\beta_{8}\) | \(=\) |
\( ( - \nu^{11} + 5 \nu^{10} + 7 \nu^{9} - 19 \nu^{8} - 19 \nu^{7} + 49 \nu^{6} + 14 \nu^{5} - 106 \nu^{4} + 4 \nu^{3} + 172 \nu^{2} - 8 \nu - 128 ) / 16 \)
|
\(\beta_{9}\) | \(=\) |
\( ( - 5 \nu^{11} + 9 \nu^{9} + 18 \nu^{8} - 11 \nu^{7} - 18 \nu^{6} + 6 \nu^{5} + 68 \nu^{4} - 76 \nu^{3} - 160 \nu^{2} + 16 \nu + 288 ) / 32 \)
|
\(\beta_{10}\) | \(=\) |
\( ( - \nu^{11} + 3 \nu^{10} + 5 \nu^{9} - 13 \nu^{8} - 13 \nu^{7} + 35 \nu^{6} + 12 \nu^{5} - 70 \nu^{4} + 8 \nu^{3} + 108 \nu^{2} - 16 \nu - 88 ) / 8 \)
|
\(\beta_{11}\) | \(=\) |
\( ( - 3 \nu^{11} + \nu^{10} + 12 \nu^{9} - 3 \nu^{8} - 28 \nu^{7} + 19 \nu^{6} + 43 \nu^{5} - 52 \nu^{4} - 66 \nu^{3} + 64 \nu^{2} + 52 \nu - 16 ) / 8 \)
|
\(\nu\) | \(=\) |
\( ( -\beta_{4} + \beta_{2} + \beta_1 ) / 2 \)
|
\(\nu^{2}\) | \(=\) |
\( ( -\beta_{11} + \beta_{8} + 2\beta_{7} + \beta_{6} - \beta_{5} - \beta_{4} - \beta _1 + 2 ) / 2 \)
|
\(\nu^{3}\) | \(=\) |
\( ( \beta_{10} + \beta_{9} - \beta_{8} - \beta_{7} - \beta_{5} - 2\beta_{4} + \beta_{3} + 2\beta _1 + 1 ) / 2 \)
|
\(\nu^{4}\) | \(=\) |
\( ( -2\beta_{11} + \beta_{10} + 3\beta_{7} - 2\beta_{5} - 3\beta_{4} - \beta_{3} + \beta_{2} - 3\beta _1 - 1 ) / 2 \)
|
\(\nu^{5}\) | \(=\) |
\( ( -\beta_{11} + 4\beta_{10} + 2\beta_{9} - 2\beta_{8} - 2\beta_{7} + 2\beta_{6} - \beta_{2} - 2\beta _1 + 6 ) / 2 \)
|
\(\nu^{6}\) | \(=\) |
\( ( - 3 \beta_{11} + \beta_{10} + 2 \beta_{9} - \beta_{8} + 3 \beta_{7} - 3 \beta_{6} + 3 \beta_{5} - 2 \beta_{4} - 3 \beta_{3} + 3 \beta_{2} + 2 \beta _1 - 3 ) / 2 \)
|
\(\nu^{7}\) | \(=\) |
\( ( - 5 \beta_{11} + 5 \beta_{10} + \beta_{9} + 5 \beta_{8} + 5 \beta_{7} + 8 \beta_{6} - \beta_{5} + 2 \beta_{4} - 7 \beta_{3} - \beta_{2} - 4 \beta _1 + 7 ) / 2 \)
|
\(\nu^{8}\) | \(=\) |
\( ( - 5 \beta_{11} + 12 \beta_{9} + 3 \beta_{8} - \beta_{6} + 5 \beta_{5} - 3 \beta_{4} + 2 \beta_{3} - 2 \beta_{2} + 13 \beta _1 - 6 ) / 2 \)
|
\(\nu^{9}\) | \(=\) |
\( ( - 8 \beta_{11} + 3 \beta_{10} + \beta_{9} + 11 \beta_{8} + 9 \beta_{7} - 13 \beta_{5} - 8 \beta_{4} - 17 \beta_{3} - 6 \beta_{2} - 13 ) / 2 \)
|
\(\nu^{10}\) | \(=\) |
\( ( - 4 \beta_{11} + 13 \beta_{10} + 24 \beta_{9} + 4 \beta_{8} - 25 \beta_{7} + 8 \beta_{6} - 2 \beta_{5} - 3 \beta_{4} + 7 \beta_{3} - 9 \beta_{2} - 7 \beta _1 - 9 ) / 2 \)
|
\(\nu^{11}\) | \(=\) |
\( ( - 7 \beta_{11} - 6 \beta_{10} + 10 \beta_{9} + 4 \beta_{8} - 16 \beta_{7} - 40 \beta_{6} + 6 \beta_{5} - 4 \beta_{4} - 26 \beta_{3} - 11 \beta_{2} + 10 \beta _1 - 20 ) / 2 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1183\mathbb{Z}\right)^\times\).
