Properties

Label 1183.2.a.i
Level $1183$
Weight $2$
Character orbit 1183.a
Self dual yes
Analytic conductor $9.446$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1183 = 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1183.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(9.44630255912\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.316.1
Defining polynomial: \(x^{3} - x^{2} - 4 x + 2\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q -\beta_{1} q^{2} + ( -1 + \beta_{1} - \beta_{2} ) q^{3} + ( 1 + \beta_{2} ) q^{4} + ( -1 + \beta_{1} ) q^{5} + ( -2 + 2 \beta_{1} ) q^{6} + q^{7} + ( -1 - \beta_{2} ) q^{8} + ( 3 - 2 \beta_{1} ) q^{9} +O(q^{10})\) \( q -\beta_{1} q^{2} + ( -1 + \beta_{1} - \beta_{2} ) q^{3} + ( 1 + \beta_{2} ) q^{4} + ( -1 + \beta_{1} ) q^{5} + ( -2 + 2 \beta_{1} ) q^{6} + q^{7} + ( -1 - \beta_{2} ) q^{8} + ( 3 - 2 \beta_{1} ) q^{9} + ( -3 + \beta_{1} - \beta_{2} ) q^{10} + ( -1 + \beta_{1} - \beta_{2} ) q^{11} -4 q^{12} -\beta_{1} q^{14} + ( 3 - 3 \beta_{1} + \beta_{2} ) q^{15} + ( -1 + 2 \beta_{1} - \beta_{2} ) q^{16} + ( 1 + \beta_{1} + \beta_{2} ) q^{17} + ( 6 - 3 \beta_{1} + 2 \beta_{2} ) q^{18} + ( 1 + \beta_{1} ) q^{19} + 2 \beta_{1} q^{20} + ( -1 + \beta_{1} - \beta_{2} ) q^{21} + ( -2 + 2 \beta_{1} ) q^{22} + ( 4 - 2 \beta_{1} - \beta_{2} ) q^{23} + 4 q^{24} + ( -1 - 2 \beta_{1} + \beta_{2} ) q^{25} + ( -4 + 4 \beta_{1} ) q^{27} + ( 1 + \beta_{2} ) q^{28} + ( 8 + \beta_{2} ) q^{29} + ( 8 - 4 \beta_{1} + 2 \beta_{2} ) q^{30} + ( 1 + \beta_{1} - 2 \beta_{2} ) q^{31} + ( -3 + 2 \beta_{1} + \beta_{2} ) q^{32} + ( 6 - 2 \beta_{1} ) q^{33} + ( -4 - 2 \beta_{1} - 2 \beta_{2} ) q^{34} + ( -1 + \beta_{1} ) q^{35} + ( 1 - 4 \beta_{1} + \beta_{2} ) q^{36} + ( 1 - 3 \beta_{1} - \beta_{2} ) q^{37} + ( -3 - \beta_{1} - \beta_{2} ) q^{38} -2 \beta_{1} q^{40} + ( -2 \beta_{1} + 2 \beta_{2} ) q^{41} + ( -2 + 2 \beta_{1} ) q^{42} + ( 4 - 2 \beta_{1} - 3 \beta_{2} ) q^{43} -4 q^{44} + ( -9 + 5 \beta_{1} - 2 \beta_{2} ) q^{45} + ( 7 - 3 \beta_{1} + 3 \beta_{2} ) q^{46} + ( 3 - \beta_{1} + 4 \beta_{2} ) q^{47} + ( 8 - 4 \beta_{1} ) q^{48} + q^{49} + ( 5 + \beta_{2} ) q^{50} + ( -2 - 2 \beta_{1} ) q^{51} + ( 2 + 2 \beta_{1} - 3 \beta_{2} ) q^{53} + ( -12 + 4 \beta_{1} - 4 \beta_{2} ) q^{54} + ( 3 - 3 \beta_{1} + \beta_{2} ) q^{55} + ( -1 - \beta_{2} ) q^{56} + ( 1 - \beta_{1} - \beta_{2} ) q^{57} + ( -1 - 9 \beta_{1} - \beta_{2} ) q^{58} + ( 2 - 2 \beta_{1} - 4 \beta_{2} ) q^{59} + ( 4 - 4 \beta_{1} ) q^{60} -2 