Properties

Label 1183.2.a.e
Level $1183$
Weight $2$
Character orbit 1183.a
Self dual yes
Analytic conductor $9.446$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1183,2,Mod(1,1183)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1183, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1183.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1183 = 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1183.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(9.44630255912\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{3}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta q^{2} + ( - \beta + 1) q^{3} + q^{4} + \beta q^{5} + (\beta - 3) q^{6} - q^{7} - \beta q^{8} + ( - 2 \beta + 1) q^{9} +O(q^{10}) \) Copy content Toggle raw display \( q + \beta q^{2} + ( - \beta + 1) q^{3} + q^{4} + \beta q^{5} + (\beta - 3) q^{6} - q^{7} - \beta q^{8} + ( - 2 \beta + 1) q^{9} + 3 q^{10} + ( - \beta - 3) q^{11} + ( - \beta + 1) q^{12} - \beta q^{14} + (\beta - 3) q^{15} - 5 q^{16} + (\beta - 6) q^{17} + (\beta - 6) q^{18} - 2 q^{19} + \beta q^{20} + (\beta - 1) q^{21} + ( - 3 \beta - 3) q^{22} + ( - \beta + 3) q^{23} + ( - \beta + 3) q^{24} - 2 q^{25} + 4 q^{27} - q^{28} - 3 q^{29} + ( - 3 \beta + 3) q^{30} + (3 \beta + 1) q^{31} - 3 \beta q^{32} + 2 \beta q^{33} + ( - 6 \beta + 3) q^{34} - \beta q^{35} + ( - 2 \beta + 1) q^{36} + 7 q^{37} - 2 \beta q^{38} - 3 q^{40} - 3 \beta q^{41} + ( - \beta + 3) q^{42} + (3 \beta + 5) q^{43} + ( - \beta - 3) q^{44} + (\beta - 6) q^{45} + (3 \beta - 3) q^{46} + (4 \beta - 6) q^{47} + (5 \beta - 5) q^{48} + q^{49} - 2 \beta q^{50} + (7 \beta - 9) q^{51} + (4 \beta - 3) q^{53} + 4 \beta q^{54} + ( - 3 \beta - 3) q^{55} + \beta q^{56} + (2 \beta - 2) q^{57} - 3 \beta q^{58} + ( - \beta - 9) q^{59} + (\beta - 3) q^{60} + ( - 3 \beta - 10) q^{61} + (\beta + 9) q^{62} + (2 \beta - 1) q^{63} + q^{64} + 6 q^{66} + ( - 3 \beta + 1) q^{67} + (\beta - 6) q^{68} + ( - 4 \beta + 6) q^{69} - 3 q^{70} - 6 q^{71} + ( - \beta + 6) q^{72} + ( - 3 \beta - 2) q^{73} + 7 \beta q^{74} + (2 \beta - 2) q^{75} - 2 q^{76} + (\beta + 3) q^{77} + ( - 3 \beta + 11) q^{79} - 5 \beta q^{80} + (2 \beta + 1) q^{81} - 9 q^{82} + ( - 3 \beta - 3) q^{83} + (\beta - 1) q^{84} + ( - 6 \beta + 3) q^{85} + (5 \beta + 9) q^{86} + (3 \beta - 3) q^{87} + (3 \beta + 3) q^{88} + (4 \beta - 6) q^{89} + ( - 6 \beta + 3) q^{90} + ( - \beta + 3) q^{92} + (2 \beta - 8) q^{93} + ( - 6 \beta + 12) q^{94} - 2 \beta q^{95} + ( - 3 \beta + 9) q^{96} + (6 \beta + 4) q^{97} + \beta q^{98} + (5 \beta + 3) q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{3} + 2 q^{4} - 6 q^{6} - 2 q^{7} + 2 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 2 q^{3} + 2 q^{4} - 6 q^{6} - 2 q^{7} + 2 q^{9} + 6 q^{10} - 6 q^{11} + 2 q^{12} - 6 q^{15} - 10 q^{16} - 12 q^{17} - 12 q^{18} - 4 q^{19} - 2 q^{21} - 6 q^{22} + 6 q^{23} + 6 q^{24} - 4 q^{25} + 8 q^{27} - 2 q^{28} - 6 q^{29} + 6 q^{30} + 2 q^{31} + 6 q^{34} + 2 q^{36} + 14 q^{37} - 6 q^{40} + 6 q^{42} + 10 q^{43} - 6 q^{44} - 12 q^{45} - 6 q^{46} - 12 q^{47} - 10 q^{48} + 2 q^{49} - 