Properties

Label 1170.2.i.c.991.1
Level $1170$
Weight $2$
Character 1170.991
Analytic conductor $9.342$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1170,2,Mod(451,1170)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1170.451"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1170, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 4])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1170.i (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-1,0,-1,2,0,-3,2,0,-1,-3] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.34249703649\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 390)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 991.1
Root \(0.500000 - 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 1170.991
Dual form 1170.2.i.c.451.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.500000 - 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +1.00000 q^{5} +(-1.50000 + 2.59808i) q^{7} +1.00000 q^{8} +(-0.500000 - 0.866025i) q^{10} +(-1.50000 - 2.59808i) q^{11} +(-2.50000 - 2.59808i) q^{13} +3.00000 q^{14} +(-0.500000 - 0.866025i) q^{16} +(-1.50000 + 2.59808i) q^{19} +(-0.500000 + 0.866025i) q^{20} +(-1.50000 + 2.59808i) q^{22} +(-2.00000 - 3.46410i) q^{23} +1.00000 q^{25} +(-1.00000 + 3.46410i) q^{26} +(-1.50000 - 2.59808i) q^{28} +(-2.00000 - 3.46410i) q^{29} +6.00000 q^{31} +(-0.500000 + 0.866025i) q^{32} +(-1.50000 + 2.59808i) q^{35} +(-4.50000 - 7.79423i) q^{37} +3.00000 q^{38} +1.00000 q^{40} +(-5.00000 - 8.66025i) q^{41} +(5.00000 - 8.66025i) q^{43} +3.00000 q^{44} +(-2.00000 + 3.46410i) q^{46} +3.00000 q^{47} +(-1.00000 - 1.73205i) q^{49} +(-0.500000 - 0.866025i) q^{50} +(3.50000 - 0.866025i) q^{52} -9.00000 q^{53} +(-1.50000 - 2.59808i) q^{55} +(-1.50000 + 2.59808i) q^{56} +(-2.00000 + 3.46410i) q^{58} +(6.00000 - 10.3923i) q^{59} +(3.00000 - 5.19615i) q^{61} +(-3.00000 - 5.19615i) q^{62} +1.00000 q^{64} +(-2.50000 - 2.59808i) q^{65} +(4.00000 + 6.92820i) q^{67} +3.00000 q^{70} +(-7.00000 + 12.1244i) q^{71} -8.00000 q^{73} +(-4.50000 + 7.79423i) q^{74} +(-1.50000 - 2.59808i) q^{76} +9.00000 q^{77} +6.00000 q^{79} +(-0.500000 - 0.866025i) q^{80} +(-5.00000 + 8.66025i) q^{82} -16.0000 q^{83} -10.0000 q^{86} +(-1.50000 - 2.59808i) q^{88} +(-1.50000 - 2.59808i) q^{89} +(10.5000 - 2.59808i) q^{91} +4.00000 q^{92} +(-1.50000 - 2.59808i) q^{94} +(-1.50000 + 2.59808i) q^{95} +(-4.00000 + 6.92820i) q^{97} +(-1.00000 + 1.73205i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} - q^{4} + 2 q^{5} - 3 q^{7} + 2 q^{8} - q^{10} - 3 q^{11} - 5 q^{13} + 6 q^{14} - q^{16} - 3 q^{19} - q^{20} - 3 q^{22} - 4 q^{23} + 2 q^{25} - 2 q^{26} - 3 q^{28} - 4 q^{29} + 12 q^{31}+ \cdots - 2 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1170\mathbb{Z}\right)^\times\).

\(n\) \(911\) \(937\) \(1081\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.500000 0.866025i −0.353553 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) 1.00000 0.447214
\(6\) 0 0
\(7\) −1.50000 + 2.59808i −0.566947 + 0.981981i 0.429919 + 0.902867i \(0.358542\pi\)
−0.996866 + 0.0791130i \(0.974791\pi\)
\(8\) 1.00000 0.353553
\(9\) 0 0
\(10\) −0.500000 0.866025i −0.158114 0.273861i
\(11\) −1.50000 2.59808i −0.452267 0.783349i 0.546259 0.837616i \(-0.316051\pi\)
−0.998526 + 0.0542666i \(0.982718\pi\)
\(12\) 0 0
\(13\) −2.50000 2.59808i −0.693375 0.720577i
\(14\) 3.00000 0.801784
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) 0 0 −0.866025 0.500000i \(-0.833333\pi\)
0.866025 + 0.500000i \(0.166667\pi\)
\(18\) 0 0
\(19\) −1.50000 + 2.59808i −0.344124 + 0.596040i −0.985194 0.171442i \(-0.945157\pi\)
0.641071 + 0.767482i \(0.278491\pi\)
\(20\) −0.500000 + 0.866025i −0.111803 + 0.193649i
\(21\) 0 0
\(22\) −1.50000 + 2.59808i −0.319801 + 0.553912i
\(23\) −2.00000 3.46410i −0.417029 0.722315i 0.578610 0.815604i \(-0.303595\pi\)
−0.995639 + 0.0932891i \(0.970262\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) −1.00000 + 3.46410i −0.196116 + 0.679366i
\(27\) 0 0
