# Properties

 Label 1183.2.bs Level $1183$ Weight $2$ Character orbit 1183.bs Rep. character $\chi_{1183}(25,\cdot)$ Character field $\Q(\zeta_{78})$ Dimension $2880$ Sturm bound $242$

# Related objects

## Defining parameters

 Level: $$N$$ $$=$$ $$1183 = 7 \cdot 13^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1183.bs (of order $$78$$ and degree $$24$$) Character conductor: $$\operatorname{cond}(\chi)$$ $$=$$ $$1183$$ Character field: $$\Q(\zeta_{78})$$ Sturm bound: $$242$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(1183, [\chi])$$.

Total New Old
Modular forms 2976 2976 0
Cusp forms 2880 2880 0
Eisenstein series 96 96 0

## Trace form

 $$2880q - 13q^{2} - 9q^{3} - 131q^{4} - 13q^{5} - 52q^{6} - 26q^{7} - 52q^{8} + 111q^{9} + O(q^{10})$$ $$2880q - 13q^{2} - 9q^{3} - 131q^{4} - 13q^{5} - 52q^{6} - 26q^{7} - 52q^{8} + 111q^{9} - 7q^{10} - 13q^{11} - 31q^{12} - 144q^{13} + 2q^{14} + 52q^{15} + 97q^{16} - 19q^{17} - 13q^{18} - 52q^{20} - 26q^{21} - 64q^{22} - 16q^{23} - 13q^{24} - 127q^{25} - 7q^{26} - 72q^{27} - 26q^{28} - 36q^{29} + 7q^{30} - 13q^{31} - 78q^{32} - 13q^{33} - 52q^{34} - 38q^{35} + 208q^{36} - 13q^{37} + 43q^{38} + 21q^{39} - 9q^{40} - 52q^{41} - 174q^{42} - 64q^{43} - 39q^{44} - 13q^{45} + 39q^{46} - 13q^{47} - 128q^{48} + 96q^{49} - 52q^{50} - 19q^{51} + 29q^{52} - 101q^{53} + 65q^{54} - 68q^{55} - 6q^{56} - 130q^{57} - 65q^{58} + 91q^{59} - 13q^{60} + q^{61} - 100q^{62} + 39q^{63} + 84q^{64} + 17q^{65} - 64q^{66} - 169q^{67} + 48q^{68} + 74q^{69} - 130q^{71} - 13q^{72} - 13q^{73} + 49q^{74} - 272q^{75} - 312q^{76} + 34q^{77} - 72q^{78} - 35q^{79} + 115q^{81} + 3q^{82} - 52q^{83} - 273q^{84} - 260q^{85} - 91q^{86} + 71q^{87} - 63q^{88} + 152q^{90} + 22q^{91} + 44q^{92} + 26q^{93} - 67q^{94} - 181q^{95} - 13q^{96} + 104q^{97} - 26q^{98} + O(q^{100})$$

## Decomposition of $$S_{2}^{\mathrm{new}}(1183, [\chi])$$ into newform subspaces

The newforms in this space have not yet been added to the LMFDB.