q^{61} + ( -1 + \beta_{1} + \beta_{2} ) q^{62} + ( 3 - 2 \beta_{1} ) q^{63} + ( -5 - 2 \beta_{1} - \beta_{2} ) q^{64} + ( 6 - 6 \beta_{1} + 2 \beta_{2} ) q^{66} + ( 2 + 6 \beta_{1} - 4 \beta_{2} ) q^{67} + ( 6 + 4 \beta_{1} + 2 \beta_{2} ) q^{68} + ( -5 + 9 \beta_{1} - 5 \beta_{2} ) q^{69} + ( -3 + \beta_{1} - \beta_{2} ) q^{70} + ( 3 - 3 \beta_{1} + \beta_{2} ) q^{71} + ( -1 + 4 \beta_{1} - \beta_{2} ) q^{72} + ( 3 + \beta_{1} + 4 \beta_{2} ) q^{73} + ( 10 + 4 \beta_{2} ) q^{74} + ( -6 + 2 \beta_{1} + 2 \beta_{2} ) q^{75} + ( 2 + 2 \beta_{1} + 2 \beta_{2} ) q^{76} + ( -1 + \beta_{1} - \beta_{2} ) q^{77} + ( -6 + 4 \beta_{1} - \beta_{2} ) q^{79} + ( 6 - 4 \beta_{1} + 2 \beta_{2} ) q^{80} + ( 3 - 6 \beta_{1} + 4 \beta_{2} ) q^{81} + ( 4 - 2 \beta_{1} ) q^{82} + ( 1 + 9 \beta_{1} - 4 \beta_{2} ) q^{83} -4 q^{84} + ( 3 + \beta_{1} + \beta_{2} ) q^{85} + ( 9 - \beta_{1} + 5 \beta_{2} ) q^{86} + ( -11 + 7 \beta_{1} - 7 \beta_{2} ) q^{87} + 4 q^{88} + ( 1 - 5 \beta_{1} + 2 \beta_{2} ) q^{89} + ( -13 + 11 \beta_{1} - 3 \beta_{2} ) q^{90} + ( -2 - 6 \beta_{1} + 2 \beta_{2} ) q^{92} + ( 7 + \beta_{1} - 3 \beta_{2} ) q^{93} + ( -1 - 7 \beta_{1} - 3 \beta_{2} ) q^{94} + ( 2 + \beta_{2} ) q^{95} + ( 4 - 8 \beta_{1} + 4 \beta_{2} ) q^{96} + ( 3 + \beta_{1} ) q^{97} -\beta_{1} q^{98} + ( -7 + 7 \beta_{1} - 3 \beta_{2} ) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3q - q^{2} - 2q^{3} + 3q^{4} - 2q^{5} - 4q^{6} + 3q^{7} - 3q^{8} + 7q^{9} + O(q^{10}) \) \( 3q - q^{2} - 2q^{3} + 3q^{4} - 2q^{5} - 4q^{6} + 3q^{7} - 3q^{8} + 7q^{9} - 8q^{10} - 2q^{11} - 12q^{12} - q^{14} + 6q^{15} - q^{16} + 4q^{17} + 15q^{18} + 4q^{19} + 2q^{20} - 2q^{21} - 4q^{22} + 10q^{23} + 12q^{24} - 5q^{25} - 8q^{27} + 3q^{28} + 24q^{29} + 20q^{30} + 4q^{31} - 7q^{32} + 16q^{33} - 14q^{34} - 2q^{35} - q^{36} - 10q^{38} - 2q^{40} - 2q^{41} - 4q^{42} + 10q^{43} - 12q^{44} - 22q^{45} + 18q^{46} + 8q^{47} + 20q^{48} + 3q^{49} + 15q^{50} - 8q^{51} + 8q^{53} - 32q^{54} + 6q^{55} - 3q^{56} + 2q^{57} - 12q^{58} + 4q^{59} + 8q^{60} - 6q^{61} - 2q^{62} + 7q^{63} - 17q^{64} + 12q^{66} + 12q^{67} + 22q^{68} - 6q^{69} - 8q^{70} + 6q^{71} + q^{72} + 10q^{73} + 30q^{74} - 16q^{75} + 8q^{76} - 2q^{77} - 14q^{79} + 14q^{80} + 3q^{81} + 10q^{82} + 12q^{83} - 12q^{84} + 10q^{85} + 26q^{86} - 26q^{87} + 12q^{88} - 2q^{89} - 28q^{90} - 12q^{92} + 22q^{93} - 10q^{94} + 6q^{95} + 4q^{96} + 10q^{97} - q^{98} - 14q^{99} + O(q^{100}) \)

Basis of coefficient ring in terms of a root \(\nu\) of \(x^{3} - x^{2} - 4 x + 2\):