\(28\) −1.50000 2.59808i −0.283473 0.490990i
\(29\) −2.00000 3.46410i −0.371391 0.643268i 0.618389 0.785872i \(-0.287786\pi\)
−0.989780 + 0.142605i \(0.954452\pi\)
\(30\) 0 0
\(31\) 6.00000 1.07763 0.538816 0.842424i \(-0.318872\pi\)
0.538816 + 0.842424i \(0.318872\pi\)
\(32\) −0.500000 + 0.866025i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 0 0
\(35\) −1.50000 + 2.59808i −0.253546 + 0.439155i
\(36\) 0 0
\(37\) −4.50000 7.79423i −0.739795 1.28136i −0.952587 0.304266i \(-0.901589\pi\)
0.212792 0.977098i \(-0.431744\pi\)
\(38\) 3.00000 0.486664
\(39\) 0 0
\(40\) 1.00000 0.158114
\(41\) −5.00000 8.66025i −0.780869 1.35250i −0.931436 0.363905i \(-0.881443\pi\)
0.150567 0.988600i \(-0.451890\pi\)
\(42\) 0 0
\(43\) 5.00000 8.66025i 0.762493 1.32068i −0.179069 0.983836i \(-0.557309\pi\)
0.941562 0.336840i \(-0.109358\pi\)
\(44\) 3.00000 0.452267
\(45\) 0 0
\(46\) −2.00000 + 3.46410i −0.294884 + 0.510754i
\(47\) 3.00000 0.437595 0.218797 0.975770i \(-0.429787\pi\)
0.218797 + 0.975770i \(0.429787\pi\)
\(48\) 0 0
\(49\) −1.00000 1.73205i −0.142857 0.247436i
\(50\) −0.500000 0.866025i −0.0707107 0.122474i
\(51\) 0 0
\(52\) 3.50000 0.866025i 0.485363 0.120096i
\(53\) −9.00000 −1.23625 −0.618123 0.786082i \(-0.712106\pi\)
−0.618123 + 0.786082i \(0.712106\pi\)
\(54\) 0 0
\(55\) −1.50000 2.59808i −0.202260 0.350325i
\(56\) −1.50000 + 2.59808i −0.200446 + 0.347183i
\(57\) 0 0
\(58\) −2.00000 + 3.46410i −0.262613 + 0.454859i
\(59\) 6.00000 10.3923i 0.781133 1.35296i −0.150148 0.988663i \(-0.547975\pi\)
0.931282 0.364299i \(-0.118692\pi\)
\(60\) 0 0
\(61\) 3.00000 5.19615i 0.384111 0.665299i −0.607535 0.794293i \(-0.707841\pi\)
0.991645 + 0.128994i \(0.0411748\pi\)
\(62\) −3.00000 5.19615i −0.381000 0.659912i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) −2.50000 2.59808i −0.310087 0.322252i
\(66\) 0 0
\(67\) 4.00000 + 6.92820i 0.488678 + 0.846415i 0.999915 0.0130248i \(-0.00414604\pi\)
−0.511237 + 0.859440i \(0.670813\pi\)
\(68\) 0 0
\(69\) 0 0
\(70\) 3.00000 0.358569
\(71\) −7.00000 + 12.1244i −0.830747 + 1.43890i 0.0666994 + 0.997773i \(0.478753\pi\)
−0.897447 + 0.441123i \(0.854580\pi\)
\(72\) 0 0
\(73\) −8.00000 −0.936329 −0.468165 0.883641i \(-0.655085\pi\)
−0.468165 + 0.883641i \(0.655085\pi\)
\(74\) −4.50000 + 7.79423i −0.523114 + 0.906061i
\(75\) 0 0
\(76\) −1.50000 2.59808i −0.172062 0.298020i
\(77\) 9.00000 1.02565
\(78\) 0 0
\(79\) 6.00000 0.675053 0.337526 0.941316i \(-0.390410\pi\)
0.337526 + 0.941316i \(0.390410\pi\)
\(80\) −0.500000 0.866025i −0.0559017 0.0968246i
\(81\) 0 0
\(82\) −5.00000 + 8.66025i −0.552158 + 0.956365i
\(83\) −16.0000 −1.75623 −0.878114 0.478451i \(-0.841198\pi\)
−0.878114 + 0.478451i \(0.841198\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) −10.0000 −1.07833
\(87\) 0 0
\(88\) −1.50000 2.59808i −0.159901 0.276956i
\(89\) −1.50000 2.59808i −0.159000 0.275396i 0.775509 0.631337i \(-0.217494\pi\)
−0.934508 + 0.355942i \(0.884160\pi\)
\(90\) 0 0
\(91\) 10.5000 2.59808i 1.10070 0.272352i
\(92\) 4.00000 0.417029
\(93\) 0 0
\(94\) −1.50000 2.59808i −0.154713 0.267971i
\(95\) −1.50000 + 2.59808i −0.153897 + 0.266557i
\(96\) 0 0
\(97\) −4.00000 + 6.92820i −0.406138 + 0.703452i −0.994453 0.105180i \(-0.966458\pi\)
0.588315 + 0.808632i \(0.299792\pi\)
\(98\) −1.00000 + 1.73205i −0.101015 + 0.174964i
\(99\) 0 0
\(100\) −0.500000 + 0.866025i −0.0500000 + 0.0866025i
\(101\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(102\) 0 0
\(103\) −15.0000 −1.47799 −0.738997 0.673709i \(-0.764700\pi\)
−0.738997 + 0.673709i \(0.764700\pi\)
\(104\) −2.50000 2.59808i −0.245145 0.254762i
\(105\) 0 0
\(106\) 4.50000 + 7.79423i 0.437079 + 0.757042i
\(107\) 1.00000 + 1.73205i 0.0966736 + 0.167444i 0.910306 0.413936i \(-0.135846\pi\)
−0.813632 + 0.581380i \(0.802513\pi\)
\(108\) 0 0
\(109\) −2.00000 −0.191565 −0.0957826 0.995402i \(-0.530535\pi\)
−0.0957826 + 0.995402i \(0.530535\pi\)
\(110\) −1.50000 + 2.59808i −0.143019 + 0.247717i
\(111\) 0 0
\(112\) 3.00000 0.283473
