Properties

Label 1183.2.a.b
Level $1183$
Weight $2$
Character orbit 1183.a
Self dual yes
Analytic conductor $9.446$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1183 = 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1183.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(9.44630255912\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 91)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + 2q^{2} + 2q^{4} + 3q^{5} + q^{7} - 3q^{9} + O(q^{10}) \) \( q + 2q^{2} + 2q^{4} + 3q^{5} + q^{7} - 3q^{9} + 6q^{10} + 6q^{11} + 2q^{14} - 4q^{16} + 4q^{17} - 6q^{18} - 5q^{19} + 6q^{20} + 12q^{22} + 3q^{23} + 4q^{25} + 2q^{28} - 5q^{29} + 3q^{31} - 8q^{32} + 8q^{34} + 3q^{35} - 6q^{36} + 4q^{37} - 10q^{38} + 6q^{41} - q^{43} + 12q^{44} - 9q^{45} + 6q^{46} - 7q^{47} + q^{49} + 8q^{50} - 9q^{53} + 18q^{55} - 10q^{58} - 8q^{59} - 10q^{61} + 6q^{62} - 3q^{63} - 8q^{64} + 6q^{67} + 8q^{68} + 6q^{70} + 8q^{71} + 13q^{73} + 8q^{74} - 10q^{76} + 6q^{77} + 3q^{79} - 12q^{80} + 9q^{81} + 12q^{82} - 15q^{83} + 12q^{85} - 2q^{86} - 3q^{89} - 18q^{90} + 6q^{92} - 14q^{94} - 15q^{95} - 7q^{97} + 2q^{98} - 18q^{99} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
2.00000 0 2.00000 3.00000 0 1.00000 0 −3.00000 6.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(7\) \(-1\)
\(13\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1183.2.a.b 1
7.b odd 2 1 8281.2.a.l 1
13.b even 2 1 91.2.a.a 1
13.d odd 4 2 1183.2.c.b 2
39.d odd 2 1 819.2.a.f 1
52.b odd 2 1 1456.2.a.g 1
65.d even 2 1 2275.2.a.h 1
91.b odd 2 1 637.2.a.a 1
91.r even 6 2 637.2.e.e 2
91.s odd 6 2 637.2.e.d 2
104.e even 2 1 5824.2.a.s 1
104.h odd 2 1 5824.2.a.t 1
273.g even 2 1 5733.2.a.l 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
91.2.a.a 1 13.b even 2 1
637.2.a.a 1 91.b odd 2 1
637.2.e.d 2 91.s odd 6 2
637.2.e.e 2 91.r even 6 2
819.2.a.f 1 39.d odd 2 1
1183.2.a.b 1 1.a even 1 1 trivial
1183.2.c.b 2 13.d odd 4 2
1456.2.a.g 1 52.b odd 2 1
2275.2.a.h 1 65.d even 2 1
5733.2.a.l 1 273.g even 2 1
5824.2.a.s 1 104.e even 2 1
5824.2.a.t 1 104.h odd 2 1
8281.2.a.l 1 7.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1183))\):

\( T_{2} - 2 \)
\( T_{11} - 6 \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -2 + T \)
$3$ \( T \)
$5$ \( -3 + T \)
$7$ \( -1 + T \)
$11$ \( -6 + T \)
$13$ \( T \)
$17$ \( -4 + T \)
$19$ \( 5 + T \)
$23$ \( -3 + T \)
$29$ \( 5 + T \)
$31$ \( -3 + T \)
$37$ \( -4 + T \)
$41$ \( -6 + T \)
$43$ \( 1 + T \)
$47$ \( 7 + T \)
$53$ \( 9 + T \)
$59$ \( 8 + T \)
$61$ \( 10 + T \)
$67$ \( -6 + T \)
$71$ \( -8 + T \)
$73$ \( -13 + T \)
$79$ \( -3 + T \)
$83$ \( 15 + T \)
$89$ \( 3 + T \)
$97$ \( 7 + T \)
show more
show less