Properties

Label 1183.1.d.a.846.1
Level $1183$
Weight $1$
Character 1183.846
Self dual yes
Analytic conductor $0.590$
Analytic rank $0$
Dimension $3$
Projective image $D_{7}$
CM discriminant -7
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [1183,1,Mod(846,1183)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(1183, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1, 0]))
 
N = Newforms(chi, 1, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("1183.846");
 
S:= CuspForms(chi, 1);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 1183 = 7 \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 1 \)
Character orbit: \([\chi]\) \(=\) 1183.d (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(0.590393909945\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: \(\Q(\zeta_{14})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - x^{2} - 2x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Projective image: \(D_{7}\)
Projective field: Galois closure of 7.1.1655595487.1
Artin image: $D_7$
Artin field: Galois closure of 7.1.1655595487.1

Embedding invariants

Embedding label 846.1
Root \(1.80194\) of defining polynomial
Character \(\chi\) \(=\) 1183.846

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.80194 q^{2} +2.24698 q^{4} +1.00000 q^{7} -2.24698 q^{8} +1.00000 q^{9} +O(q^{10})\) \(q-1.80194 q^{2} +2.24698 q^{4} +1.00000 q^{7} -2.24698 q^{8} +1.00000 q^{9} +1.24698 q^{11} -1.80194 q^{14} +1.80194 q^{16} -1.80194 q^{18} -2.24698 q^{22} -0.445042 q^{23} +1.00000 q^{25} +2.24698 q^{28} -1.80194 q^{29} -1.00000 q^{32} +2.24698 q^{36} -0.445042 q^{37} -1.80194 q^{43} +2.80194 q^{44} +0.801938 q^{46} +1.00000 q^{49} -1.80194 q^{50} -0.445042 q^{53} -2.24698 q^{56} +3.24698 q^{58} +1.00000 q^{63} -0.445042 q^{67} -0.445042 q^{71} -2.24698 q^{72} +0.801938 q^{74} +1.24698 q^{77} +1.24698 q^{79} +1.00000 q^{81} +3.24698 q^{86} -2.80194 q^{88} -1.00000 q^{92} -1.80194 q^{98} +1.24698 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - q^{2} + 2 q^{4} + 3 q^{7} - 2 q^{8} + 3 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 3 q - q^{2} + 2 q^{4} + 3 q^{7} - 2 q^{8} + 3 q^{9} - q^{11} - q^{14} + q^{16} - q^{18} - 2 q^{22} - q^{23} + 3 q^{25} + 2 q^{28} - q^{29} - 3 q^{32} + 2 q^{36} - q^{37} - q^{43} + 4 q^{44} - 2 q^{46} + 3 q^{49} - q^{50} - q^{53} - 2 q^{56} + 5 q^{58} + 3 q^{63} - q^{67} - q^{71} - 2 q^{72} - 2 q^{74} - q^{77} - q^{79} + 3 q^{81} + 5 q^{86} - 4 q^{88} - 3 q^{92} - q^{98} - q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1183\mathbb{Z}\right)^\times\).