\(113\) −4.00000 + 6.92820i −0.376288 + 0.651751i −0.990519 0.137376i \(-0.956133\pi\)
0.614231 + 0.789127i \(0.289466\pi\)
\(114\) 0 0
\(115\) −2.00000 3.46410i −0.186501 0.323029i
\(116\) 4.00000 0.371391
\(117\) 0 0
\(118\) −12.0000 −1.10469
\(119\) 0 0
\(120\) 0 0
\(121\) 1.00000 1.73205i 0.0909091 0.157459i
\(122\) −6.00000 −0.543214
\(123\) 0 0
\(124\) −3.00000 + 5.19615i −0.269408 + 0.466628i
\(125\) 1.00000 0.0894427
\(126\) 0 0
\(127\) −1.50000 2.59808i −0.133103 0.230542i 0.791768 0.610822i \(-0.209161\pi\)
−0.924871 + 0.380280i \(0.875828\pi\)
\(128\) −0.500000 0.866025i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) −1.00000 + 3.46410i −0.0877058 + 0.303822i
\(131\) 3.00000 0.262111 0.131056 0.991375i \(-0.458163\pi\)
0.131056 + 0.991375i \(0.458163\pi\)
\(132\) 0 0
\(133\) −4.50000 7.79423i −0.390199 0.675845i
\(134\) 4.00000 6.92820i 0.345547 0.598506i
\(135\) 0 0
\(136\) 0 0
\(137\) 6.00000 10.3923i 0.512615 0.887875i −0.487278 0.873247i \(-0.662010\pi\)
0.999893 0.0146279i \(-0.00465636\pi\)
\(138\) 0 0
\(139\) 8.50000 14.7224i 0.720961 1.24874i −0.239655 0.970858i \(-0.577034\pi\)
0.960615 0.277882i \(-0.0896325\pi\)
\(140\) −1.50000 2.59808i −0.126773 0.219578i
\(141\) 0 0
\(142\) 14.0000 1.17485
\(143\) −3.00000 + 10.3923i −0.250873 + 0.869048i
\(144\) 0 0
\(145\) −2.00000 3.46410i −0.166091 0.287678i
\(146\) 4.00000 + 6.92820i 0.331042 + 0.573382i
\(147\) 0 0
\(148\) 9.00000 0.739795
\(149\) −1.00000 + 1.73205i −0.0819232 + 0.141895i −0.904076 0.427372i \(-0.859440\pi\)
0.822153 + 0.569267i \(0.192773\pi\)
\(150\) 0 0
\(151\) 14.0000 1.13930 0.569652 0.821886i \(-0.307078\pi\)
0.569652 + 0.821886i \(0.307078\pi\)
\(152\) −1.50000 + 2.59808i −0.121666 + 0.210732i
\(153\) 0 0
\(154\) −4.50000 7.79423i −0.362620 0.628077i
\(155\) 6.00000 0.481932
\(156\) 0 0
\(157\) −17.0000 −1.35675 −0.678374 0.734717i \(-0.737315\pi\)
−0.678374 + 0.734717i \(0.737315\pi\)
\(158\) −3.00000 5.19615i −0.238667 0.413384i
\(159\) 0 0
\(160\) −0.500000 + 0.866025i −0.0395285 + 0.0684653i
\(161\) 12.0000 0.945732
\(162\) 0 0
\(163\) −10.0000 + 17.3205i −0.783260 + 1.35665i 0.146772 + 0.989170i \(0.453112\pi\)
−0.930033 + 0.367477i \(0.880222\pi\)
\(164\) 10.0000 0.780869
\(165\) 0 0
\(166\) 8.00000 + 13.8564i 0.620920 + 1.07547i
\(167\) 4.50000 + 7.79423i 0.348220 + 0.603136i 0.985933 0.167139i \(-0.0534527\pi\)
−0.637713 + 0.770274i \(0.720119\pi\)
\(168\) 0 0
\(169\) −0.500000 + 12.9904i −0.0384615 + 0.999260i
\(170\) 0 0
\(171\) 0 0
\(172\) 5.00000 + 8.66025i 0.381246 + 0.660338i
\(173\) 6.50000 11.2583i 0.494186 0.855955i −0.505792 0.862656i \(-0.668800\pi\)
0.999978 + 0.00670064i \(0.00213290\pi\)
\(174\) 0 0
\(175\) −1.50000 + 2.59808i −0.113389 + 0.196396i
\(176\) −1.50000 + 2.59808i −0.113067 + 0.195837i
\(177\) 0 0
\(178\) −1.50000 + 2.59808i −0.112430 + 0.194734i
\(179\) 2.00000 + 3.46410i 0.149487 + 0.258919i 0.931038 0.364922i \(-0.118904\pi\)
−0.781551 + 0.623841i \(0.785571\pi\)
\(180\) 0 0
\(181\) −10.0000 −0.743294 −0.371647 0.928374i \(-0.621207\pi\)
−0.371647 + 0.928374i \(0.621207\pi\)
\(182\) −7.50000 7.79423i −0.555937 0.577747i
\(183\) 0 0
\(184\) −2.00000 3.46410i −0.147442 0.255377i
\(185\) −4.50000 7.79423i −0.330847 0.573043i
\(186\) 0 0
\(187\) 0 0
\(188\) −1.50000 + 2.59808i −0.109399 + 0.189484i
\(189\) 0 0
\(190\) 3.00000 0.217643
\(191\) −3.00000 + 5.19615i −0.217072 + 0.375980i −0.953912 0.300088i \(-0.902984\pi\)
0.736839 + 0.676068i \(0.236317\pi\)
\(192\) 0 0
\(193\) −4.00000 6.92820i −0.287926 0.498703i 0.685388 0.728178i \(-0.259632\pi\)
−0.973315 + 0.229475i \(0.926299\pi\)
\(194\) 8.00000 0.574367
\(195\) 0 0
\(196\) 2.00000 0.142857
\(197\) 5.50000 + 9.52628i 0.391859 + 0.678719i 0.992695 0.120653i \(-0.0384988\pi\)
−0.600836 + 0.799372i \(0.705166\pi\)
\(198\) 0 0
\(199\) 5.00000 8.66025i 0.354441 0.613909i −0.632581 0.774494i \(-0.718005\pi\)
0.987022 + 0.160585i \(0.0513380\pi\)
\(200\) 1.00000 0.0707107
\(201\) 0 0
\(202\) 0 0
