# Properties

 Label 1183.2.bi Level $1183$ Weight $2$ Character orbit 1183.bi Rep. character $\chi_{1183}(16,\cdot)$ Character field $\Q(\zeta_{39})$ Dimension $2856$ Sturm bound $242$

# Related objects

## Defining parameters

 Level: $$N$$ $$=$$ $$1183 = 7 \cdot 13^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1183.bi (of order $$39$$ and degree $$24$$) Character conductor: $$\operatorname{cond}(\chi)$$ $$=$$ $$1183$$ Character field: $$\Q(\zeta_{39})$$ Sturm bound: $$242$$

## Dimensions

The following table gives the dimensions of various subspaces of $$M_{2}(1183, [\chi])$$.

Total New Old
Modular forms 2952 2952 0
Cusp forms 2856 2856 0
Eisenstein series 96 96 0

## Trace form

 $$2856q - 11q^{2} - 17q^{3} - 243q^{4} - 11q^{5} - 46q^{6} - 27q^{7} - 40q^{8} + 102q^{9} + O(q^{10})$$ $$2856q - 11q^{2} - 17q^{3} - 243q^{4} - 11q^{5} - 46q^{6} - 27q^{7} - 40q^{8} + 102q^{9} - 14q^{10} - 20q^{11} - 15q^{12} - 48q^{13} - 26q^{14} - 7q^{15} - 219q^{16} + 5q^{17} - 10q^{18} + 13q^{19} - 54q^{20} - 32q^{21} - 26q^{22} - 32q^{23} + 7q^{24} + 98q^{25} + 5q^{26} - 14q^{27} - 21q^{28} - 48q^{29} - 127q^{30} - 26q^{31} + 123q^{32} - 20q^{33} - 80q^{34} - 25q^{35} + 65q^{36} - 43q^{37} + 173q^{38} - 112q^{39} - 17q^{40} - 41q^{41} + 55q^{42} - 46q^{43} + 21q^{44} - 63q^{45} - 85q^{46} - 11q^{47} - 50q^{48} + 59q^{49} - 54q^{50} + 3q^{51} - 56q^{52} + 92q^{53} - 109q^{54} - 74q^{55} - 37q^{56} - 139q^{57} + 54q^{58} - 83q^{59} - 24q^{60} - 19q^{61} - 56q^{62} + 73q^{63} - 260q^{64} + 7q^{65} - 71q^{66} - 213q^{67} + 183q^{68} - 118q^{69} - 102q^{70} + 33q^{71} - 56q^{72} + 4q^{73} + 81q^{74} + 309q^{75} - 172q^{76} - 36q^{77} - 83q^{78} - 25q^{79} + 17q^{80} + 106q^{81} - 11q^{82} + 2q^{83} - 459q^{84} + 47q^{85} - 91q^{86} + 29q^{87} - 62q^{88} - 30q^{89} - 60q^{90} + 65q^{91} - 154q^{92} - 230q^{93} + 97q^{94} + 159q^{95} - 47q^{96} - 100q^{97} - 48q^{98} - 48q^{99} + O(q^{100})$$

## Decomposition of $$S_{2}^{\mathrm{new}}(1183, [\chi])$$ into newform subspaces

The newforms in this space have not yet been added to the LMFDB.