Newspace parameters
Level: | \( N \) | \(=\) | \( 1183 = 7 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1183.c (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(9.44630255912\) |
Analytic rank: | \(0\) |
Dimension: | \(12\) |
Coefficient field: | \(\mathbb{Q}[x]/(x^{12} + \cdots)\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{12} + 16x^{10} + 96x^{8} + 266x^{6} + 332x^{4} + 141x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{11}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{12} + 16x^{10} + 96x^{8} + 266x^{6} + 332x^{4} + 141x^{2} + 1 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{10} + 7\nu^{8} + 33\nu^{6} + 218\nu^{4} + 528\nu^{2} + 203 ) / 83 \)
|
\(\beta_{3}\) | \(=\) |
\( ( 2\nu^{10} + 14\nu^{8} - 17\nu^{6} - 228\nu^{4} - 189\nu^{2} + 157 ) / 83 \)
|
\(\beta_{4}\) | \(=\) |
\( ( -2\nu^{10} - 14\nu^{8} + 17\nu^{6} + 228\nu^{4} + 272\nu^{2} + 9 ) / 83 \)
|
\(\beta_{5}\) | \(=\) |
\( ( 14\nu^{10} + 181\nu^{8} + 794\nu^{6} + 1309\nu^{4} + 503\nu^{2} - 146 ) / 83 \)
|
\(\beta_{6}\) | \(=\) |
\( ( 12\nu^{11} + 167\nu^{9} + 811\nu^{7} + 1620\nu^{5} + 1273\nu^{3} + 444\nu ) / 83 \)
|
\(\beta_{7}\) | \(=\) |
\( ( 12\nu^{10} + 167\nu^{8} + 811\nu^{6} + 1620\nu^{4} + 1190\nu^{2} + 112 ) / 83 \)
|
\(\beta_{8}\) | \(=\) |
\( ( 9\nu^{11} + 146\nu^{9} + 878\nu^{7} + 2377\nu^{5} + 2760\nu^{3} + 997\nu ) / 83 \)
|
\(\beta_{9}\) | \(=\) |
\( ( -6\nu^{11} - 42\nu^{9} + 134\nu^{7} + 1597\nu^{5} + 3555\nu^{3} + 1936\nu ) / 83 \)
|
\(\beta_{10}\) | \(=\) |
\( ( 8\nu^{11} + 139\nu^{9} + 928\nu^{7} + 2906\nu^{5} + 4058\nu^{3} + 1790\nu ) / 83 \)
|
\(\beta_{11}\) | \(=\) |
\( ( -21\nu^{11} - 313\nu^{9} - 1689\nu^{7} - 3997\nu^{5} - 3950\nu^{3} - 1109\nu ) / 83 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{4} + \beta_{3} - 2 \)
|
\(\nu^{3}\) | \(=\) |
\( \beta_{11} + \beta_{8} + \beta_{6} - 4\beta_1 \)
|
\(\nu^{4}\) | \(=\) |
\( \beta_{7} - \beta_{5} - 6\beta_{4} - 5\beta_{3} + 7 \)
|
\(\nu^{5}\) | \(=\) |
\( -7\beta_{11} + \beta_{9} - 9\beta_{8} - 5\beta_{6} + 18\beta_1 \)
|
\(\nu^{6}\) | \(=\) |
\( -8\beta_{7} + 8\beta_{5} + 33\beta_{4} + 24\beta_{3} + 2\beta_{2} - 29 \)
|
\(\nu^{7}\) | \(=\) |
\( 41\beta_{11} + 3\beta_{10} - 10\beta_{9} + 57\beta_{8} + 22\beta_{6} - 86\beta_1 \)
|
\(\nu^{8}\) | \(=\) |
\( 53\beta_{7} - 52\beta_{5} - 175\beta_{4} - 118\beta_{3} - 22\beta_{2} + 133 \)
|
\(\nu^{9}\) | \(=\) |
\( -228\beta_{11} - 39\beta_{10} + 74\beta_{9} - 320\beta_{8} - 96\beta_{6} + 426\beta_1 \)
|
\(\nu^{10}\) | \(=\) |
\( -325\beta_{7} + 318\beta_{5} + 916\beta_{4} + 596\beta_{3} + 171\beta_{2} - 647 \)
|
\(\nu^{11}\) | \(=\) |
\( 1241\beta_{11} + 340\beta_{10} - 489\beta_{9} + 1710\beta_{8} + 425\beta_{6} - 2159\beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1183\mathbb{Z}\right)^\times\).