\(n\) | \(339\) | \(1016\) |
\(\chi(n)\) | \(1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
337.1 |
|
− | 2.70320i | −0.345949 | −5.30727 | − | 3.25812i | 0.935168i | − | 1.00000i | 8.94020i | −2.88032 | −8.80735 | |||||||||||||||||||||||||||||||||||||||||||||||||||
337.2 | − | 2.10939i | 2.26165 | −2.44952 | − | 3.60178i | − | 4.77070i | − | 1.00000i | 0.948212i | 2.11505 | −7.59755 | |||||||||||||||||||||||||||||||||||||||||||||||||||
337.3 | − | 1.38595i | −2.82577 | 0.0791355 | − | 0.518957i | 3.91639i | 1.00000i | − | 2.88158i | 4.98500 | −0.719250 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
337.4 | − | 1.27656i | −1.16793 | 0.370384 | 1.81487i | 1.49093i | − | 1.00000i | − | 3.02595i | −1.63595 | 2.31680 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
337.5 | − | 0.823556i | 2.66029 | 1.32176 | 3.16209i | − | 2.19090i | 1.00000i | − | 2.73565i | 4.07715 | 2.60416 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
337.6 | − | 0.120360i | −0.582292 | 1.98551 | 1.68817i | 0.0700846i | − | 1.00000i | − | 0.479696i | −2.66094 | 0.203187 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
337.7 | 0.120360i | −0.582292 | 1.98551 | − | 1.68817i | − | 0.0700846i | 1.00000i | 0.479696i | −2.66094 | 0.203187 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
337.8 | 0.823556i | 2.66029 | 1.32176 | − | 3.16209i | 2.19090i | − | 1.00000i | 2.73565i | 4.07715 | 2.60416 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
337.9 | 1.27656i | −1.16793 | 0.370384 | − | 1.81487i | − | 1.49093i | 1.00000i | 3.02595i | −1.63595 | 2.31680 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
337.10 | 1.38595i | −2.82577 | 0.0791355 | 0.518957i | − | 3.91639i | − | 1.00000i | 2.88158i | 4.98500 | −0.719250 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
337.11 | 2.10939i | 2.26165 | −2.44952 | 3.60178i | 4.77070i | 1.00000i | − | 0.948212i | 2.11505 | −7.59755 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
337.12 | 2.70320i | −0.345949 | −5.30727 | 3.25812i | − | 0.935168i | 1.00000i | − | 8.94020i | −2.88032 | −8.80735 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1183.2.c.i | 12 | |
13.b | even | 2 | 1 | inner | 1183.2.c.i | 12 | |
13.c | even | 3 | 1 | 91.2.q.a | ✓ | 12 | |
13.d | odd | 4 | 1 | 1183.2.a.m | 6 | ||
13.d | odd | 4 | 1 | 1183.2.a.p | 6 | ||
13.e | even | 6 | 1 | 91.2.q.a | ✓ | 12 | |
39.h | odd | 6 | 1 | 819.2.ct.a | 12 | ||
39.i | odd | 6 | 1 | 819.2.ct.a | 12 | ||
52.i | odd | 6 | 1 | 1456.2.cc.c | 12 | ||
52.j | odd | 6 | 1 | 1456.2.cc.c | 12 | ||
91.g | even | 3 | 1 | 637.2.u.h | 12 | ||
91.h | even | 3 | 1 | 637.2.k.h | 12 | ||
91.i | even | 4 | 1 | 8281.2.a.by | 6 | ||
91.i | even | 4 | 1 | 8281.2.a.ch | 6 | ||
91.k | even | 6 | 1 | 637.2.k.h | 12 | ||
91.l | odd | 6 | 1 | 637.2.k.g | 12 | ||
91.m | odd | 6 | 1 | 637.2.u.i | 12 | ||