\(\beta_{0}\)\(=\)\( 1 \)
\(\beta_{1}\)\(=\)\( \nu \)
\(\beta_{2}\)\(=\)\( \nu^{2} - 3 \)
\(1\)\(=\)\(\beta_0\)
\(\nu\)\(=\)\(\beta_{1}\)
\(\nu^{2}\)\(=\)\(\beta_{2} + 3\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
2.34292
0.470683
−1.81361
−2.34292 −1.14637 3.48929 1.34292 2.68585 1.00000 −3.48929 −1.68585 −3.14637
1.2 −0.470683 2.24914 −1.77846 −0.529317 −1.05863 1.00000 1.77846 2.05863 0.249141
1.3 1.81361 −3.10278 1.28917 −2.81361 −5.62721 1.00000 −1.28917 6.62721 −5.10278
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \(-1\)
\(13\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1183.2.a.i 3
7.b odd 2 1 8281.2.a.bg 3
13.b even 2 1 91.2.a.d 3
13.d odd 4 2 1183.2.c.f 6
39.d odd 2 1 819.2.a.i 3
52.b odd 2 1 1456.2.a.t 3
65.d even 2 1 2275.2.a.m 3
91.b odd 2 1 637.2.a.j 3
91.r even 6 2 637.2.e.j 6
91.s odd 6 2 637.2.e.i 6
104.e even 2 1 5824.2.a.by 3
104.h odd 2 1 5824.2.a.bs 3
273.g even 2 1 5733.2.a.x 3
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
91.2.a.d 3 13.b even 2 1
637.2.a.j 3 91.b odd 2 1
637.2.e.i 6 91.s odd 6 2
637.2.e.j 6 91.r even 6 2
819.2.a.i 3 39.d odd 2 1
1183.2.a.i 3 1.a even 1 1 trivial
1183.2.c.f 6 13.d odd 4 2
1456.2.a.t 3 52.b odd 2 1
2275.2.a.m 3 65.d even 2 1
5733.2.a.x 3 273.g even 2 1
5824.2.a.bs 3 104.h odd 2 1
5824.2.a.by 3 104.e even 2 1
8281.2.a.bg 3 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1183))\):

\( T_{2}^{3} + T_{2}^{2} - 4 T_{2} - 2 \)
\( T_{11}^{3} + 2 T_{11}^{2} - 6 T_{11} - 8 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -2 - 4 T + T^{2} + T^{3} \)
$3$ \( -8 - 6 T + 2 T^{2} + T^{3} \)
$5$ \( -2 - 3 T + 2 T^{2} + T^{3} \)
$7$ \( ( -1 + T )^{3} \)
$11$ \( -8 - 6 T + 2 T^{2} + T^{3} \)
$13$ \( T^{3} \)
$17$ \( -4 - 10 T - 4 T^{2} + T^{3} \)
$19$ \( 4 + T - 4 T^{2} + T^{3} \)
$23$ \( 136 + T - 10 T^{2} + T^{3} \)
$29$ \( -454 + 185 T - 24 T^{2} + T^{3} \)
$31$ \( -16 - 19 T - 4 T^{2} + T^{3} \)
$37$ \( 124 - 58 T + T^{3} \)
$41$ \( 8 - 28 T + 2 T^{2} + T^{3} \)
$43$ \( 628 - 71 T - 10 T^{2} + T^{3} \)
$47$ \( 544 - 79 T - 8 T^{2} + T^{3} \)
$53$ \( -22 - 35 T - 8 T^{2} + T^{3} \)
$59$ \( 688 - 156 T - 4 T^{2} + T^{3} \)
$61$ \( ( 2 + T )^{3} \)
$67$ \( 976 - 124 T - 12 T^{2} + T^{3} \)
$71$ \( -16 - 22 T - 6 T^{2} + T^{3} \)
$73$ \( 274 - 99 T - 10 T^{2} + T^{3} \)
$79$ \( -16 + 5 T + 14 T^{2} + T^{3} \)
$83$ \( 3268 - 271 T - 12 T^{2} + T^{3} \)
$89$ \( -422 - 95 T + 2 T^{2} + T^{3} \)
$97$ \( -22 + 29 T - 10 T^{2} + T^{3} \)
show more
show less