Defining parameters
| Level: | \( N \) | \(=\) | \( 1183 = 7 \cdot 13^{2} \) |
| Weight: | \( k \) | \(=\) | \( 2 \) |
| Character orbit: | \([\chi]\) | \(=\) | 1183.a (trivial) |
| Character field: | \(\Q\) | ||
| Newform subspaces: | \( 18 \) | ||
| Sturm bound: | \(242\) | ||
| Trace bound: | \(6\) | ||
| Distinguishing \(T_p\): | \(2\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1183))\).
| Total | New | Old | |
|---|---|---|---|
| Modular forms | 134 | 77 | 57 |
| Cusp forms | 107 | 77 | 30 |
| Eisenstein series | 27 | 0 | 27 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
| \(7\) | \(13\) | Fricke | Total | Cusp | Eisenstein | |||||||||
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| All | New | Old | All | New | Old | All | New | Old | ||||||
| \(+\) | \(+\) | \(+\) | \(30\) | \(17\) | \(13\) | \(24\) | \(17\) | \(7\) | \(6\) | \(0\) | \(6\) | |||
| \(+\) | \(-\) | \(-\) | \(37\) | \(21\) | \(16\) | \(30\) | \(21\) | \(9\) | \(7\) | \(0\) | \(7\) | |||
| \(-\) | \(+\) | \(-\) | \(37\) | \(24\) | \(13\) | \(30\) | \(24\) | \(6\) | \(7\) | \(0\) | \(7\) | |||
| \(-\) | \(-\) | \(+\) | \(30\) | \(15\) | \(15\) | \(23\) | \(15\) | \(8\) | \(7\) | \(0\) | \(7\) | |||
| Plus space | \(+\) | \(60\) | \(32\) | \(28\) | \(47\) | \(32\) | \(15\) | \(13\) | \(0\) | \(13\) | ||||
| Minus space | \(-\) | \(74\) | \(45\) | \(29\) | \(60\) | \(45\) | \(15\) | \(14\) | \(0\) | \(14\) | ||||
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1183))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1183))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1183)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(91))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(169))\)\(^{\oplus 2}\)