91.n | odd | 6 | 1 | 637.2.q.h | 12 | ||
91.p | odd | 6 | 1 | 637.2.u.i | 12 | ||
91.t | odd | 6 | 1 | 637.2.q.h | 12 | ||
91.u | even | 6 | 1 | 637.2.u.h | 12 | ||
91.v | odd | 6 | 1 | 637.2.k.g | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
91.2.q.a | ✓ | 12 | 13.c | even | 3 | 1 | |
91.2.q.a | ✓ | 12 | 13.e | even | 6 | 1 | |
637.2.k.g | 12 | 91.l | odd | 6 | 1 | ||
637.2.k.g | 12 | 91.v | odd | 6 | 1 | ||
637.2.k.h | 12 | 91.h | even | 3 | 1 | ||
637.2.k.h | 12 | 91.k | even | 6 | 1 | ||
637.2.q.h | 12 | 91.n | odd | 6 | 1 | ||
637.2.q.h | 12 | 91.t | odd | 6 | 1 | ||
637.2.u.h | 12 | 91.g | even | 3 | 1 | ||
637.2.u.h | 12 | 91.u | even | 6 | 1 | ||
637.2.u.i | 12 | 91.m | odd | 6 | 1 | ||
637.2.u.i | 12 | 91.p | odd | 6 | 1 | ||
819.2.ct.a | 12 | 39.h | odd | 6 | 1 | ||
819.2.ct.a | 12 | 39.i | odd | 6 | 1 | ||
1183.2.a.m | 6 | 13.d | odd | 4 | 1 | ||
1183.2.a.p | 6 | 13.d | odd | 4 | 1 | ||
1183.2.c.i | 12 | 1.a | even | 1 | 1 | trivial | |
1183.2.c.i | 12 | 13.b | even | 2 | 1 | inner | |
1456.2.cc.c | 12 | 52.i | odd | 6 | 1 | ||
1456.2.cc.c | 12 | 52.j | odd | 6 | 1 | ||
8281.2.a.by | 6 | 91.i | even | 4 | 1 | ||
8281.2.a.ch | 6 | 91.i | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{12} + 16T_{2}^{10} + 88T_{2}^{8} + 206T_{2}^{6} + 208T_{2}^{4} + 72T_{2}^{2} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(1183, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{12} + 16 T^{10} + 88 T^{8} + 206 T^{6} + \cdots + 1 \)
$3$
\( (T^{6} - 11 T^{4} - 2 T^{3} + 25 T^{2} + \cdots + 4)^{2} \)
$5$
\( T^{12} + 40 T^{10} + 600 T^{8} + \cdots + 3481 \)
$7$
\( (T^{2} + 1)^{6} \)
$11$
\( T^{12} + 50 T^{10} + 587 T^{8} + \cdots + 256 \)
$13$
\( T^{12} \)
$17$
\( (T^{6} - 4 T^{5} - 21 T^{4} + 60 T^{3} + \cdots - 491)^{2} \)
$19$
\( T^{12} + 58 T^{10} + 1027 T^{8} + \cdots + 55696 \)
$23$
\( (T^{6} - 12 T^{5} - 20 T^{4} + 608 T^{3} + \cdots + 6208)^{2} \)
$29$
\( (T^{6} + 8 T^{5} - 44 T^{4} - 566 T^{3} + \cdots + 3169)^{2} \)
$31$
\( T^{12} + 136 T^{10} + 5854 T^{8} + \cdots + 913936 \)
$37$
\( T^{12} + 318 T^{10} + \cdots + 1755945216 \)
$41$
\( T^{12} + 270 T^{10} + \cdots + 884705536 \)
$43$
\( (T^{6} + 2 T^{5} - 109 T^{4} - 90 T^{3} + \cdots + 1552)^{2} \)
$47$
\( T^{12} + 272 T^{10} + 21782 T^{8} + \cdots + 9461776 \)
$53$
\( (T^{6} + 22 T^{5} + 91 T^{4} - 700 T^{3} + \cdots - 2339)^{2} \)
$59$
\( T^{12} + 328 T^{10} + \cdots + 4571923456 \)
$61$
\( (T^{6} + 14 T^{5} - 87 T^{4} - 1416 T^{3} + \cdots + 2368)^{2} \)
$67$
\( T^{12} + 388 T^{10} + \cdots + 613651984 \)
$71$
\( T^{12} + 152 T^{10} + \cdots + 46895104 \)
$73$
\( T^{12} + 334 T^{10} + \cdots + 1386221824 \)
$79$
\( (T^{6} + 28 T^{5} + 212 T^{4} + 192 T^{3} + \cdots - 512)^{2} \)
$83$
\( T^{12} + 304 T^{10} + \cdots + 141324544 \)
$89$
\( T^{12} + 658 T^{10} + \cdots + 1834580224 \)
$97$
\( T^{12} + 382 T^{10} + \cdots + 53465344 \)
show more
show less