Newspace parameters
Level: | \( N \) | \(=\) | \( 1183 = 7 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1183.c (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(9.44630255912\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Coefficient field: | \(\Q(i, \sqrt{5})\) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} + 3x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 91) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} + 3x^{2} + 1 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( \nu^{2} + 1 \)
|
\(\beta_{3}\) | \(=\) |
\( \nu^{3} + 2\nu \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{2} - 1 \)
|
\(\nu^{3}\) | \(=\) |
\( \beta_{3} - 2\beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1183\mathbb{Z}\right)^\times\).
\(n\) | \(339\) | \(1016\) |
\(\chi(n)\) | \(1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
337.1 |
|
− | 2.61803i | −2.61803 | −4.85410 | − | 2.61803i | 6.85410i | 1.00000i | 7.47214i | 3.85410 | −6.85410 | ||||||||||||||||||||||||||||
337.2 | − | 0.381966i | −0.381966 | 1.85410 | − | 0.381966i | 0.145898i | 1.00000i | − | 1.47214i | −2.85410 | −0.145898 | ||||||||||||||||||||||||||||
337.3 | 0.381966i | −0.381966 | 1.85410 | 0.381966i | − | 0.145898i | − | 1.00000i | 1.47214i | −2.85410 | −0.145898 | |||||||||||||||||||||||||||||
337.4 | 2.61803i | −2.61803 | −4.85410 | 2.61803i | − | 6.85410i | − | 1.00000i | − | 7.47214i | 3.85410 | −6.85410 | ||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1183.2.c.c | 4 | |
13.b | even | 2 | 1 | inner | 1183.2.c.c | 4 | |
13.d | odd | 4 | 1 | 1183.2.a.c | 2 | ||
13.d | odd | 4 | 1 | 1183.2.a.g | 2 | ||
13.f | odd | 12 | 2 | 91.2.f.a | ✓ | 4 | |
39.k | even | 12 | 2 | 819.2.o.c | 4 | ||
52.l | even | 12 | 2 | 1456.2.s.h | 4 | ||
91.i | even | 4 | 1 | 8281.2.a.n | 2 | ||
91.i | even | 4 | 1 | 8281.2.a.bb | 2 | ||
91.w | even | 12 | 2 | 637.2.g.c | 4 | ||
91.x | odd | 12 | 2 | 637.2.h.g | 4 | ||
91.ba | even | 12 | 2 | 637.2.h.f | 4 | ||
91.bc | even | 12 | 2 | 637.2.f.c | 4 | ||
91.bd | odd | 12 | 2 | 637.2.g.b | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
91.2.f.a | ✓ | 4 | 13.f | odd | 12 | 2 | |
637.2.f.c | 4 | 91.bc | even | 12 | 2 | ||
637.2.g.b | 4 | 91.bd | odd | 12 | 2 | ||
637.2.g.c | 4 | 91.w | even | 12 | 2 | ||
637.2.h.f | 4 | 91.ba | even | 12 | 2 | ||
637.2.h.g | 4 | 91.x | odd | 12 | 2 | ||
819.2.o.c | 4 | 39.k | even | 12 | 2 | ||
1183.2.a.c | 2 | 13.d | odd | 4 | 1 | ||
1183.2.a.g | 2 | 13.d | odd | 4 | 1 | ||
1183.2.c.c | 4 | 1.a | even | 1 | 1 | trivial | |
1183.2.c.c | 4 | 13.b | even | 2 | 1 | inner | |
1456.2.s.h | 4 | 52.l | even | 12 | 2 | ||
8281.2.a.n | 2 | 91.i | even | 4 | 1 | ||
8281.2.a.bb | 2 | 91.i | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{4} + 7T_{2}^{2} + 1 \)
acting on \(S_{2}^{\mathrm{new}}(1183, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} + 7T^{2} + 1 \)
$3$
\( (T^{2} + 3 T + 1)^{2} \)
$5$
\( T^{4} + 7T^{2} + 1 \)
$7$
\( (T^{2} + 1)^{2} \)
$11$
\( T^{4} + 27T^{2} + 81 \)
$13$
\( T^{4} \)
$17$
\( (T^{2} + 6 T - 11)^{2} \)
$19$
\( T^{4} + 27T^{2} + 81 \)
$23$
\( (T^{2} - 20)^{2} \)
$29$
\( (T^{2} - 3 T - 29)^{2} \)
$31$
\( T^{4} + 98T^{2} + 1681 \)
$37$
\( (T^{2} + 16)^{2} \)
$41$
\( T^{4} + 28T^{2} + 16 \)
$43$
\( (T^{2} + 5 T - 95)^{2} \)
$47$
\( (T^{2} + 5)^{2} \)
$53$
\( (T^{2} - 12 T + 31)^{2} \)
$59$
\( (T^{2} + 5)^{2} \)
$61$
\( (T + 6)^{4} \)
$67$
\( T^{4} + 162T^{2} + 81 \)
$71$
\( T^{4} + 268 T^{2} + 13456 \)
$73$
\( (T^{2} + 4)^{2} \)
$79$
\( (T - 4)^{4} \)
$83$
\( (T^{2} + 45)^{2} \)
$89$
\( T^{4} + 283T^{2} + 6241 \)
$97$
\( T^{4} + 503 T^{2} + 52441 \)
show more
show less