# Properties

 Label 1176.2.a.k Level $1176$ Weight $2$ Character orbit 1176.a Self dual yes Analytic conductor $9.390$ Analytic rank $0$ Dimension $2$ CM no Inner twists $1$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1176,2,Mod(1,1176)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1176, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1176.1");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1176 = 2^{3} \cdot 3 \cdot 7^{2}$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1176.a (trivial)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: yes Analytic conductor: $$9.39040727770$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{57})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - x - 14$$ x^2 - x - 14 Coefficient ring: $$\Z[a_1, \ldots, a_{5}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 168) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$\beta = \frac{1}{2}(1 + \sqrt{57})$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q - q^{3} - \beta q^{5} + q^{9} +O(q^{10})$$ q - q^3 - b * q^5 + q^9 $$q - q^{3} - \beta q^{5} + q^{9} - \beta q^{11} + ( - \beta + 3) q^{13} + \beta q^{15} - 4 q^{17} + (\beta - 3) q^{19} + 4 q^{23} + (\beta + 9) q^{25} - q^{27} + ( - \beta + 2) q^{29} - q^{31} + \beta q^{33} + (\beta + 1) q^{37} + (\beta - 3) q^{39} + (2 \beta + 2) q^{41} + ( - \beta - 3) q^{43} - \beta q^{45} - 6 q^{47} + 4 q^{51} + ( - \beta + 6) q^{53} + (\beta + 14) q^{55} + ( - \beta + 3) q^{57} + (\beta + 2) q^{59} + 10 q^{61} + ( - 2 \beta + 14) q^{65} + (\beta + 3) q^{67} - 4 q^{69} + 2 q^{71} + (\beta - 1) q^{73} + ( - \beta - 9) q^{75} + ( - 2 \beta + 5) q^{79} + q^{81} + ( - \beta + 4) q^{83} + 4 \beta q^{85} + (\beta - 2) q^{87} + (2 \beta - 4) q^{89} + q^{93} + (2 \beta - 14) q^{95} + (\beta + 12) q^{97} - \beta q^{99} +O(q^{100})$$ q - q^3 - b * q^5 + q^9 - b * q^11 + (-b + 3) * q^13 + b * q^15 - 4 * q^17 + (b - 3) * q^19 + 4 * q^23 + (b + 9) * q^25 - q^27 + (-b + 2) * q^29 - q^31 + b * q^33 + (b + 1) * q^37 + (b - 3) * q^39 + (2*b + 2) * q^41 + (-b - 3) * q^43 - b * q^45 - 6 * q^47 + 4 * q^51 + (-b + 6) * q^53 + (b + 14) * q^55 + (-b + 3) * q^57 + (b + 2) * q^59 + 10 * q^61 + (-2*b + 14) * q^65 + (b + 3) * q^67 - 4 * q^69 + 2 * q^71 + (b - 1) * q^73 + (-b - 9) * q^75 + (-2*b + 5) * q^79 + q^81 + (-b + 4) * q^83 + 4*b * q^85 + (b - 2) * q^87 + (2*b - 4) * q^89 + q^93 + (2*b - 14) * q^95 + (b + 12) * q^97 - b * q^99 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 2 q^{3} - q^{5} + 2 q^{9}+O(q^{10})$$ 2 * q - 2 * q^3 - q^5 + 2 * q^9 $$2 q - 2 q^{3} - q^{5} + 2 q^{9} - q^{11} + 5 q^{13} + q^{15} - 8 q^{17} - 5 q^{19} + 8 q^{23} + 19 q^{25} - 2 q^{27} + 3 q^{29} - 2 q^{31} + q^{33} + 3 q^{37} - 5 q^{39} + 6 q^{41} - 7 q^{43} - q^{45} - 12 q^{47} + 8 q^{51} + 11 q^{53} + 29 q^{55} + 5 q^{57} + 5 q^{59} + 20 q^{61} + 26 q^{65} + 7 q^{67} - 8 q^{69} + 4 q^{71} - q^{73} - 19 q^{75} + 8 q^{79} + 2 q^{81} + 7 q^{83} + 4 q^{85} - 3 q^{87} - 6 q^{89} + 2 q^{93} - 26 q^{95} + 25 q^{97} - q^{99}+O(q^{100})$$ 2 * q - 2 * q^3 - q^5 + 2 * q^9 - q^11 + 5 * q^13 + q^15 - 8 * q^17 - 5 * q^19 + 8 * q^23 + 19 * q^25 - 2 * q^27 + 3 * q^29 - 2 * q^31 + q^33 + 3 * q^37 - 5 * q^39 + 6 * q^41 - 7 * q^43 - q^45 - 12 * q^47 + 8 * q^51 + 11 * q^53 + 29 * q^55 + 5 * q^57 + 5 * q^59 + 20 * q^61 + 26 * q^65 + 7 * q^67 - 8 * q^69 + 4 * q^71 - q^73 - 19 * q^75 + 8 * q^79 + 2 * q^81 + 7 * q^83 + 4 * q^85 - 3 * q^87 - 6 * q^89 + 2 * q^93 - 26 * q^95 + 25 * q^97 - q^99