\(203\) 12.0000 0.842235
\(204\) 0 0
\(205\) −5.00000 8.66025i −0.349215 0.604858i
\(206\) 7.50000 + 12.9904i 0.522550 + 0.905083i
\(207\) 0 0
\(208\) −1.00000 + 3.46410i −0.0693375 + 0.240192i
\(209\) 9.00000 0.622543
\(210\) 0 0
\(211\) −4.50000 7.79423i −0.309793 0.536577i 0.668524 0.743690i \(-0.266926\pi\)
−0.978317 + 0.207114i \(0.933593\pi\)
\(212\) 4.50000 7.79423i 0.309061 0.535310i
\(213\) 0 0
\(214\) 1.00000 1.73205i 0.0683586 0.118401i
\(215\) 5.00000 8.66025i 0.340997 0.590624i
\(216\) 0 0
\(217\) −9.00000 + 15.5885i −0.610960 + 1.05821i
\(218\) 1.00000 + 1.73205i 0.0677285 + 0.117309i
\(219\) 0 0
\(220\) 3.00000 0.202260
\(221\) 0 0
\(222\) 0 0
\(223\) 5.50000 + 9.52628i 0.368307 + 0.637927i 0.989301 0.145889i \(-0.0466041\pi\)
−0.620994 + 0.783815i \(0.713271\pi\)
\(224\) −1.50000 2.59808i −0.100223 0.173591i
\(225\) 0 0
\(226\) 8.00000 0.532152
\(227\) −8.00000 + 13.8564i −0.530979 + 0.919682i 0.468368 + 0.883534i \(0.344842\pi\)
−0.999346 + 0.0361484i \(0.988491\pi\)
\(228\) 0 0
\(229\) −10.0000 −0.660819 −0.330409 0.943838i \(-0.607187\pi\)
−0.330409 + 0.943838i \(0.607187\pi\)
\(230\) −2.00000 + 3.46410i −0.131876 + 0.228416i
\(231\) 0 0
\(232\) −2.00000 3.46410i −0.131306 0.227429i
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) 3.00000 0.195698
\(236\) 6.00000 + 10.3923i 0.390567 + 0.676481i
\(237\) 0 0
\(238\) 0 0
\(239\) 26.0000 1.68180 0.840900 0.541190i \(-0.182026\pi\)
0.840900 + 0.541190i \(0.182026\pi\)
\(240\) 0 0
\(241\) −3.50000 + 6.06218i −0.225455 + 0.390499i −0.956456 0.291877i \(-0.905720\pi\)
0.731001 + 0.682376i \(0.239053\pi\)
\(242\) −2.00000 −0.128565
\(243\) 0 0
\(244\) 3.00000 + 5.19615i 0.192055 + 0.332650i
\(245\) −1.00000 1.73205i −0.0638877 0.110657i
\(246\) 0 0
\(247\) 10.5000 2.59808i 0.668099 0.165312i
\(248\) 6.00000 0.381000
\(249\) 0 0
\(250\) −0.500000 0.866025i −0.0316228 0.0547723i
\(251\) −0.500000 + 0.866025i −0.0315597 + 0.0546630i −0.881374 0.472419i \(-0.843381\pi\)
0.849814 + 0.527082i \(0.176714\pi\)
\(252\) 0 0
\(253\) −6.00000 + 10.3923i −0.377217 + 0.653359i
\(254\) −1.50000 + 2.59808i −0.0941184 + 0.163018i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) 6.00000 + 10.3923i 0.374270 + 0.648254i 0.990217 0.139533i \(-0.0445601\pi\)
−0.615948 + 0.787787i \(0.711227\pi\)
\(258\) 0 0
\(259\) 27.0000 1.67770
\(260\) 3.50000 0.866025i 0.217061 0.0537086i
\(261\) 0 0
\(262\) −1.50000 2.59808i −0.0926703 0.160510i
\(263\) −15.5000 26.8468i −0.955771 1.65544i −0.732594 0.680666i \(-0.761691\pi\)
−0.223177 0.974778i \(-0.571643\pi\)
\(264\) 0 0
\(265\) −9.00000 −0.552866
\(266\) −4.50000 + 7.79423i −0.275913 + 0.477895i
\(267\) 0 0
\(268\) −8.00000 −0.488678
\(269\) −2.00000 + 3.46410i −0.121942 + 0.211210i −0.920534 0.390664i \(-0.872246\pi\)
0.798591 + 0.601874i \(0.205579\pi\)
\(270\) 0 0
\(271\) 6.00000 + 10.3923i 0.364474 + 0.631288i 0.988692 0.149963i \(-0.0479155\pi\)
−0.624218 + 0.781251i \(0.714582\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) −12.0000 −0.724947
\(275\) −1.50000 2.59808i −0.0904534 0.156670i
\(276\) 0 0
\(277\) 15.5000 26.8468i 0.931305 1.61307i 0.150210 0.988654i \(-0.452005\pi\)
0.781094 0.624413i \(-0.214662\pi\)
\(278\) −17.0000 −1.01959
\(279\) 0 0
\(280\) −1.50000 + 2.59808i −0.0896421 + 0.155265i
\(281\) 30.0000 1.78965 0.894825 0.446417i \(-0.147300\pi\)
0.894825 + 0.446417i \(0.147300\pi\)
\(282\) 0 0
\(283\) −3.00000 5.19615i −0.178331 0.308879i 0.762978 0.646425i \(-0.223737\pi\)
−0.941309 + 0.337546i \(0.890403\pi\)
\(284\) −7.00000 12.1244i −0.415374 0.719448i
\(285\) 0 0
\(286\) 10.5000 2.59808i 0.620878 0.153627i
\(287\) 30.0000 1.77084
\(288\) 0 0
\(289\) 8.50000 + 14.7224i 0.500000 + 0.866025i
\(290\) −2.00000 + 3.46410i −0.117444 + 0.203419i
\(291\) 0 0
\(292\) 4.00000 6.92820i 0.234082 0.405442i
\(293\) −0.500000 + 0.866025i −0.0292103 + 0.0505937i −0.880261 0.474490i \(-0.842633\pi\)
0.851051 + 0.525084i \(0.175966\pi\)
\(294\) 0 0
\(295\) 6.00000 10.3923i 0.349334 0.605063i