\(n\) \(339\) \(1016\)
\(\chi(n)\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(3\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(4\) 2.24698 2.24698
\(5\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(6\) 0 0
\(7\) 1.00000 1.00000
\(8\) −2.24698 −2.24698
\(9\) 1.00000 1.00000
\(10\) 0 0
\(11\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) −1.80194 −1.80194
\(15\) 0 0
\(16\) 1.80194 1.80194
\(17\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(18\) −1.80194 −1.80194
\(19\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(20\) 0 0
\(21\) 0 0
\(22\) −2.24698 −2.24698
\(23\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(24\) 0 0
\(25\) 1.00000 1.00000
\(26\) 0 0
\(27\) 0 0
\(28\) 2.24698 2.24698
\(29\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(32\) −1.00000 −1.00000
\(33\) 0 0
\(34\) 0 0
\(35\) 0 0
\(36\) 2.24698 2.24698
\(37\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(42\) 0 0
\(43\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(44\) 2.80194 2.80194
\(45\) 0 0
\(46\) 0.801938 0.801938
\(47\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(48\) 0 0
\(49\) 1.00000 1.00000
\(50\) −1.80194 −1.80194
\(51\) 0 0
\(52\) 0 0
\(53\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) −2.24698 −2.24698
\(57\) 0 0
\(58\) 3.24698 3.24698
\(59\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(60\) 0 0
\(61\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(62\) 0 0
\(63\) 1.00000 1.00000
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 0 0
\(71\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(72\) −2.24698 −2.24698
\(73\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(74\) 0.801938 0.801938
\(75\) 0 0
\(76\) 0 0
\(77\) 1.24698 1.24698
\(78\) 0 0
\(79\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(80\) 0 0
\(81\) 1.00000 1.00000
\(82\) 0 0
\(83\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 3.24698 3.24698
\(87\) 0 0
\(88\) −2.80194 −2.80194
\(89\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) −1.00000 −1.00000
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(98\) −1.80194 −1.80194
\(99\) 1.24698 1.24698
\(100\) 2.24698 2.24698
\(101\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0.801938 0.801938
\(107\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(108\) 0 0
\(109\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(110\) 0 0
\(111\) 0 0
\(112\) 1.80194 1.80194
\(113\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) −4.04892 −4.04892
\(117\) 0 0
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) 0.554958 0.554958
\(122\) 0 0
\(123\) 0 0
\(124\) 0 0
\(125\) 0 0
\(126\) −1.80194 −1.80194
\(127\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(128\) 1.00000 1.00000
\(129\) 0 0
\(130\) 0 0
\(131\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(132\) 0 0
\(133\) 0 0
\(134\) 0.801938 0.801938
\(135\) 0 0
\(136\) 0 0
\(137\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(138\) 0 0
\(139\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(140\) 0 0
\(141\) 0 0
\(142\) 0.801938 0.801938
\(143\) 0 0
\(144\) 1.80194 1.80194
\(145\) 0 0
\(146\) 0 0
\(147\) 0 0
\(148\) −1.00000 −1.00000
\(149\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(150\) 0 0
\(151\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −2.24698 −2.24698
\(155\) 0 0
\(156\) 0 0
\(157\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(158\) −2.24698 −2.24698
\(159\) 0 0
\(160\) 0 0
\(161\) −0.445042 −0.445042
\(162\) −1.80194 −1.80194
\(163\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 0 0
\(172\) −4.04892 −4.04892
\(173\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(174\) 0 0
\(175\) 1.00000 1.00000
\(176\) 2.24698 2.24698
\(177\) 0 0
\(178\) 0 0
\(179\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(180\) 0 0
\(181\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(182\) 0 0
\(183\) 0 0
\(184\) 1.00000 1.00000
\(185\) 0 0
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) 0 0
\(190\) 0 0
\(191\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(192\) 0 0
\(193\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 2.24698 2.24698
\(197\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(198\) −2.24698 −2.24698
