Properties

Label 1183.2.c.e
Level $1183$
Weight $2$
Character orbit 1183.c
Analytic conductor $9.446$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1183,2,Mod(337,1183)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1183, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1183.337");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1183 = 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1183.c (of order \(2\), degree \(1\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.44630255912\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{12})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 91)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta_{2} q^{2} + (\beta_{3} + 1) q^{3} - q^{4} - \beta_{2} q^{5} + ( - \beta_{2} - 3 \beta_1) q^{6} + \beta_1 q^{7} - \beta_{2} q^{8} + (2 \beta_{3} + 1) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q - \beta_{2} q^{2} + (\beta_{3} + 1) q^{3} - q^{4} - \beta_{2} q^{5} + ( - \beta_{2} - 3 \beta_1) q^{6} + \beta_1 q^{7} - \beta_{2} q^{8} + (2 \beta_{3} + 1) q^{9} - 3 q^{10} + ( - \beta_{2} + 3 \beta_1) q^{11} + ( - \beta_{3} - 1) q^{12} + \beta_{3} q^{14} + ( - \beta_{2} - 3 \beta_1) q^{15} - 5 q^{16} + (\beta_{3} + 6) q^{17} + ( - \beta_{2} - 6 \beta_1) q^{18} - 2 \beta_1 q^{19} + \beta_{2} q^{20} + (\beta_{2} + \beta_1) q^{21} + (3 \beta_{3} - 3) q^{22} + ( - \beta_{3} - 3) q^{23} + ( - \beta_{2} - 3 \beta_1) q^{24} + 2 q^{25} + 4 q^{27} - \beta_1 q^{28} - 3 q^{29} + ( - 3 \beta_{3} - 3) q^{30} + ( - 3 \beta_{2} + \beta_1) q^{31} + 3 \beta_{2} q^{32} + 2 \beta_{2} q^{33} + ( - 6 \beta_{2} - 3 \beta_1) q^{34} + \beta_{3} q^{35} + ( - 2 \beta_{3} - 1) q^{36} - 7 \beta_1 q^{37} - 2 \beta_{3} q^{38} - 3 q^{40} + 3 \beta_{2} q^{41} + (\beta_{3} + 3) q^{42} + (3 \beta_{3} - 5) q^{43} + (\beta_{2} - 3 \beta_1) q^{44} + ( - \beta_{2} - 6 \beta_1) q^{45} + (3 \beta_{2} + 3 \beta_1) q^{46} + (4 \beta_{2} + 6 \beta_1) q^{47} + ( - 5 \beta_{3} - 5) q^{48} - q^{49} - 2 \beta_{2} q^{50} + (7 \beta_{3} + 9) q^{51} + ( - 4 \beta_{3} - 3) q^{53} - 4 \beta_{2} q^{54} + (3 \beta_{3} - 3) q^{55} + \beta_{3} q^{56} + ( - 2 \beta_{2} - 2 \beta_1) q^{57} + 3 \beta_{2} q^{58} + ( - \beta_{2} + 9 \beta_1) q^{59} + (\beta_{2} + 3 \beta_1) q^{60} + (3 \beta_{3} - 10) q^{61} + (\beta_{3} - 9) q^{62} + (2 \beta_{2} + \beta_1) q^{63} - q^{64} + 6 q^{66} + (3 \beta_{2} + \beta_1) q^{67} + ( - \beta_{3} - 6) q^{68} + ( - 4 \beta_{3} - 6) q^{69} - 3 \beta_1 q^{70} - 6 \beta_1 q^{71} + ( - \beta_{2} - 6 \beta_1) q^{72} + ( - 3 \beta_{2} + 2 \beta_1) q^{73} - 7 \beta_{3} q^{74} + (2 \beta_{3} + 2) q^{75} + 2 \beta_1 q^{76} + (\beta_{3} - 3) q^{77} + (3 \beta_{3} + 11) q^{79} + 5 \beta_{2} q^{80} + ( - 2 \beta_{3} + 1) q^{81} + 9 q^{82} + (3 \beta_{2} - 3 \beta_1) q^{83} + ( - \beta_{2} - \beta_1) q^{84} + ( - 6 \beta_{2} - 3 \beta_1) q^{85} + (5 \beta_{2} - 9 \beta_1) q^{86} + ( - 3 \beta_{3} - 3) q^{87} + (3 \beta_{3} - 3) q^{88} + (4 \beta_{2} + 6 \beta_1) q^{89} + ( - 6 \beta_{3} - 3) q^{90} + (\beta_{3} + 3) q^{92} + ( - 2 \beta_{2} - 8 \beta_1) q^{93} + (6 \beta_{3} + 12) q^{94} - 2 \beta_{3} q^{95} + (3 \beta_{2} + 9 \beta_1) q^{96} + ( - 6 \beta_{2} + 4 \beta_1) q^{97} + \beta_{2} q^{98} + (5 \beta_{2} - 3 \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 4 q^{3} - 4 q^{4} + 4 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 4 q^{3} - 4 q^{4} + 4 q^{9} - 12 q^{10} - 4 q^{12} - 20 q^{16} + 24 q^{17} - 12 q^{22} - 12 q^{23} + 8 q^{25} + 16 q^{27} - 12 q^{29} - 12 q^{30} - 4 q^{36} - 12 q^{40} + 12 q^{42} - 20 q^{43} - 20 q^{48} - 4 q^{49} + 36 q^{51} - 12 q^{53} - 12 q^{55} - 40 q^{61} - 36 q^{62} - 4 q^{64} + 24 q^{66} - 24 q^{68} - 24 q^{69} + 8 q^{75} - 12 q^{77} + 44 q^{79} + 4 q^{81} + 36 q^{82} - 12 q^{87} - 12 q^{88} - 12 q^{90} + 12 q^{92} + 48 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring

