Newspace parameters
Level: | \( N \) | \(=\) | \( 1183 = 7 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1183.c (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(9.44630255912\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Coefficient field: | 8.0.11667456256.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{8} + 13x^{6} + 44x^{4} + 21x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 2^{2} \) |
Twist minimal: | no (minimal twist has level 91) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{8} + 13x^{6} + 44x^{4} + 21x^{2} + 1 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{6} + 10\nu^{4} + 22\nu^{2} + 3 ) / 8 \)
|
\(\beta_{3}\) | \(=\) |
\( ( -\nu^{6} - 10\nu^{4} - 14\nu^{2} + 21 ) / 8 \)
|
\(\beta_{4}\) | \(=\) |
\( ( -3\nu^{6} - 38\nu^{4} - 122\nu^{2} - 33 ) / 8 \)
|
\(\beta_{5}\) | \(=\) |
\( ( -3\nu^{7} - 38\nu^{5} - 122\nu^{3} - 41\nu ) / 8 \)
|
\(\beta_{6}\) | \(=\) |
\( ( -5\nu^{7} - 66\nu^{5} - 230\nu^{3} - 127\nu ) / 8 \)
|
\(\beta_{7}\) | \(=\) |
\( -\nu^{7} - 13\nu^{5} - 43\nu^{3} - 14\nu \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{3} + \beta_{2} - 3 \)
|
\(\nu^{3}\) | \(=\) |
\( \beta_{7} - \beta_{6} - \beta_{5} - 7\beta_1 \)
|
\(\nu^{4}\) | \(=\) |
\( -\beta_{4} - 7\beta_{3} - 10\beta_{2} + 18 \)
|
\(\nu^{5}\) | \(=\) |
\( -10\beta_{7} + 7\beta_{6} + 15\beta_{5} + 48\beta_1 \)
|
\(\nu^{6}\) | \(=\) |
\( 10\beta_{4} + 48\beta_{3} + 86\beta_{2} - 117 \)
|
\(\nu^{7}\) | \(=\) |
\( 86\beta_{7} - 48\beta_{6} - 152\beta_{5} - 337\beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1183\mathbb{Z}\right)^\times\).
\(n\) | \(339\) | \(1016\) |
\(\chi(n)\) | \(1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
337.1 |
|
− | 2.74108i | 1.36482 | −5.51353 | 0.741082i | − | 3.74108i | 1.00000i | 9.63087i | −1.13727 | 2.03137 | ||||||||||||||||||||||||||||||||||||||||
337.2 | − | 2.22001i | 0.549551 | −2.92843 | 4.22001i | − | 1.22001i | − | 1.00000i | 2.06113i | −2.69799 | 9.36845 | ||||||||||||||||||||||||||||||||||||||||
337.3 | − | 0.710287i | 2.40788 | 1.49549 | − | 1.28971i | − | 1.71029i | 1.00000i | − | 2.48280i | 2.79790 | −0.916066 | |||||||||||||||||||||||||||||||||||||||
337.4 | − | 0.231361i | −3.32225 | 1.94647 | 2.23136i | 0.768639i | − | 1.00000i | − | 0.913059i | 8.03736 | 0.516249 | ||||||||||||||||||||||||||||||||||||||||
337.5 | 0.231361i | −3.32225 | 1.94647 | − | 2.23136i | − | 0.768639i | 1.00000i | 0.913059i | 8.03736 | 0.516249 | |||||||||||||||||||||||||||||||||||||||||
337.6 | 0.710287i | 2.40788 | 1.49549 | 1.28971i | 1.71029i | − | 1.00000i | 2.48280i | 2.79790 | −0.916066 | ||||||||||||||||||||||||||||||||||||||||||
337.7 | 2.22001i | 0.549551 | −2.92843 | − | 4.22001i | 1.22001i | 1.00000i | − | 2.06113i | −2.69799 | 9.36845 | |||||||||||||||||||||||||||||||||||||||||