\(199\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(200\) −2.24698 −2.24698
\(201\) 0 0
\(202\) 0 0
\(203\) −1.80194 −1.80194
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) −0.445042 −0.445042
\(208\) 0 0
\(209\) 0 0
\(210\) 0 0
\(211\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(212\) −1.00000 −1.00000
\(213\) 0 0
\(214\) −2.24698 −2.24698
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) −2.24698 −2.24698
\(219\) 0 0
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(224\) −1.00000 −1.00000
\(225\) 1.00000 1.00000
\(226\) −2.24698 −2.24698
\(227\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(228\) 0 0
\(229\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(230\) 0 0
\(231\) 0 0
\(232\) 4.04892 4.04892
\(233\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 0 0
\(238\) 0 0
\(239\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(240\) 0 0
\(241\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(242\) −1.00000 −1.00000
\(243\) 0 0
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 0 0
\(250\) 0 0
\(251\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(252\) 2.24698 2.24698
\(253\) −0.554958 −0.554958
\(254\) 3.24698 3.24698
\(255\) 0 0
\(256\) −1.80194 −1.80194
\(257\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(258\) 0 0
\(259\) −0.445042 −0.445042
\(260\) 0 0
\(261\) −1.80194 −1.80194
\(262\) 0 0
\(263\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) 0 0
\(268\) −1.00000 −1.00000
\(269\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(270\) 0 0
\(271\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −2.24698 −2.24698
\(275\) 1.24698 1.24698
\(276\) 0 0
\(277\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(282\) 0 0
\(283\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(284\) −1.00000 −1.00000
\(285\) 0 0
\(286\) 0 0
\(287\) 0 0
\(288\) −1.00000 −1.00000
\(289\) 1.00000 1.00000
\(290\) 0 0
\(291\) 0 0
\(292\) 0 0
\(293\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 1.00000 1.00000
\(297\) 0 0
\(298\) 3.24698 3.24698
\(299\) 0 0
\(300\) 0 0
\(301\) −1.80194 −1.80194
\(302\) 3.24698 3.24698
\(303\) 0 0
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(308\) 2.80194 2.80194
\(309\) 0 0
\(310\) 0 0
\(311\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(312\) 0 0
\(313\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 2.80194 2.80194
\(317\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(318\) 0 0
\(319\) −2.24698 −2.24698
\(320\) 0 0
\(321\) 0 0
\(322\) 0.801938 0.801938
\(323\) 0 0
\(324\) 2.24698 2.24698
\(325\) 0 0
\(326\) 3.24698 3.24698
\(327\) 0 0
\(328\) 0 0
\(329\) 0 0
\(330\) 0 0
\(331\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(332\) 0 0
\(333\) −0.445042 −0.445042
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(338\) 0 0
\(339\) 0 0
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) 1.00000 1.00000
\(344\) 4.04892 4.04892
\(345\) 0 0
\(346\) 0 0
\(347\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(348\) 0 0
\(349\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(350\) −1.80194 −1.80194
\(351\) 0 0
\(352\) −1.24698 −1.24698
\(353\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 0 0
\(358\) −2.24698 −2.24698
\(359\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(360\) 0 0
\(361\) 1.00000 1.00000
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(368\) −0.801938 −0.801938
\(369\) 0 0
\(370\) 0 0
\(371\) −0.445042 −0.445042
\(372\) 0 0
\(373\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(380\) 0 0
\(381\) 0 0
\(382\) 3.24698 3.24698
\(383\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 3.24698 3.24698
\(387\) −1.80194 −1.80194
\(388\) 0 0
\(389\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −2.24698 −2.24698
\(393\) 0 0
\(394\) −3.60388 −3.60388
\(395\) 0 0
\(396\) 2.80194 2.80194
\(397\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(398\) 0 0
\(399\) 0 0
\(400\) 1.80194 1.80194
\(401\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 3.24698 3.24698
\(407\) −0.554958 −0.554958
\(408\) 0 0
\(409\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 0 0
\(414\) 0.801938 0.801938
\(415\) 0 0
\(416\) 0 0
\(417\) 0 0
\(418\) 0 0
\(419\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(420\) 0 0