\(\beta_{1}\)\(=\) \( \zeta_{12}^{3} \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( 2\zeta_{12}^{2} - 1 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( -\zeta_{12}^{3} + 2\zeta_{12} \) Copy content Toggle raw display
\(\zeta_{12}\)\(=\) \( ( \beta_{3} + \beta_1 ) / 2 \) Copy content Toggle raw display
\(\zeta_{12}^{2}\)\(=\) \( ( \beta_{2} + 1 ) / 2 \) Copy content Toggle raw display
\(\zeta_{12}^{3}\)\(=\) \( \beta_1 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1183\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(1016\)
\(\chi(n)\) \(1\) \(-1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
337.1
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i
0.866025 0.500000i
1.73205i −0.732051 −1.00000 1.73205i 1.26795i 1.00000i 1.73205i −2.46410 −3.00000
337.2 1.73205i 2.73205 −1.00000 1.73205i 4.73205i 1.00000i 1.73205i 4.46410 −3.00000
337.3 1.73205i −0.732051 −1.00000 1.73205i 1.26795i 1.00000i 1.73205i −2.46410 −3.00000
337.4 1.73205i 2.73205 −1.00000 1.73205i 4.73205i 1.00000i 1.73205i 4.46410 −3.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1183.2.c.e 4
13.b even 2 1 inner 1183.2.c.e 4
13.d odd 4 1 1183.2.a.e 2
13.d odd 4 1 1183.2.a.f 2
13.f odd 12 2 91.2.f.b 4
39.k even 12 2 819.2.o.b 4
52.l even 12 2 1456.2.s.o 4
91.i even 4 1 8281.2.a.r 2
91.i even 4 1 8281.2.a.t 2
91.w even 12 2 637.2.g.d 4
91.x odd 12 2 637.2.h.d 4
91.ba even 12 2 637.2.h.e 4
91.bc even 12 2 637.2.f.d 4
91.bd odd 12 2 637.2.g.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
91.2.f.b 4 13.f odd 12 2
637.2.f.d 4 91.bc even 12 2
637.2.g.d 4 91.w even 12 2
637.2.g.e 4 91.bd odd 12 2
637.2.h.d 4 91.x odd 12 2
637.2.h.e 4 91.ba even 12 2
819.2.o.b 4 39.k even 12 2
1183.2.a.e 2 13.d odd 4 1
1183.2.a.f 2 13.d odd 4 1
1183.2.c.e 4 1.a even 1 1 trivial
1183.2.c.e 4 13.b even 2 1 inner
1456.2.s.o 4 52.l even 12 2
8281.2.a.r 2 91.i even 4 1
8281.2.a.t 2 91.i even 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + 3 \) acting on \(S_{2}^{\mathrm{new}}(1183, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 3)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} - 2 T - 2)^{2} \) Copy content Toggle raw display
$5$ \( (T^{2} + 3)^{2} \) Copy content Toggle raw display
$7$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{4} + 24T^{2} + 36 \) Copy content Toggle raw display
$13$ \( T^{4} \) Copy content Toggle raw display
$17$ \( (T^{2} - 12 T + 33)^{2} \) Copy content Toggle raw display
$19$ \( (T^{2} + 4)^{2} \) Copy content Toggle raw display
$23$ \( (T^{2} + 6 T + 6)^{2} \) Copy content Toggle raw display
$29$ \( (T + 3)^{4} \) Copy content Toggle raw display
$31$ \( T^{4} + 56T^{2} + 676 \) Copy content Toggle raw display
$37$ \( (T^{2} + 49)^{2} \) Copy content Toggle raw display
$41$ \( (T^{2} + 27)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 10 T - 2)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + 168T^{2} + 144 \) Copy content Toggle raw display
$53$ \( (T^{2} + 6 T - 39)^{2} \) Copy content Toggle raw display
$59$ \( T^{4} + 168T^{2} + 6084 \) Copy content Toggle raw display
$61$ \( (T^{2} + 20 T + 73)^{2} \) Copy content Toggle raw display
$67$ \( T^{4} + 56T^{2} + 676 \) Copy content Toggle raw display
$71$ \( (T^{2} + 36)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + 62T^{2} + 529 \) Copy content Toggle raw display
$79$ \( (T^{2} - 22 T + 94)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 72T^{2} + 324 \) Copy content Toggle raw display
$89$ \( T^{4} + 168T^{2} + 144 \) Copy content Toggle raw display
$97$ \( T^{4} + 248T^{2} + 8464 \) Copy content Toggle raw display
show more
show less