\(n\) | \(339\) | \(1016\) |
\(\chi(n)\) | \(1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
337.1 |
|
− | 2.63777i | −2.71083 | −4.95781 | 2.08281i | 7.15053i | − | 1.00000i | 7.80201i | 4.34860 | 5.49396 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
337.2 | − | 2.08281i | −0.0911085 | −2.33809 | 2.63777i | 0.189762i | 1.00000i | 0.704173i | −2.99170 | 5.49396 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
337.3 | − | 1.93488i | −2.54570 | −1.74376 | − | 0.312100i | 4.92562i | − | 1.00000i | − | 0.495793i | 3.48058 | −0.603875 | |||||||||||||||||||||||||||||||||||||||||||||||||||
337.4 | − | 1.90785i | −1.08494 | −1.63989 | 1.10591i | 2.06989i | 1.00000i | − | 0.687029i | −1.82292 | 2.10992 | |||||||||||||||||||||||||||||||||||||||||||||||||||||
337.5 | − | 1.10591i | 1.33192 | 0.776957 | 1.90785i | − | 1.47298i | − | 1.00000i | − | 3.07107i | −1.22600 | 2.10992 | |||||||||||||||||||||||||||||||||||||||||||||||||||
337.6 | − | 0.312100i | 1.10066 | 1.90259 | − | 1.93488i | − | 0.343514i | − | 1.00000i | − | 1.21800i | −1.78856 | −0.603875 | ||||||||||||||||||||||||||||||||||||||||||||||||||
337.7 | 0.312100i | 1.10066 | 1.90259 | 1.93488i | 0.343514i | 1.00000i | 1.21800i | −1.78856 | −0.603875 | |||||||||||||||||||||||||||||||||||||||||||||||||||||||
337.8 | 1.10591i | 1.33192 | 0.776957 | − | 1.90785i | 1.47298i | 1.00000i | 3.07107i | −1.22600 | 2.10992 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
337.9 | 1.90785i | −1.08494 | −1.63989 | − | 1.10591i | − | 2.06989i | − | 1.00000i | 0.687029i | −1.82292 | 2.10992 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
337.10 | 1.93488i | −2.54570 | −1.74376 | 0.312100i | − | 4.92562i | 1.00000i | 0.495793i | 3.48058 | −0.603875 | ||||||||||||||||||||||||||||||||||||||||||||||||||||||
337.11 | 2.08281i | −0.0911085 | −2.33809 | − | 2.63777i | − | 0.189762i | − | 1.00000i | − | 0.704173i | −2.99170 | 5.49396 | |||||||||||||||||||||||||||||||||||||||||||||||||||
337.12 | 2.63777i | −2.71083 | −4.95781 | − | 2.08281i | − | 7.15053i | 1.00000i | − | 7.80201i | 4.34860 | 5.49396 | ||||||||||||||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1183.2.c.h | 12 | |
13.b | even | 2 | 1 | inner | 1183.2.c.h | 12 | |
13.d | odd | 4 | 1 | 1183.2.a.n | ✓ | 6 | |
13.d | odd | 4 | 1 | 1183.2.a.o | yes | 6 | |
91.i | even | 4 | 1 | 8281.2.a.cb | 6 | ||
91.i | even | 4 | 1 | 8281.2.a.cg | 6 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1183.2.a.n | ✓ | 6 | 13.d | odd | 4 | 1 | |
1183.2.a.o | yes | 6 | 13.d | odd | 4 | 1 | |
1183.2.c.h | 12 | 1.a | even | 1 | 1 | trivial | |
1183.2.c.h | 12 | 13.b | even | 2 | 1 | inner | |
8281.2.a.cb | 6 | 91.i | even | 4 | 1 | ||
8281.2.a.cg | 6 | 91.i | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{12} + 20T_{2}^{10} + 152T_{2}^{8} + 547T_{2}^{6} + 924T_{2}^{4} + 588T_{2}^{2} + 49 \)
acting on \(S_{2}^{\mathrm{new}}(1183, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{12} + 20 T^{10} + 152 T^{8} + \cdots + 49 \)
$3$
\( (T^{6} + 4 T^{5} - T^{4} - 14 T^{3} - T^{2} + \cdots + 1)^{2} \)
$5$
\( T^{12} + 20 T^{10} + 152 T^{8} + \cdots + 49 \)
$7$
\( (T^{2} + 1)^{6} \)
$11$
\( T^{12} + 96 T^{10} + 3352 T^{8} + \cdots + 790321 \)
$13$
\( T^{12} \)
$17$
\( (T^{6} - 23 T^{5} + 190 T^{4} - 585 T^{3} + \cdots - 7351)^{2} \)
$19$
\( T^{12} + 75 T^{10} + 2085 T^{8} + \cdots + 337561 \)
$23$
\( (T^{6} - 18 T^{5} + 97 T^{4} - 21 T^{3} + \cdots - 587)^{2} \)
$29$
\( (T^{6} + 15 T^{5} + 9 T^{4} - 598 T^{3} + \cdots + 3569)^{2} \)
$31$
\( T^{12} + 323 T^{10} + \cdots + 460660369 \)
$37$
\( T^{12} + 159 T^{10} + 3065 T^{8} + \cdots + 49 \)
$41$
\( T^{12} + 246 T^{10} + 17055 T^{8} + \cdots + 253009 \)
$43$
\( (T^{6} - 18 T^{5} + 53 T^{4} + 374 T^{3} + \cdots + 181)^{2} \)
$47$
\( T^{12} + 300 T^{10} + \cdots + 914034289 \)
$53$
\( (T^{6} + 25 T^{5} + 111 T^{4} + \cdots + 24193)^{2} \)
$59$
\( T^{12} + 570 T^{10} + \cdots + 8632453921 \)
$61$
\( (T^{6} - 16 T^{5} - 55 T^{4} + 1088 T^{3} + \cdots - 12979)^{2} \)
$67$
\( T^{12} + 468 T^{10} + \cdots + 715402009 \)
$71$
\( T^{12} + 577 T^{10} + \cdots + 317982082201 \)
$73$
\( T^{12} + 377 T^{10} + \cdots + 2058164689 \)
$79$
\( (T^{6} - 2 T^{5} - 167 T^{4} + 101 T^{3} + \cdots - 10277)^{2} \)
$83$
\( T^{12} + 593 T^{10} + \cdots + 1697687209 \)
$89$
\( T^{12} + 584 T^{10} + \cdots + 49398174049 \)
$97$
\( T^{12} + 617 T^{10} + \cdots + 1929932761 \)
show more
show less