\(296\) −4.50000 7.79423i −0.261557 0.453030i
\(297\) 0 0
\(298\) 2.00000 0.115857
\(299\) −4.00000 + 13.8564i −0.231326 + 0.801337i
\(300\) 0 0
\(301\) 15.0000 + 25.9808i 0.864586 + 1.49751i
\(302\) −7.00000 12.1244i −0.402805 0.697678i
\(303\) 0 0
\(304\) 3.00000 0.172062
\(305\) 3.00000 5.19615i 0.171780 0.297531i
\(306\) 0 0
\(307\) 26.0000 1.48390 0.741949 0.670456i \(-0.233902\pi\)
0.741949 + 0.670456i \(0.233902\pi\)
\(308\) −4.50000 + 7.79423i −0.256411 + 0.444117i
\(309\) 0 0
\(310\) −3.00000 5.19615i −0.170389 0.295122i
\(311\) 4.00000 0.226819 0.113410 0.993548i \(-0.463823\pi\)
0.113410 + 0.993548i \(0.463823\pi\)
\(312\) 0 0
\(313\) 26.0000 1.46961 0.734803 0.678280i \(-0.237274\pi\)
0.734803 + 0.678280i \(0.237274\pi\)
\(314\) 8.50000 + 14.7224i 0.479683 + 0.830835i
\(315\) 0 0
\(316\) −3.00000 + 5.19615i −0.168763 + 0.292306i
\(317\) −17.0000 −0.954815 −0.477408 0.878682i \(-0.658423\pi\)
−0.477408 + 0.878682i \(0.658423\pi\)
\(318\) 0 0
\(319\) −6.00000 + 10.3923i −0.335936 + 0.581857i
\(320\) 1.00000 0.0559017
\(321\) 0 0
\(322\) −6.00000 10.3923i −0.334367 0.579141i
\(323\) 0 0
\(324\) 0 0
\(325\) −2.50000 2.59808i −0.138675 0.144115i
\(326\) 20.0000 1.10770
\(327\) 0 0
\(328\) −5.00000 8.66025i −0.276079 0.478183i
\(329\) −4.50000 + 7.79423i −0.248093 + 0.429710i
\(330\) 0 0
\(331\) 14.0000 24.2487i 0.769510 1.33283i −0.168320 0.985732i \(-0.553834\pi\)
0.937829 0.347097i \(-0.112833\pi\)
\(332\) 8.00000 13.8564i 0.439057 0.760469i
\(333\) 0 0
\(334\) 4.50000 7.79423i 0.246229 0.426481i
\(335\) 4.00000 + 6.92820i 0.218543 + 0.378528i
\(336\) 0 0
\(337\) 6.00000 0.326841 0.163420 0.986557i \(-0.447747\pi\)
0.163420 + 0.986557i \(0.447747\pi\)
\(338\) 11.5000 6.06218i 0.625518 0.329739i
\(339\) 0 0
\(340\) 0 0
\(341\) −9.00000 15.5885i −0.487377 0.844162i
\(342\) 0 0
\(343\) −15.0000 −0.809924
\(344\) 5.00000 8.66025i 0.269582 0.466930i
\(345\) 0 0
\(346\) −13.0000 −0.698884
\(347\) −12.0000 + 20.7846i −0.644194 + 1.11578i 0.340293 + 0.940319i \(0.389474\pi\)
−0.984487 + 0.175457i \(0.943860\pi\)
\(348\) 0 0
\(349\) −8.00000 13.8564i −0.428230 0.741716i 0.568486 0.822693i \(-0.307529\pi\)
−0.996716 + 0.0809766i \(0.974196\pi\)
\(350\) 3.00000 0.160357
\(351\) 0 0
\(352\) 3.00000 0.159901
\(353\) −4.00000 6.92820i −0.212899 0.368751i 0.739722 0.672913i \(-0.234957\pi\)
−0.952620 + 0.304162i \(0.901624\pi\)
\(354\) 0 0
\(355\) −7.00000 + 12.1244i −0.371521 + 0.643494i
\(356\) 3.00000 0.159000
\(357\) 0 0
\(358\) 2.00000 3.46410i 0.105703 0.183083i
\(359\) −30.0000 −1.58334 −0.791670 0.610949i \(-0.790788\pi\)
−0.791670 + 0.610949i \(0.790788\pi\)
\(360\) 0 0
\(361\) 5.00000 + 8.66025i 0.263158 + 0.455803i
\(362\) 5.00000 + 8.66025i 0.262794 + 0.455173i
\(363\) 0 0
\(364\) −3.00000 + 10.3923i −0.157243 + 0.544705i
\(365\) −8.00000 −0.418739
\(366\) 0 0
\(367\) −4.00000 6.92820i −0.208798 0.361649i 0.742538 0.669804i \(-0.233622\pi\)
−0.951336 + 0.308155i \(0.900289\pi\)
\(368\) −2.00000 + 3.46410i −0.104257 + 0.180579i
\(369\) 0 0
\(370\) −4.50000 + 7.79423i −0.233944 + 0.405203i
\(371\) 13.5000 23.3827i 0.700885 1.21397i
\(372\) 0 0
\(373\) 13.0000 22.5167i 0.673114 1.16587i −0.303902 0.952703i \(-0.598289\pi\)
0.977016 0.213165i \(-0.0683772\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 3.00000 0.154713
\(377\) −4.00000 + 13.8564i −0.206010 + 0.713641i
\(378\) 0 0
\(379\) 16.5000 + 28.5788i 0.847548 + 1.46800i 0.883390 + 0.468639i \(0.155255\pi\)
−0.0358418 + 0.999357i \(0.511411\pi\)
\(380\) −1.50000 2.59808i −0.0769484 0.133278i
\(381\) 0 0
\(382\) 6.00000 0.306987
\(383\) 2.00000 3.46410i 0.102195 0.177007i −0.810394 0.585886i \(-0.800747\pi\)
0.912589 + 0.408879i \(0.134080\pi\)
\(384\) 0 0
\(385\) 9.00000 0.458682
\(386\) −4.00000 + 6.92820i −0.203595 + 0.352636i
\(387\) 0 0
\(388\) −4.00000 6.92820i −0.203069 0.351726i
\(389\) −24.0000 −1.21685 −0.608424 0.793612i \(-0.708198\pi\)
