Defining parameters
Level: | \( N \) | \(=\) | \( 1183 = 7 \cdot 13^{2} \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 1183.a (trivial) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 18 \) | ||
Sturm bound: | \(242\) | ||
Trace bound: | \(6\) | ||
Distinguishing \(T_p\): | \(2\), \(11\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{2}(\Gamma_0(1183))\).
Total | New | Old | |
---|---|---|---|
Modular forms | 134 | 77 | 57 |
Cusp forms | 107 | 77 | 30 |
Eisenstein series | 27 | 0 | 27 |
The following table gives the dimensions of the cuspidal new subspaces with specified eigenvalues for the Atkin-Lehner operators and the Fricke involution.
\(7\) | \(13\) | Fricke | Dim |
---|---|---|---|
\(+\) | \(+\) | \(+\) | \(17\) |
\(+\) | \(-\) | \(-\) | \(21\) |
\(-\) | \(+\) | \(-\) | \(24\) |
\(-\) | \(-\) | \(+\) | \(15\) |
Plus space | \(+\) | \(32\) | |
Minus space | \(-\) | \(45\) |
Trace form
Decomposition of \(S_{2}^{\mathrm{new}}(\Gamma_0(1183))\) into newform subspaces
Decomposition of \(S_{2}^{\mathrm{old}}(\Gamma_0(1183))\) into lower level spaces
\( S_{2}^{\mathrm{old}}(\Gamma_0(1183)) \simeq \) \(S_{2}^{\mathrm{new}}(\Gamma_0(91))\)\(^{\oplus 2}\)\(\oplus\)\(S_{2}^{\mathrm{new}}(\Gamma_0(169))\)\(^{\oplus 2}\)