\(421\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(422\) 0.801938 0.801938
\(423\) 0 0
\(424\) 1.00000 1.00000
\(425\) 0 0
\(426\) 0 0
\(427\) 0 0
\(428\) 2.80194 2.80194
\(429\) 0 0
\(430\) 0 0
\(431\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(432\) 0 0
\(433\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 2.80194 2.80194
\(437\) 0 0
\(438\) 0 0
\(439\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(440\) 0 0
\(441\) 1.00000 1.00000
\(442\) 0 0
\(443\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) 0 0
\(448\) 0 0
\(449\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(450\) −1.80194 −1.80194
\(451\) 0 0
\(452\) 2.80194 2.80194
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(462\) 0 0
\(463\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(464\) −3.24698 −3.24698
\(465\) 0 0
\(466\) 3.24698 3.24698
\(467\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(468\) 0 0
\(469\) −0.445042 −0.445042
\(470\) 0 0
\(471\) 0 0
\(472\) 0 0
\(473\) −2.24698 −2.24698
\(474\) 0 0
\(475\) 0 0
\(476\) 0 0
\(477\) −0.445042 −0.445042
\(478\) 3.24698 3.24698
\(479\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 0 0
\(484\) 1.24698 1.24698
\(485\) 0 0
\(486\) 0 0
\(487\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) 0 0
\(491\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) −0.445042 −0.445042
\(498\) 0 0
\(499\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(500\) 0 0
\(501\) 0 0
\(502\) 0 0
\(503\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(504\) −2.24698 −2.24698
\(505\) 0 0
\(506\) 1.00000 1.00000
\(507\) 0 0
\(508\) −4.04892 −4.04892
\(509\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(510\) 0 0
\(511\) 0 0
\(512\) 2.24698 2.24698
\(513\) 0 0
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) 0 0
\(518\) 0.801938 0.801938
\(519\) 0 0
\(520\) 0 0
\(521\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(522\) 3.24698 3.24698
\(523\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(524\) 0 0
\(525\) 0 0
\(526\) −2.24698 −2.24698
\(527\) 0 0
\(528\) 0 0
\(529\) −0.801938 −0.801938
\(530\) 0 0
\(531\) 0 0
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 1.00000 1.00000
\(537\) 0 0
\(538\) 0 0
\(539\) 1.24698 1.24698
\(540\) 0 0
\(541\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(542\) 0 0
\(543\) 0 0
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(548\) 2.80194 2.80194
\(549\) 0 0
\(550\) −2.24698 −2.24698
\(551\) 0 0
\(552\) 0 0
\(553\) 1.24698 1.24698
\(554\) −2.24698 −2.24698
\(555\) 0 0
\(556\) 0 0
\(557\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 0 0
\(562\) −3.60388 −3.60388
\(563\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 1.00000 1.00000
\(568\) 1.00000 1.00000
\(569\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(570\) 0 0
\(571\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(572\) 0 0
\(573\) 0 0
\(574\) 0 0
\(575\) −0.445042 −0.445042
\(576\) 0 0
\(577\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(578\) −1.80194 −1.80194
\(579\) 0 0
\(580\) 0 0
\(581\) 0 0
\(582\) 0 0
\(583\) −0.554958 −0.554958
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) 0 0
\(592\) −0.801938 −0.801938
\(593\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −4.04892 −4.04892
\(597\) 0 0
\(598\) 0 0
\(599\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(600\) 0 0
\(601\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(602\) 3.24698 3.24698
\(603\) −0.445042 −0.445042
\(604\) −4.04892 −4.04892
\(605\) 0 0
\(606\) 0 0
\(607\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(608\) 0 0
\(609\) 0 0
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) −2.80194 −2.80194
\(617\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(618\) 0 0
\(619\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(620\) 0 0
\(621\) 0 0
\(622\) 0 0
\(623\) 0 0
\(624\) 0 0
\(625\) 1.00000 1.00000
\(626\) 0 0
\(627\) 0 0
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(632\) −2.80194 −2.80194
\(633\) 0 0
\(634\) −2.24698 −2.24698
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 4.04892 4.04892
\(639\) −0.445042 −0.445042
\(640\) 0 0
\(641\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(642\) 0 0
\(643\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(644\) −1.00000 −1.00000
\(645\) 0 0