−0.608424 + 0.793612i \(0.708198\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) −1.00000 1.73205i −0.0505076 0.0874818i
\(393\) 0 0
\(394\) 5.50000 9.52628i 0.277086 0.479927i
\(395\) 6.00000 0.301893
\(396\) 0 0
\(397\) 11.5000 19.9186i 0.577168 0.999685i −0.418634 0.908155i \(-0.637491\pi\)
0.995802 0.0915300i \(-0.0291757\pi\)
\(398\) −10.0000 −0.501255
\(399\) 0 0
\(400\) −0.500000 0.866025i −0.0250000 0.0433013i
\(401\) −13.5000 23.3827i −0.674158 1.16768i −0.976714 0.214544i \(-0.931173\pi\)
0.302556 0.953131i \(-0.402160\pi\)
\(402\) 0 0
\(403\) −15.0000 15.5885i −0.747203 0.776516i
\(404\) 0 0
\(405\) 0 0
\(406\) −6.00000 10.3923i −0.297775 0.515761i
\(407\) −13.5000 + 23.3827i −0.669170 + 1.15904i
\(408\) 0 0
\(409\) 3.50000 6.06218i 0.173064 0.299755i −0.766426 0.642333i \(-0.777967\pi\)
0.939490 + 0.342578i \(0.111300\pi\)
\(410\) −5.00000 + 8.66025i −0.246932 + 0.427699i
\(411\) 0 0
\(412\) 7.50000 12.9904i 0.369498 0.639990i
\(413\) 18.0000 + 31.1769i 0.885722 + 1.53412i
\(414\) 0 0
\(415\) −16.0000 −0.785409
\(416\) 3.50000 0.866025i 0.171602 0.0424604i
\(417\) 0 0
\(418\) −4.50000 7.79423i −0.220102 0.381228i
\(419\) −6.00000 10.3923i −0.293119 0.507697i 0.681426 0.731887i \(-0.261360\pi\)
−0.974546 + 0.224189i \(0.928027\pi\)
\(420\) 0 0
\(421\) −28.0000 −1.36464 −0.682318 0.731055i \(-0.739028\pi\)
−0.682318 + 0.731055i \(0.739028\pi\)
\(422\) −4.50000 + 7.79423i −0.219057 + 0.379417i
\(423\) 0 0
\(424\) −9.00000 −0.437079
\(425\) 0 0
\(426\) 0 0
\(427\) 9.00000 + 15.5885i 0.435541 + 0.754378i
\(428\) −2.00000 −0.0966736
\(429\) 0 0
\(430\) −10.0000 −0.482243
\(431\) −6.00000 10.3923i −0.289010 0.500580i 0.684564 0.728953i \(-0.259993\pi\)
−0.973574 + 0.228373i \(0.926659\pi\)
\(432\) 0 0
\(433\) 8.00000 13.8564i 0.384455 0.665896i −0.607238 0.794520i \(-0.707723\pi\)
0.991693 + 0.128624i \(0.0410559\pi\)
\(434\) 18.0000 0.864028
\(435\) 0 0
\(436\) 1.00000 1.73205i 0.0478913 0.0829502i
\(437\) 12.0000 0.574038
\(438\) 0 0
\(439\) 15.0000 + 25.9808i 0.715911 + 1.23999i 0.962607 + 0.270901i \(0.0873217\pi\)
−0.246696 + 0.969093i \(0.579345\pi\)
\(440\) −1.50000 2.59808i −0.0715097 0.123858i
\(441\) 0 0
\(442\) 0 0
\(443\) 10.0000 0.475114 0.237557 0.971374i \(-0.423653\pi\)
0.237557 + 0.971374i \(0.423653\pi\)
\(444\) 0 0
\(445\) −1.50000 2.59808i −0.0711068 0.123161i
\(446\) 5.50000 9.52628i 0.260433 0.451082i
\(447\) 0 0
\(448\) −1.50000 + 2.59808i −0.0708683 + 0.122748i
\(449\) −17.5000 + 30.3109i −0.825876 + 1.43046i 0.0753719 + 0.997155i \(0.475986\pi\)
−0.901248 + 0.433304i \(0.857348\pi\)
\(450\) 0 0
\(451\) −15.0000 + 25.9808i −0.706322 + 1.22339i
\(452\) −4.00000 6.92820i −0.188144 0.325875i
\(453\) 0 0
\(454\) 16.0000 0.750917
\(455\) 10.5000 2.59808i 0.492248 0.121800i
\(456\) 0 0
\(457\) 21.0000 + 36.3731i 0.982339 + 1.70146i 0.653213 + 0.757174i \(0.273421\pi\)
0.329125 + 0.944286i \(0.393246\pi\)
\(458\) 5.00000 + 8.66025i 0.233635 + 0.404667i
\(459\) 0 0
\(460\) 4.00000 0.186501
\(461\) −16.0000 + 27.7128i −0.745194 + 1.29071i 0.204910 + 0.978781i \(0.434310\pi\)
−0.950104 + 0.311933i \(0.899023\pi\)
\(462\) 0 0
\(463\) −24.0000 −1.11537 −0.557687 0.830051i \(-0.688311\pi\)
−0.557687 + 0.830051i \(0.688311\pi\)
\(464\) −2.00000 + 3.46410i −0.0928477 + 0.160817i
\(465\) 0 0
\(466\) −3.00000 5.19615i −0.138972 0.240707i
\(467\) −8.00000 −0.370196 −0.185098 0.982720i \(-0.559260\pi\)
−0.185098 + 0.982720i \(0.559260\pi\)
\(468\) 0 0
\(469\) −24.0000 −1.10822
\(470\) −1.50000 2.59808i −0.0691898 0.119840i
\(471\) 0 0
\(472\) 6.00000 10.3923i 0.276172 0.478345i
\(473\) −30.0000 −1.37940
\(474\) 0 0
\(475\) −1.50000 + 2.59808i −0.0688247 + 0.119208i
\(476\) 0 0
\(477\) 0 0
\(478\) −13.0000 22.5167i −0.594606 1.02989i
\(479\) 6.00000 + 10.3923i 0.274147 + 0.474837i 0.969920 0.243426i \(-0.0782712\pi\)
−0.695773 + 0.718262i \(0.744938\pi\)
\(480\) 0 0
\(481\) −9.00000 + 31.1769i −0.410365 + 1.42154i
\(482\) 7.00000 0.318841
\(483\) 0 0
\(484\) 1.00000 + 1.73205i 0.0454545 + 0.0787296i
