Properties

Label 1183.2.bp
Level $1183$
Weight $2$
Character orbit 1183.bp
Rep. character $\chi_{1183}(30,\cdot)$
Character field $\Q(\zeta_{78})$
Dimension $2856$
Sturm bound $242$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 1183 = 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1183.bp (of order \(78\) and degree \(24\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 1183 \)
Character field: \(\Q(\zeta_{78})\)
Sturm bound: \(242\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{2}(1183, [\chi])\).

Total New Old
Modular forms 2952 2952 0
Cusp forms 2856 2856 0
Eisenstein series 96 96 0

Trace form

\( 2856q - 10q^{2} - 17q^{3} - 130q^{4} - 13q^{5} - 46q^{6} - 24q^{7} - 52q^{8} - 235q^{9} + O(q^{10}) \) \( 2856q - 10q^{2} - 17q^{3} - 130q^{4} - 13q^{5} - 46q^{6} - 24q^{7} - 52q^{8} - 235q^{9} + 5q^{10} - 13q^{11} - 11q^{12} - 48q^{13} - 34q^{14} - 95q^{15} + 102q^{16} - 22q^{17} - 16q^{18} - 46q^{20} - 10q^{21} - 22q^{22} + 8q^{23} - 13q^{24} - 120q^{25} - q^{26} - 62q^{27} - 52q^{28} - 48q^{29} + 55q^{30} + 2q^{31} - 87q^{32} - 13q^{33} - 52q^{34} - 47q^{35} - 139q^{36} - 28q^{37} - 173q^{38} + 38q^{39} - 9q^{40} - 37q^{41} - 156q^{42} - 54q^{43} - 63q^{44} - 10q^{45} + 69q^{46} - 13q^{47} - 46q^{48} - 124q^{49} - 76q^{50} - 13q^{51} - 65q^{52} + 190q^{53} + 74q^{54} - 32q^{55} - 27q^{56} - 13q^{57} + 91q^{58} + 70q^{59} - 46q^{60} - 21q^{61} - 88q^{62} - 112q^{63} + 172q^{64} - 19q^{65} + 98q^{66} + 143q^{67} + 51q^{68} - 94q^{69} - 294q^{70} - 163q^{71} - 13q^{72} + 44q^{73} - 188q^{74} + 279q^{75} + 120q^{76} - 32q^{77} - 99q^{78} + 15q^{79} - 195q^{81} - 21q^{82} - 52q^{83} - 277q^{84} + 55q^{85} + 53q^{86} - 10q^{87} + 69q^{88} - 75q^{89} - 52q^{90} - 61q^{91} - 34q^{92} - 59q^{93} - 115q^{94} + 188q^{95} - q^{96} - 118q^{97} + 19q^{98} + O(q^{100}) \)

Decomposition of \(S_{2}^{\mathrm{new}}(1183, [\chi])\) into newform subspaces

The newforms in this space have not yet been added to the LMFDB.