18 q^{51} - 6 q^{53} - 6 q^{55} - 4 q^{57} - 18 q^{59} - 6 q^{60} - 20 q^{61} + 18 q^{62} - 2 q^{63} + 2 q^{64} + 12 q^{66} + 2 q^{67} - 12 q^{68} + 12 q^{69} - 6 q^{70} - 12 q^{71} + 12 q^{72} - 4 q^{73} - 4 q^{75} - 4 q^{76} + 6 q^{77} + 22 q^{79} + 2 q^{81} - 18 q^{82} - 6 q^{83} - 2 q^{84} + 6 q^{85} + 18 q^{86} - 6 q^{87} + 6 q^{88} - 12 q^{89} + 6 q^{90} + 6 q^{92} - 16 q^{93} + 24 q^{94} + 18 q^{96} + 8 q^{97} + 6 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−1.73205
1.73205
−1.73205 2.73205 1.00000 −1.73205 −4.73205 −1.00000 1.73205 4.46410 3.00000
1.2 1.73205 −0.732051 1.00000 1.73205 −1.26795 −1.00000 −1.73205 −2.46410 3.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \( +1 \)
\(13\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1183.2.a.e 2
7.b odd 2 1 8281.2.a.t 2
13.b even 2 1 1183.2.a.f 2
13.d odd 4 2 1183.2.c.e 4
13.e even 6 2 91.2.f.b 4
39.h odd 6 2 819.2.o.b 4
52.i odd 6 2 1456.2.s.o 4
91.b odd 2 1 8281.2.a.r 2
91.k even 6 2 637.2.h.d 4
91.l odd 6 2 637.2.h.e 4
91.p odd 6 2 637.2.g.d 4
91.t odd 6 2 637.2.f.d 4
91.u even 6 2 637.2.g.e 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
91.2.f.b 4 13.e even 6 2
637.2.f.d 4 91.t odd 6 2
637.2.g.d 4 91.p odd 6 2
637.2.g.e 4 91.u even 6 2
637.2.h.d 4 91.k even 6 2
637.2.h.e 4 91.l odd 6 2
819.2.o.b 4 39.h odd 6 2
1183.2.a.e 2 1.a even 1 1 trivial
1183.2.a.f 2 13.b even 2 1
1183.2.c.e 4 13.d odd 4 2
1456.2.s.o 4 52.i odd 6 2
8281.2.a.r 2 91.b odd 2 1
8281.2.a.t 2 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1183))\):

\( T_{2}^{2} - 3 \) Copy content Toggle raw display
\( T_{11}^{2} + 6T_{11} + 6 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - 3 \) Copy content Toggle raw display
$3$ \( T^{2} - 2T - 2 \) Copy content Toggle raw display
$5$ \( T^{2} - 3 \) Copy content Toggle raw display
$7$ \( (T + 1)^{2} \) Copy content Toggle raw display
$11$ \( T^{2} + 6T + 6 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( T^{2} + 12T + 33 \) Copy content Toggle raw display
$19$ \( (T + 2)^{2} \) Copy content Toggle raw display
$23$ \( T^{2} - 6T + 6 \) Copy content Toggle raw display
$29$ \( (T + 3)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} - 2T - 26 \) Copy content Toggle raw display
$37$ \( (T - 7)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} - 27 \) Copy content Toggle raw display
$43$ \( T^{2} - 10T - 2 \) Copy content Toggle raw display
$47$ \( T^{2} + 12T - 12 \) Copy content Toggle raw display
$53$ \( T^{2} + 6T - 39 \) Copy content Toggle raw display
$59$ \( T^{2} + 18T + 78 \) Copy content Toggle raw display
$61$ \( T^{2} + 20T + 73 \) Copy content Toggle raw display
$67$ \( T^{2} - 2T - 26 \) Copy content Toggle raw display
$71$ \( (T + 6)^{2} \) Copy content Toggle raw display
$73$ \( T^{2} + 4T - 23 \) Copy content Toggle raw display
$79$ \( T^{2} - 22T + 94 \) Copy content Toggle raw display
$83$ \( T^{2} + 6T - 18 \) Copy content Toggle raw display
$89$ \( T^{2} + 12T - 12 \) Copy content Toggle raw display
$97$ \( T^{2} - 8T - 92 \) Copy content Toggle raw display
show more
show less