\(646\) 0 0
\(647\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(648\) −2.24698 −2.24698
\(649\) 0 0
\(650\) 0 0
\(651\) 0 0
\(652\) −4.04892 −4.04892
\(653\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 0 0
\(658\) 0 0
\(659\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(660\) 0 0
\(661\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(662\) 0.801938 0.801938
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0.801938 0.801938
\(667\) 0.801938 0.801938
\(668\) 0 0
\(669\) 0 0
\(670\) 0 0
\(671\) 0 0
\(672\) 0 0
\(673\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(674\) 3.24698 3.24698
\(675\) 0 0
\(676\) 0 0
\(677\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(678\) 0 0
\(679\) 0 0
\(680\) 0 0
\(681\) 0 0
\(682\) 0 0
\(683\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(684\) 0 0
\(685\) 0 0
\(686\) −1.80194 −1.80194
\(687\) 0 0
\(688\) −3.24698 −3.24698
\(689\) 0 0
\(690\) 0 0
\(691\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(692\) 0 0
\(693\) 1.24698 1.24698
\(694\) 0.801938 0.801938
\(695\) 0 0
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 0 0
\(700\) 2.24698 2.24698
\(701\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(702\) 0 0
\(703\) 0 0
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) 0 0
\(708\) 0 0
\(709\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(710\) 0 0
\(711\) 1.24698 1.24698
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 2.80194 2.80194
\(717\) 0 0
\(718\) 0.801938 0.801938
\(719\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) −1.80194 −1.80194
\(723\) 0 0
\(724\) 0 0
\(725\) −1.80194 −1.80194
\(726\) 0 0
\(727\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(728\) 0 0
\(729\) 1.00000 1.00000
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0.445042 0.445042
\(737\) −0.554958 −0.554958
\(738\) 0 0
\(739\) 2.00000 2.00000 1.00000 \(0\)
1.00000 \(0\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0.801938 0.801938
\(743\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0.801938 0.801938
\(747\) 0 0
\(748\) 0 0
\(749\) 1.24698 1.24698
\(750\) 0 0
\(751\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(752\) 0 0
\(753\) 0 0
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(758\) 3.24698 3.24698
\(759\) 0 0
\(760\) 0 0
\(761\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(762\) 0 0
\(763\) 1.24698 1.24698
\(764\) −4.04892 −4.04892
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(770\) 0 0
\(771\) 0 0
\(772\) −4.04892 −4.04892
\(773\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(774\) 3.24698 3.24698
\(775\) 0 0
\(776\) 0 0
\(777\) 0 0
\(778\) −2.24698 −2.24698
\(779\) 0 0
\(780\) 0 0
\(781\) −0.554958 −0.554958
\(782\) 0 0
\(783\) 0 0
\(784\) 1.80194 1.80194
\(785\) 0 0
\(786\) 0 0
\(787\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(788\) 4.49396 4.49396
\(789\) 0 0
\(790\) 0 0
\(791\) 1.24698 1.24698
\(792\) −2.80194 −2.80194
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −1.00000 −1.00000
\(801\) 0 0
\(802\) 3.24698 3.24698
\(803\) 0 0
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) 0 0
\(808\) 0 0
\(809\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(810\) 0 0
\(811\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(812\) −4.04892 −4.04892
\(813\) 0 0
\(814\) 1.00000 1.00000
\(815\) 0 0
\(816\) 0 0
\(817\) 0 0
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(822\) 0 0
\(823\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 0 0
\(827\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(828\) −1.00000 −1.00000
\(829\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(830\) 0 0
\(831\) 0 0
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(840\) 0 0
\(841\) 2.24698 2.24698
\(842\) −3.60388 −3.60388
\(843\) 0 0
\(844\) −1.00000 −1.00000
\(845\) 0 0
\(846\) 0 0
\(847\) 0.554958 0.554958
\(848\) −0.801938 −0.801938
\(849\) 0 0
\(850\) 0 0
\(851\) 0.198062 0.198062
\(852\) 0 0
\(853\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) −2.80194 −2.80194
\(857\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(858\) 0 0
\(859\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(860\) 0 0
\(861\) 0 0
\(862\) −2.24698 −2.24698
\(863\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) 1.55496 1.55496
