Newspace parameters
Level: | \( N \) | \(=\) | \( 1176 = 2^{3} \cdot 3 \cdot 7^{2} \) |
Weight: | \( k \) | \(=\) | \( 1 \) |
Character orbit: | \([\chi]\) | \(=\) | 1176.s (of order \(6\), degree \(2\), not minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(0.586900454856\) |
Analytic rank: | \(0\) |
Dimension: | \(8\) |
Relative dimension: | \(4\) over \(\Q(\zeta_{6})\) |
Coefficient field: | \(\Q(\zeta_{24})\) |
Defining polynomial: |
\( x^{8} - x^{4} + 1 \)
|
Coefficient ring: | \(\Z[a_1, a_2, a_3]\) |
Coefficient ring index: | \( 1 \) |
Twist minimal: | yes |
Projective image: | \(D_{4}\) |
Projective field: | Galois closure of 4.2.4032.1 |
$q$-expansion
The \(q\)-expansion and trace form are shown below.
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1176\mathbb{Z}\right)^\times\).
\(n\) | \(295\) | \(589\) | \(785\) | \(1081\) |
\(\chi(n)\) | \(1\) | \(-1\) | \(-1\) | \(-\zeta_{24}^{4}\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
557.1 |
|
−0.866025 | + | 0.500000i | −0.965926 | + | 0.258819i | 0.500000 | − | 0.866025i | 0.707107 | + | 1.22474i | 0.707107 | − | 0.707107i | 0 | 1.00000i | 0.866025 | − | 0.500000i | −1.22474 | − | 0.707107i | ||||||||||||||||||||||||||||
557.2 | −0.866025 | + | 0.500000i | 0.965926 | − | 0.258819i | 0.500000 | − | 0.866025i | −0.707107 | − | 1.22474i | −0.707107 | + | 0.707107i | 0 | 1.00000i | 0.866025 | − | 0.500000i | 1.22474 | + | 0.707107i | |||||||||||||||||||||||||||||
557.3 | 0.866025 | − | 0.500000i | −0.258819 | − | 0.965926i | 0.500000 | − | 0.866025i | −0.707107 | − | 1.22474i | −0.707107 | − | 0.707107i | 0 | − | 1.00000i | −0.866025 | + | 0.500000i | −1.22474 | − | 0.707107i | ||||||||||||||||||||||||||||
557.4 | 0.866025 | − | 0.500000i | 0.258819 | + | 0.965926i | 0.500000 | − | 0.866025i | 0.707107 | + | 1.22474i | 0.707107 | + | 0.707107i | 0 | − | 1.00000i | −0.866025 | + | 0.500000i | 1.22474 | + | 0.707107i | ||||||||||||||||||||||||||||
1157.1 | −0.866025 | − | 0.500000i | −0.965926 | − | 0.258819i | 0.500000 | + | 0.866025i | 0.707107 | − | 1.22474i | 0.707107 | + | 0.707107i | 0 | − | 1.00000i | 0.866025 | + | 0.500000i | −1.22474 | + | 0.707107i | ||||||||||||||||||||||||||||
1157.2 | −0.866025 | − | 0.500000i | 0.965926 | + | 0.258819i | 0.500000 | + | 0.866025i | −0.707107 | + | 1.22474i | −0.707107 | − | 0.707107i | 0 | − | 1.00000i | 0.866025 | + | 0.500000i | 1.22474 | − | 0.707107i | ||||||||||||||||||||||||||||
1157.3 | 0.866025 | + | 0.500000i | −0.258819 | + | 0.965926i | 0.500000 | + | 0.866025i | −0.707107 | + | 1.22474i | −0.707107 | + | 0.707107i | 0 | 1.00000i | −0.866025 | − | 0.500000i | −1.22474 | + | 0.707107i | |||||||||||||||||||||||||||||
1157.4 | 0.866025 | + | 0.500000i | 0.258819 | − | 0.965926i | 0.500000 | + | 0.866025i | 0.707107 | − | 1.22474i | 0.707107 | − | 0.707107i | 0 | 1.00000i | −0.866025 | − | 0.500000i | 1.22474 | − | 0.707107i | |||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
56.h | odd | 2 | 1 | CM by \(\Q(\sqrt{-14}) \) |
3.b | odd | 2 | 1 | inner |
7.b | odd | 2 | 1 | inner |
7.c | even | 3 | 1 | inner |
7.d | odd | 6 | 1 | inner |
8.b | even | 2 | 1 | inner |
21.c | even | 2 | 1 | inner |
21.g | even | 6 | 1 | inner |
21.h | odd | 6 | 1 | inner |