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 4.27492 −3.27492
0 −1.00000 0 −4.27492 0 0 0 1.00000 0
1.2 0 −1.00000 0 3.27492 0 0 0 1.00000 0
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$1$$
$$7$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1176.2.a.k 2
3.b odd 2 1 3528.2.a.bk 2
4.b odd 2 1 2352.2.a.bf 2
7.b odd 2 1 1176.2.a.n 2
7.c even 3 2 168.2.q.c 4
7.d odd 6 2 1176.2.q.l 4
8.b even 2 1 9408.2.a.ec 2
8.d odd 2 1 9408.2.a.dp 2
12.b even 2 1 7056.2.a.cu 2
21.c even 2 1 3528.2.a.bd 2
21.g even 6 2 3528.2.s.bk 4
21.h odd 6 2 504.2.s.i 4
28.d even 2 1 2352.2.a.ba 2
28.f even 6 2 2352.2.q.bf 4
28.g odd 6 2 336.2.q.g 4
56.e even 2 1 9408.2.a.dw 2
56.h odd 2 1 9408.2.a.dj 2
56.k odd 6 2 1344.2.q.x 4
56.p even 6 2 1344.2.q.w 4
84.h odd 2 1 7056.2.a.ch 2
84.n even 6 2 1008.2.s.r 4

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
168.2.q.c 4 7.c even 3 2
336.2.q.g 4 28.g odd 6 2
504.2.s.i 4 21.h odd 6 2
1008.2.s.r 4 84.n even 6 2
1176.2.a.k 2 1.a even 1 1 trivial
1176.2.a.n 2 7.b odd 2 1
1176.2.q.l 4 7.d odd 6 2
1344.2.q.w 4 56.p even 6 2
1344.2.q.x 4 56.k odd 6 2
2352.2.a.ba 2 28.d even 2 1
2352.2.a.bf 2 4.b odd 2 1
2352.2.q.bf 4 28.f even 6 2
3528.2.a.bd 2 21.c even 2 1
3528.2.a.bk 2 3.b odd 2 1
3528.2.s.bk 4 21.g even 6 2
7056.2.a.ch 2 84.h odd 2 1
7056.2.a.cu 2 12.b even 2 1
9408.2.a.dj 2 56.h odd 2 1
9408.2.a.dp 2 8.d odd 2 1
9408.2.a.dw 2 56.e even 2 1
9408.2.a.ec 2 8.b even 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(1176))$$:

 $$T_{5}^{2} + T_{5} - 14$$ T5^2 + T5 - 14 $$T_{11}^{2} + T_{11} - 14$$ T11^2 + T11 - 14 $$T_{13}^{2} - 5T_{13} - 8$$ T13^2 - 5*T13 - 8

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2}$$
$3$ $$(T + 1)^{2}$$
$5$ $$T^{2} + T - 14$$
$7$ $$T^{2}$$
$11$ $$T^{2} + T - 14$$
$13$ $$T^{2} - 5T - 8$$
$17$ $$(T + 4)^{2}$$
$19$ $$T^{2} + 5T - 8$$
$23$ $$(T - 4)^{2}$$
$29$ $$T^{2} - 3T - 12$$
$31$ $$(T + 1)^{2}$$
$37$ $$T^{2} - 3T - 12$$
$41$ $$T^{2} - 6T - 48$$
$43$ $$T^{2} + 7T - 2$$
$47$ $$(T + 6)^{2}$$
$53$ $$T^{2} - 11T + 16$$
$59$ $$T^{2} - 5T - 8$$
$61$ $$(T - 10)^{2}$$
$67$ $$T^{2} - 7T - 2$$
$71$ $$(T - 2)^{2}$$
$73$ $$T^{2} + T - 14$$
$79$ $$T^{2} - 8T - 41$$
$83$ $$T^{2} - 7T - 2$$
$89$ $$T^{2} + 6T - 48$$
$97$ $$T^{2} - 25T + 142$$