\(870\) 0 0
\(871\) 0 0
\(872\) −2.80194 −2.80194
\(873\) 0 0
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(878\) 0 0
\(879\) 0 0
\(880\) 0 0
\(881\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(882\) −1.80194 −1.80194
\(883\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 3.24698 3.24698
\(887\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(888\) 0 0
\(889\) −1.80194 −1.80194
\(890\) 0 0
\(891\) 1.24698 1.24698
\(892\) 0 0
\(893\) 0 0
\(894\) 0 0
\(895\) 0 0
\(896\) 1.00000 1.00000
\(897\) 0 0
\(898\) 0.801938 0.801938
\(899\) 0 0
\(900\) 2.24698 2.24698
\(901\) 0 0
\(902\) 0 0
\(903\) 0 0
\(904\) −2.80194 −2.80194
\(905\) 0 0
\(906\) 0 0
\(907\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(908\) 0 0
\(909\) 0 0
\(910\) 0 0
\(911\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(912\) 0 0
\(913\) 0 0
\(914\) −2.24698 −2.24698
\(915\) 0 0
\(916\) 0 0
\(917\) 0 0
\(918\) 0 0
\(919\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −0.445042 −0.445042
\(926\) −2.24698 −2.24698
\(927\) 0 0
\(928\) 1.80194 1.80194
\(929\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(930\) 0 0
\(931\) 0 0
\(932\) −4.04892 −4.04892
\(933\) 0 0
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(938\) 0.801938 0.801938
\(939\) 0 0
\(940\) 0 0
\(941\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(942\) 0 0
\(943\) 0 0
\(944\) 0 0
\(945\) 0 0
\(946\) 4.04892 4.04892
\(947\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 0 0
\(952\) 0 0
\(953\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(954\) 0.801938 0.801938
\(955\) 0 0
\(956\) −4.04892 −4.04892
\(957\) 0 0
\(958\) 0 0
\(959\) 1.24698 1.24698
\(960\) 0 0
\(961\) 1.00000 1.00000
\(962\) 0 0
\(963\) 1.24698 1.24698
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −0.445042 −0.445042 −0.222521 0.974928i \(-0.571429\pi\)
−0.222521 + 0.974928i \(0.571429\pi\)
\(968\) −1.24698 −1.24698
\(969\) 0 0
\(970\) 0 0
\(971\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) −2.24698 −2.24698
\(975\) 0 0
\(976\) 0 0
\(977\) 1.24698 1.24698 0.623490 0.781831i \(-0.285714\pi\)
0.623490 + 0.781831i \(0.285714\pi\)
\(978\) 0 0
\(979\) 0 0
\(980\) 0 0
\(981\) 1.24698 1.24698
\(982\) 0.801938 0.801938
\(983\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 0 0
\(988\) 0 0
\(989\) 0.801938 0.801938
\(990\) 0 0
\(991\) −1.80194 −1.80194 −0.900969 0.433884i \(-0.857143\pi\)
−0.900969 + 0.433884i \(0.857143\pi\)
\(992\) 0 0
\(993\) 0 0
\(994\) 0.801938 0.801938
\(995\) 0 0
\(996\) 0 0
\(997\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(998\) 3.24698 3.24698
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1183.1.d.a.846.1 3
7.6 odd 2 CM 1183.1.d.a.846.1 3
13.2 odd 12 1183.1.t.a.1161.1 12
13.3 even 3 1183.1.n.b.867.3 6
13.4 even 6 1183.1.n.a.146.1 6
13.5 odd 4 1183.1.b.a.1182.6 6
13.6 odd 12 1183.1.t.a.699.6 12
13.7 odd 12 1183.1.t.a.699.1 12
13.8 odd 4 1183.1.b.a.1182.1 6
13.9 even 3 1183.1.n.b.146.3 6
13.10 even 6 1183.1.n.a.867.1 6
13.11 odd 12 1183.1.t.a.1161.6 12
13.12 even 2 1183.1.d.b.846.3 yes 3
91.6 even 12 1183.1.t.a.699.6 12
91.20 even 12 1183.1.t.a.699.1 12
91.34 even 4 1183.1.b.a.1182.1 6
91.41 even 12 1183.1.t.a.1161.1 12
91.48 odd 6 1183.1.n.b.146.3 6
91.55 odd 6 1183.1.n.b.867.3 6
91.62 odd 6 1183.1.n.a.867.1 6
91.69 odd 6 1183.1.n.a.146.1 6
91.76 even 12 1183.1.t.a.1161.6 12
91.83 even 4 1183.1.b.a.1182.6 6
91.90 odd 2 1183.1.d.b.846.3 yes 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
1183.1.b.a.1182.1 6 13.8 odd 4
1183.1.b.a.1182.1 6 91.34 even 4
1183.1.b.a.1182.6 6 13.5 odd 4
1183.1.b.a.1182.6 6 91.83 even 4
1183.1.d.a.846.1 3 1.1 even 1 trivial
1183.1.d.a.846.1 3 7.6 odd 2 CM
1183.1.d.b.846.3 yes 3 13.12 even 2
1183.1.d.b.846.3 yes 3 91.90 odd 2
1183.1.n.a.146.1 6 13.4 even 6
1183.1.n.a.146.1 6 91.69 odd 6
1183.1.n.a.867.1 6 13.10 even 6
1183.1.n.a.867.1 6 91.62 odd 6
1183.1.n.b.146.3 6 13.9 even 3
1183.1.n.b.146.3 6 91.48 odd 6
1183.1.n.b.867.3 6 13.3 even 3
1183.1.n.b.867.3 6 91.55 odd 6
1183.1.t.a.699.1 12 13.7 odd 12
1183.1.t.a.699.1 12 91.20 even 12
1183.1.t.a.699.6 12 13.6 odd 12
1183.1.t.a.699.6 12 91.6 even 12
1183.1.t.a.1161.1 12 13.2 odd 12
1183.1.t.a.1161.1 12 91.41 even 12
1183.1.t.a.1161.6 12 13.11 odd 12
1183.1.t.a.1161.6 12 91.76 even 12