Newspace parameters
Level: | \( N \) | \(=\) | \( 1183 = 7 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1183.c (of order \(2\), degree \(1\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(9.44630255912\) |
Analytic rank: | \(0\) |
Dimension: | \(2\) |
Coefficient field: | \(\Q(\sqrt{-1}) \) |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{2} + 1 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{7}]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | no (minimal twist has level 91) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1183\mathbb{Z}\right)^\times\).
\(n\) | \(339\) | \(1016\) |
\(\chi(n)\) | \(1\) | \(-1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
337.1 |
|
0 | −2.00000 | 2.00000 | − | 3.00000i | 0 | − | 1.00000i | 0 | 1.00000 | 0 | ||||||||||||||||||||||
337.2 | 0 | −2.00000 | 2.00000 | 3.00000i | 0 | 1.00000i | 0 | 1.00000 | 0 | |||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1183.2.c.a | 2 | |
13.b | even | 2 | 1 | inner | 1183.2.c.a | 2 | |
13.d | odd | 4 | 1 | 91.2.a.b | ✓ | 1 | |
13.d | odd | 4 | 1 | 1183.2.a.a | 1 | ||
39.f | even | 4 | 1 | 819.2.a.c | 1 | ||
52.f | even | 4 | 1 | 1456.2.a.k | 1 | ||
65.g | odd | 4 | 1 | 2275.2.a.d | 1 | ||
91.i | even | 4 | 1 | 637.2.a.b | 1 | ||
91.i | even | 4 | 1 | 8281.2.a.h | 1 | ||
91.z | odd | 12 | 2 | 637.2.e.c | 2 | ||
91.bb | even | 12 | 2 | 637.2.e.b | 2 | ||
104.j | odd | 4 | 1 | 5824.2.a.bd | 1 | ||
104.m | even | 4 | 1 | 5824.2.a.f | 1 | ||
273.o | odd | 4 | 1 | 5733.2.a.f | 1 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
91.2.a.b | ✓ | 1 | 13.d | odd | 4 | 1 | |
637.2.a.b | 1 | 91.i | even | 4 | 1 | ||
637.2.e.b | 2 | 91.bb | even | 12 | 2 | ||
637.2.e.c | 2 | 91.z | odd | 12 | 2 | ||
819.2.a.c | 1 | 39.f | even | 4 | 1 | ||
1183.2.a.a | 1 | 13.d | odd | 4 | 1 | ||
1183.2.c.a | 2 | 1.a | even | 1 | 1 | trivial | |
1183.2.c.a | 2 | 13.b | even | 2 | 1 | inner | |
1456.2.a.k | 1 | 52.f | even | 4 | 1 | ||
2275.2.a.d | 1 | 65.g | odd | 4 | 1 | ||
5733.2.a.f | 1 | 273.o | odd | 4 | 1 | ||
5824.2.a.f | 1 | 104.m | even | 4 | 1 | ||
5824.2.a.bd | 1 | 104.j | odd | 4 | 1 | ||
8281.2.a.h | 1 | 91.i | even | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2} \)
acting on \(S_{2}^{\mathrm{new}}(1183, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{2} \)
$3$
\( (T + 2)^{2} \)
$5$
\( T^{2} + 9 \)
$7$
\( T^{2} + 1 \)
$11$
\( T^{2} \)
$13$
\( T^{2} \)
$17$
\( (T - 6)^{2} \)
$19$
\( T^{2} + 49 \)
$23$
\( (T + 3)^{2} \)
$29$
\( (T + 9)^{2} \)
$31$
\( T^{2} + 25 \)
$37$
\( T^{2} + 4 \)
$41$
\( T^{2} + 36 \)
$43$
\( (T - 1)^{2} \)
$47$
\( T^{2} + 9 \)
$53$
\( (T + 9)^{2} \)
$59$
\( T^{2} \)
$61$
\( (T + 10)^{2} \)
$67$
\( T^{2} + 196 \)
$71$
\( T^{2} + 36 \)
$73$
\( T^{2} + 121 \)
$79$
\( (T + 1)^{2} \)
$83$
\( T^{2} + 9 \)
$89$
\( T^{2} + 225 \)
$97$
\( T^{2} + 1 \)
show more
show less