\(485\) −4.00000 + 6.92820i −0.181631 + 0.314594i
\(486\) 0 0
\(487\) −14.5000 + 25.1147i −0.657058 + 1.13806i 0.324316 + 0.945949i \(0.394866\pi\)
−0.981374 + 0.192109i \(0.938467\pi\)
\(488\) 3.00000 5.19615i 0.135804 0.235219i
\(489\) 0 0
\(490\) −1.00000 + 1.73205i −0.0451754 + 0.0782461i
\(491\) 2.50000 + 4.33013i 0.112823 + 0.195416i 0.916908 0.399100i \(-0.130677\pi\)
−0.804084 + 0.594515i \(0.797344\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) −7.50000 7.79423i −0.337441 0.350679i
\(495\) 0 0
\(496\) −3.00000 5.19615i −0.134704 0.233314i
\(497\) −21.0000 36.3731i −0.941979 1.63156i
\(498\) 0 0
\(499\) 20.0000 0.895323 0.447661 0.894203i \(-0.352257\pi\)
0.447661 + 0.894203i \(0.352257\pi\)
\(500\) −0.500000 + 0.866025i −0.0223607 + 0.0387298i
\(501\) 0 0
\(502\) 1.00000 0.0446322
\(503\) 10.5000 18.1865i 0.468172 0.810897i −0.531167 0.847267i \(-0.678246\pi\)
0.999338 + 0.0363700i \(0.0115795\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 12.0000 0.533465
\(507\) 0 0
\(508\) 3.00000 0.133103
\(509\) 5.00000 + 8.66025i 0.221621 + 0.383859i 0.955300 0.295637i \(-0.0955319\pi\)
−0.733679 + 0.679496i \(0.762199\pi\)
\(510\) 0 0
\(511\) 12.0000 20.7846i 0.530849 0.919457i
\(512\) 1.00000 0.0441942
\(513\) 0 0
\(514\) 6.00000 10.3923i 0.264649 0.458385i
\(515\) −15.0000 −0.660979
\(516\) 0 0
\(517\) −4.50000 7.79423i −0.197910 0.342790i
\(518\) −13.5000 23.3827i −0.593156 1.02738i
\(519\) 0 0
\(520\) −2.50000 2.59808i −0.109632 0.113933i
\(521\) 35.0000 1.53338 0.766689 0.642019i \(-0.221903\pi\)
0.766689 + 0.642019i \(0.221903\pi\)
\(522\) 0 0
\(523\) −11.0000 19.0526i −0.480996 0.833110i 0.518766 0.854916i \(-0.326392\pi\)
−0.999762 + 0.0218062i \(0.993058\pi\)
\(524\) −1.50000 + 2.59808i −0.0655278 + 0.113497i
\(525\) 0 0
\(526\) −15.5000 + 26.8468i −0.675832 + 1.17058i
\(527\) 0 0
\(528\) 0 0
\(529\) 3.50000 6.06218i 0.152174 0.263573i
\(530\) 4.50000 + 7.79423i 0.195468 + 0.338560i
\(531\) 0 0
\(532\) 9.00000 0.390199
\(533\) −10.0000 + 34.6410i −0.433148 + 1.50047i
\(534\) 0 0
\(535\) 1.00000 + 1.73205i 0.0432338 + 0.0748831i
\(536\) 4.00000 + 6.92820i 0.172774 + 0.299253i
\(537\) 0 0
\(538\) 4.00000 0.172452
\(539\) −3.00000 + 5.19615i −0.129219 + 0.223814i
\(540\) 0 0
\(541\) −22.0000 −0.945854 −0.472927 0.881102i \(-0.656803\pi\)
−0.472927 + 0.881102i \(0.656803\pi\)
\(542\) 6.00000 10.3923i 0.257722 0.446388i
\(543\) 0 0
\(544\) 0 0
\(545\) −2.00000 −0.0856706
\(546\) 0 0
\(547\) 22.0000 0.940652 0.470326 0.882493i \(-0.344136\pi\)
0.470326 + 0.882493i \(0.344136\pi\)
\(548\) 6.00000 + 10.3923i 0.256307 + 0.443937i
\(549\) 0 0
\(550\) −1.50000 + 2.59808i −0.0639602 + 0.110782i
\(551\) 12.0000 0.511217
\(552\) 0 0
\(553\) −9.00000 + 15.5885i −0.382719 + 0.662889i
\(554\) −31.0000 −1.31706
\(555\) 0 0
\(556\) 8.50000 + 14.7224i 0.360480 + 0.624370i
\(557\) −4.50000 7.79423i −0.190671 0.330252i 0.754802 0.655953i \(-0.227733\pi\)
−0.945473 + 0.325701i \(0.894400\pi\)
\(558\) 0 0
\(559\) −35.0000 + 8.66025i −1.48034 + 0.366290i
\(560\) 3.00000 0.126773
\(561\) 0 0
\(562\) −15.0000 25.9808i −0.632737 1.09593i
\(563\) 10.0000 17.3205i 0.421450 0.729972i −0.574632 0.818412i \(-0.694855\pi\)
0.996082 + 0.0884397i \(0.0281881\pi\)
\(564\) 0 0
\(565\) −4.00000 + 6.92820i −0.168281 + 0.291472i
\(566\) −3.00000 + 5.19615i −0.126099 + 0.218411i
\(567\) 0 0
\(568\) −7.00000 + 12.1244i −0.293713 + 0.508727i
\(569\) −19.5000 33.7750i −0.817483 1.41592i −0.907532 0.419984i \(-0.862036\pi\)
0.0900490 0.995937i \(-0.471298\pi\)
\(570\) 0 0
\(571\) 23.0000 0.962520 0.481260 0.876578i \(-0.340179\pi\)
0.481260 + 0.876578i \(0.340179\pi\)
\(572\) −7.50000 7.79423i −0.313591 0.325893i
\(573\) 0 0
\(574\) −15.0000 25.9808i −0.626088 1.08442i
\(575\) −2.00000 3.46410i −0.0834058 0.144463i
\(576\) 0 0
\(577\) −38.0000 −1.58196 −0.790980 0.611842i \(-0.790429\pi\)
−0.790980 + 0.611842i \(0.790429\pi\)
\(578\) 8.50000 14.7224i 0.353553 0.612372i
\(579\) 0 0
\(580\) 4.00000 0.166091