24.h | odd | 2 | 1 | inner |
56.j | odd | 6 | 1 | inner |
56.p | even | 6 | 1 | inner |
168.i | even | 2 | 1 | inner |
168.s | odd | 6 | 1 | inner |
168.ba | even | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 1176.1.s.c | 8 | |
3.b | odd | 2 | 1 | inner | 1176.1.s.c | 8 | |
7.b | odd | 2 | 1 | inner | 1176.1.s.c | 8 | |
7.c | even | 3 | 1 | 1176.1.n.e | ✓ | 4 | |
7.c | even | 3 | 1 | inner | 1176.1.s.c | 8 | |
7.d | odd | 6 | 1 | 1176.1.n.e | ✓ | 4 | |
7.d | odd | 6 | 1 | inner | 1176.1.s.c | 8 | |
8.b | even | 2 | 1 | inner | 1176.1.s.c | 8 | |
21.c | even | 2 | 1 | inner | 1176.1.s.c | 8 | |
21.g | even | 6 | 1 | 1176.1.n.e | ✓ | 4 | |
21.g | even | 6 | 1 | inner | 1176.1.s.c | 8 | |
21.h | odd | 6 | 1 | 1176.1.n.e | ✓ | 4 | |
21.h | odd | 6 | 1 | inner | 1176.1.s.c | 8 | |
24.h | odd | 2 | 1 | inner | 1176.1.s.c | 8 | |
56.h | odd | 2 | 1 | CM | 1176.1.s.c | 8 | |
56.j | odd | 6 | 1 | 1176.1.n.e | ✓ | 4 | |
56.j | odd | 6 | 1 | inner | 1176.1.s.c | 8 | |
56.p | even | 6 | 1 | 1176.1.n.e | ✓ | 4 | |
56.p | even | 6 | 1 | inner | 1176.1.s.c | 8 | |
168.i | even | 2 | 1 | inner | 1176.1.s.c | 8 | |
168.s | odd | 6 | 1 | 1176.1.n.e | ✓ | 4 | |
168.s | odd | 6 | 1 | inner | 1176.1.s.c | 8 | |
168.ba | even | 6 | 1 | 1176.1.n.e | ✓ | 4 | |
168.ba | even | 6 | 1 | inner | 1176.1.s.c | 8 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
1176.1.n.e | ✓ | 4 | 7.c | even | 3 | 1 | |
1176.1.n.e | ✓ | 4 | 7.d | odd | 6 | 1 | |
1176.1.n.e | ✓ | 4 | 21.g | even | 6 | 1 | |
1176.1.n.e | ✓ | 4 | 21.h | odd | 6 | 1 | |
1176.1.n.e | ✓ | 4 | 56.j | odd | 6 | 1 | |
1176.1.n.e | ✓ | 4 | 56.p | even | 6 | 1 | |
1176.1.n.e | ✓ | 4 | 168.s | odd | 6 | 1 | |
1176.1.n.e | ✓ | 4 | 168.ba | even | 6 | 1 | |
1176.1.s.c | 8 | 1.a | even | 1 | 1 | trivial | |
1176.1.s.c | 8 | 3.b | odd | 2 | 1 | inner | |
1176.1.s.c | 8 | 7.b | odd | 2 | 1 | inner | |
1176.1.s.c | 8 | 7.c | even | 3 | 1 | inner | |
1176.1.s.c | 8 | 7.d | odd | 6 | 1 | inner | |
1176.1.s.c | 8 | 8.b | even | 2 | 1 | inner | |
1176.1.s.c | 8 | 21.c | even | 2 | 1 | inner | |
1176.1.s.c | 8 | 21.g | even | 6 | 1 | inner | |
1176.1.s.c | 8 | 21.h | odd | 6 | 1 | inner | |
1176.1.s.c | 8 | 24.h | odd | 2 | 1 | inner | |
1176.1.s.c | 8 | 56.h | odd | 2 | 1 | CM | |
1176.1.s.c | 8 | 56.j | odd | 6 | 1 | inner | |
1176.1.s.c | 8 | 56.p | even | 6 | 1 | inner | |
1176.1.s.c | 8 | 168.i | even | 2 | 1 | inner | |
1176.1.s.c | 8 | 168.s | odd | 6 | 1 | inner | |
1176.1.s.c | 8 | 168.ba | even | 6 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{5}^{4} + 2T_{5}^{2} + 4 \)
acting on \(S_{1}^{\mathrm{new}}(1176, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( (T^{4} - T^{2} + 1)^{2} \)
$3$
\( T^{8} - T^{4} + 1 \)
$5$
\( (T^{4} + 2 T^{2} + 4)^{2} \)
$7$
\( T^{8} \)
$11$
\( T^{8} \)
$13$
\( (T^{2} + 2)^{4} \)
$17$
\( T^{8} \)
$19$
\( (T^{4} - 2 T^{2} + 4)^{2} \)
$23$
\( T^{8} \)
$29$
\( T^{8} \)
$31$
\( T^{8} \)
$37$
\( T^{8} \)
$41$
\( T^{8} \)
$43$
\( T^{8} \)
$47$
\( T^{8} \)
$53$
\( T^{8} \)
$59$
\( (T^{4} + 2 T^{2} + 4)^{2} \)
$61$
\( (T^{4} - 2 T^{2} + 4)^{2} \)
$67$
\( T^{8} \)
$71$
\( (T^{2} + 4)^{4} \)
$73$
\( T^{8} \)
$79$
\( T^{8} \)
$83$
\( (T^{2} - 2)^{4} \)
$89$
\( T^{8} \)
$97$
\( T^{8} \)
show more
show less