337.8 | 2.74108i | 1.36482 | −5.51353 | − | 0.741082i | 3.74108i | − | 1.00000i | − | 9.63087i | −1.13727 | 2.03137 | ||||||||||||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1183.2.c.g | 8 | |
13.b | even | 2 | 1 | inner | 1183.2.c.g | 8 | |
13.d | odd | 4 | 1 | 1183.2.a.k | 4 | ||
13.d | odd | 4 | 1 | 1183.2.a.l | 4 | ||
13.f | odd | 12 | 2 | 91.2.f.c | ✓ | 8 | |
39.k | even | 12 | 2 | 819.2.o.h | 8 | ||
52.l | even | 12 | 2 | 1456.2.s.q | 8 | ||
91.i | even | 4 | 1 | 8281.2.a.bp | 4 | ||
91.i | even | 4 | 1 | 8281.2.a.bt | 4 | ||
91.w | even | 12 | 2 | 637.2.g.j | 8 | ||
91.x | odd | 12 | 2 | 637.2.h.h | 8 | ||
91.ba | even | 12 | 2 | 637.2.h.i | 8 | ||
91.bc | even | 12 | 2 | 637.2.f.i | 8 | ||
91.bd | odd | 12 | 2 | 637.2.g.k | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
91.2.f.c | ✓ | 8 | 13.f | odd | 12 | 2 | |
637.2.f.i | 8 | 91.bc | even | 12 | 2 | ||
637.2.g.j | 8 | 91.w | even | 12 | 2 | ||
637.2.g.k | 8 | 91.bd | odd | 12 | 2 | ||
637.2.h.h | 8 | 91.x | odd | 12 | 2 | ||
637.2.h.i | 8 | 91.ba | even | 12 | 2 | ||
819.2.o.h | 8 | 39.k | even | 12 | 2 | ||
1183.2.a.k | 4 | 13.d | odd | 4 | 1 | ||
1183.2.a.l | 4 | 13.d | odd | 4 | 1 | ||
1183.2.c.g | 8 | 1.a | even | 1 | 1 | trivial | |
1183.2.c.g | 8 | 13.b | even | 2 | 1 | inner | |
1456.2.s.q | 8 | 52.l | even | 12 | 2 | ||
8281.2.a.bp | 4 | 91.i | even | 4 | 1 | ||
8281.2.a.bt | 4 | 91.i | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{8} + 13T_{2}^{6} + 44T_{2}^{4} + 21T_{2}^{2} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(1183, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{8} + 13 T^{6} + 44 T^{4} + 21 T^{2} + \cdots + 1 \)
$3$
\( (T^{4} - T^{3} - 9 T^{2} + 16 T - 6)^{2} \)
$5$
\( T^{8} + 25 T^{6} + 140 T^{4} + \cdots + 81 \)
$7$
\( (T^{2} + 1)^{4} \)
$11$
\( T^{8} + 19 T^{6} + 101 T^{4} + \cdots + 36 \)
$13$
\( T^{8} \)
$17$
\( (T^{4} - 4 T^{3} - 12 T^{2} + 60 T - 53)^{2} \)
$19$
\( T^{8} + 111 T^{6} + 4025 T^{4} + \cdots + 250000 \)
$23$
\( (T^{4} - 2 T^{3} - 38 T^{2} + 56 T + 72)^{2} \)
$29$
\( (T^{4} - T^{3} - 22 T^{2} - 21 T - 5)^{2} \)
$31$
\( T^{8} + 42 T^{6} + 485 T^{4} + \cdots + 2916 \)
$37$
\( T^{8} + 66 T^{6} + 1137 T^{4} + \cdots + 256 \)
$41$
\( T^{8} + 186 T^{6} + 11129 T^{4} + \cdots + 318096 \)
$43$
\( (T^{4} + 3 T^{3} - 3 T^{2} - 8 T - 2)^{2} \)
$47$
\( T^{8} + 106 T^{6} + 2753 T^{4} + \cdots + 10000 \)
$53$
\( (T^{4} - 2 T^{3} - 140 T^{2} + 890 T - 1389)^{2} \)
$59$
\( T^{8} + 218 T^{6} + 13317 T^{4} + \cdots + 498436 \)
$61$
\( (T^{4} - 8 T^{3} - 15 T^{2} + 176 T - 100)^{2} \)
$67$
\( T^{8} + 458 T^{6} + \cdots + 121220100 \)
$71$
\( T^{8} + 228 T^{6} + 16128 T^{4} + \cdots + 4129024 \)
$73$
\( T^{8} + 302 T^{6} + 19113 T^{4} + \cdots + 3139984 \)
$79$
\( (T^{4} + 26 T^{3} + 134 T^{2} - 1024 T - 7680)^{2} \)
$83$
\( T^{8} + 194 T^{6} + 8557 T^{4} + \cdots + 181476 \)
$89$
\( T^{8} + 143 T^{6} + 5193 T^{4} + \cdots + 11664 \)
$97$
\( T^{8} + 619 T^{6} + \cdots + 246238864 \)
show more
show less