Properties

Label 1183.2.a.h
Level $1183$
Weight $2$
Character orbit 1183.a
Self dual yes
Analytic conductor $9.446$
Analytic rank $1$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1183,2,Mod(1,1183)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1183, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1183.1"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1183 = 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1183.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [3,-2,0,2,-3,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(6)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.44630255912\)
Analytic rank: \(1\)
Dimension: \(3\)
Coefficient field: 3.3.148.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 3x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\beta_1 - 1) q^{2} + \beta_{2} q^{3} + (\beta_{2} - \beta_1 + 1) q^{4} + (\beta_{2} - 1) q^{5} + ( - \beta_{2} + \beta_1 - 1) q^{6} + q^{7} + ( - 2 \beta_{2} - 2) q^{8} + ( - \beta_{2} - \beta_1) q^{9}+ \cdots + (2 \beta_{2} + \beta_1 - 1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 2 q^{2} + 2 q^{4} - 3 q^{5} - 2 q^{6} + 3 q^{7} - 6 q^{8} - q^{9} - 8 q^{11} + 10 q^{12} - 2 q^{14} + 8 q^{15} + 4 q^{16} + 4 q^{17} - 4 q^{18} - q^{19} + 8 q^{20} + 12 q^{22} - 3 q^{23} - 16 q^{24}+ \cdots - 2 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{3} - x^{2} - 3x + 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 2 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 2 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.48119
0.311108
2.17009
−2.48119 1.67513 4.15633 0.675131 −4.15633 1.00000 −5.35026 −0.193937 −1.67513
1.2 −0.688892 −2.21432 −1.52543 −3.21432 1.52543 1.00000 2.42864 1.90321 2.21432
1.3 1.17009 0.539189 −0.630898 −0.460811 0.630898 1.00000 −3.07838 −2.70928 −0.539189
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \( -1 \)
\(13\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1183.2.a.h 3
7.b odd 2 1 8281.2.a.be 3
13.b even 2 1 1183.2.a.j 3
13.d odd 4 2 91.2.c.a 6
39.f even 4 2 819.2.c.b 6
52.f even 4 2 1456.2.k.c 6
91.b odd 2 1 8281.2.a.bi 3
91.i even 4 2 637.2.c.d 6
91.z odd 12 4 637.2.r.e 12
91.bb even 12 4 637.2.r.d 12
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
91.2.c.a 6 13.d odd 4 2
637.2.c.d 6 91.i even 4 2
637.2.r.d 12 91.bb even 12 4
637.2.r.e 12 91.z odd 12 4
819.2.c.b 6 39.f even 4 2
1183.2.a.h 3 1.a even 1 1 trivial
1183.2.a.j 3 13.b even 2 1
1456.2.k.c 6 52.f even 4 2
8281.2.a.be 3 7.b odd 2 1
8281.2.a.bi 3 91.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1183))\):

\( T_{2}^{3} + 2T_{2}^{2} - 2T_{2} - 2 \) Copy content Toggle raw display
\( T_{11}^{3} + 8T_{11}^{2} + 18T_{11} + 10 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{3} + 2 T^{2} + \cdots - 2 \) Copy content Toggle raw display
$3$ \( T^{3} - 4T + 2 \) Copy content Toggle raw display
$5$ \( T^{3} + 3T^{2} - T - 1 \) Copy content Toggle raw display
$7$ \( (T - 1)^{3} \) Copy content Toggle raw display
$11$ \( T^{3} + 8 T^{2} + \cdots + 10 \) Copy content Toggle raw display
$13$ \( T^{3} \) Copy content Toggle raw display
$17$ \( T^{3} - 4 T^{2} + \cdots + 34 \) Copy content Toggle raw display
$19$ \( T^{3} + T^{2} + \cdots - 193 \) Copy content Toggle raw display
$23$ \( T^{3} + 3 T^{2} + \cdots - 79 \) Copy content Toggle raw display
$29$ \( T^{3} + 7 T^{2} + \cdots + 5 \) Copy content Toggle raw display
$31$ \( T^{3} + 11 T^{2} + \cdots - 65 \) Copy content Toggle raw display
$37$ \( T^{3} + 12 T^{2} + \cdots - 54 \) Copy content Toggle raw display
$41$ \( T^{3} + 2 T^{2} + \cdots - 40 \) Copy content Toggle raw display
$43$ \( T^{3} - 13 T^{2} + \cdots + 17 \) Copy content Toggle raw display
$47$ \( T^{3} + 19 T^{2} + \cdots + 137 \) Copy content Toggle raw display
$53$ \( T^{3} - T^{2} - 9T + 13 \) Copy content Toggle raw display
$59$ \( T^{3} + 2 T^{2} + \cdots + 52 \) Copy content Toggle raw display
$61$ \( T^{3} - 14 T^{2} + \cdots + 152 \) Copy content Toggle raw display
$67$ \( T^{3} - 12 T^{2} + \cdots + 16 \) Copy content Toggle raw display
$71$ \( T^{3} + 14 T^{2} + \cdots - 890 \) Copy content Toggle raw display
$73$ \( T^{3} - 9 T^{2} + \cdots - 31 \) Copy content Toggle raw display
$79$ \( T^{3} - 13 T^{2} + \cdots + 185 \) Copy content Toggle raw display
$83$ \( T^{3} + T^{2} + \cdots - 163 \) Copy content Toggle raw display
$89$ \( T^{3} + 3 T^{2} + \cdots - 227 \) Copy content Toggle raw display
$97$ \( T^{3} + 15 T^{2} + \cdots - 2183 \) Copy content Toggle raw display
show more
show less