\(581\) 24.0000 41.5692i 0.995688 1.72458i
\(582\) 0 0
\(583\) 13.5000 + 23.3827i 0.559113 + 0.968412i
\(584\) −8.00000 −0.331042
\(585\) 0 0
\(586\) 1.00000 0.0413096
\(587\) 9.00000 + 15.5885i 0.371470 + 0.643404i 0.989792 0.142520i \(-0.0455206\pi\)
−0.618322 + 0.785925i \(0.712187\pi\)
\(588\) 0 0
\(589\) −9.00000 + 15.5885i −0.370839 + 0.642311i
\(590\) −12.0000 −0.494032
\(591\) 0 0
\(592\) −4.50000 + 7.79423i −0.184949 + 0.320341i
\(593\) −36.0000 −1.47834 −0.739171 0.673517i \(-0.764783\pi\)
−0.739171 + 0.673517i \(0.764783\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) −1.00000 1.73205i −0.0409616 0.0709476i
\(597\) 0 0
\(598\) 14.0000 3.46410i 0.572503 0.141658i
\(599\) 30.0000 1.22577 0.612883 0.790173i \(-0.290010\pi\)
0.612883 + 0.790173i \(0.290010\pi\)
\(600\) 0 0
\(601\) −10.5000 18.1865i −0.428304 0.741844i 0.568419 0.822739i \(-0.307555\pi\)
−0.996723 + 0.0808953i \(0.974222\pi\)
\(602\) 15.0000 25.9808i 0.611354 1.05890i
\(603\) 0 0
\(604\) −7.00000 + 12.1244i −0.284826 + 0.493333i
\(605\) 1.00000 1.73205i 0.0406558 0.0704179i
\(606\) 0 0
\(607\) −13.5000 + 23.3827i −0.547948 + 0.949074i 0.450467 + 0.892793i \(0.351258\pi\)
−0.998415 + 0.0562808i \(0.982076\pi\)
\(608\) −1.50000 2.59808i −0.0608330 0.105366i
\(609\) 0 0
\(610\) −6.00000 −0.242933
\(611\) −7.50000 7.79423i −0.303418 0.315321i
\(612\) 0 0
\(613\) 3.50000 + 6.06218i 0.141364 + 0.244849i 0.928010 0.372554i \(-0.121518\pi\)
−0.786647 + 0.617403i \(0.788185\pi\)
\(614\) −13.0000 22.5167i −0.524637 0.908698i
\(615\) 0 0
\(616\) 9.00000 0.362620
\(617\) −15.0000 + 25.9808i −0.603877 + 1.04595i 0.388351 + 0.921512i \(0.373045\pi\)
−0.992228 + 0.124434i \(0.960288\pi\)
\(618\) 0 0
\(619\) −23.0000 −0.924448 −0.462224 0.886763i \(-0.652948\pi\)
−0.462224 + 0.886763i \(0.652948\pi\)
\(620\) −3.00000 + 5.19615i −0.120483 + 0.208683i
\(621\) 0 0
\(622\) −2.00000 3.46410i −0.0801927 0.138898i
\(623\) 9.00000 0.360577
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −13.0000 22.5167i −0.519584 0.899947i
\(627\) 0 0
\(628\) 8.50000 14.7224i 0.339187 0.587489i
\(629\) 0 0
\(630\) 0 0
\(631\) −6.00000 + 10.3923i −0.238856 + 0.413711i −0.960386 0.278672i \(-0.910106\pi\)
0.721530 + 0.692383i \(0.243439\pi\)
\(632\) 6.00000 0.238667
\(633\) 0 0
\(634\) 8.50000 + 14.7224i 0.337578 + 0.584702i
\(635\) −1.50000 2.59808i −0.0595257 0.103102i
\(636\) 0 0
\(637\) −2.00000 + 6.92820i −0.0792429 + 0.274505i
\(638\) 12.0000 0.475085
\(639\) 0 0
\(640\) −0.500000 0.866025i −0.0197642 0.0342327i
\(641\) 17.5000 30.3109i 0.691208 1.19721i −0.280234 0.959932i \(-0.590412\pi\)
0.971442 0.237276i \(-0.0762547\pi\)
\(642\) 0 0
\(643\) −14.0000 + 24.2487i −0.552106 + 0.956276i 0.446016 + 0.895025i \(0.352842\pi\)
−0.998122 + 0.0612510i \(0.980491\pi\)
\(644\) −6.00000 + 10.3923i −0.236433 + 0.409514i
\(645\) 0 0
\(646\) 0 0
\(647\) −22.5000 38.9711i −0.884566 1.53211i −0.846210 0.532850i \(-0.821121\pi\)
−0.0383563 0.999264i \(-0.512212\pi\)
\(648\) 0 0
\(649\) −36.0000 −1.41312
\(650\) −1.00000 + 3.46410i −0.0392232 + 0.135873i
\(651\) 0 0
\(652\) −10.0000 17.3205i −0.391630 0.678323i
\(653\) 1.50000 + 2.59808i 0.0586995 + 0.101671i 0.893882 0.448303i \(-0.147971\pi\)
−0.835182 + 0.549973i \(0.814638\pi\)
\(654\) 0 0
\(655\) 3.00000 0.117220
\(656\) −5.00000 + 8.66025i −0.195217 + 0.338126i
\(657\) 0 0
\(658\) 9.00000 0.350857
\(659\) 2.00000 3.46410i 0.0779089 0.134942i −0.824439 0.565951i \(-0.808509\pi\)
0.902348 + 0.431009i \(0.141842\pi\)
\(660\) 0 0
\(661\) −15.0000 25.9808i −0.583432 1.01053i −0.995069 0.0991864i \(-0.968376\pi\)
0.411636 0.911348i \(-0.364957\pi\)
\(662\) −28.0000 −1.08825
\(663\) 0 0
\(664\) −16.0000 −0.620920
\(665\) −4.50000 7.79423i −0.174503 0.302247i
\(666\) 0 0
\(667\) −8.00000 + 13.8564i −0.309761 + 0.536522i
\(668\) −9.00000 −0.348220
\(669\) 0 0
\(670\) 4.00000 6.92820i 0.154533 0.267660i
\(671\) −18.0000 −0.694882
\(672\) 0 0
\(673\) −24.0000 41.5692i −0.925132 1.60238i −0.791349 0.611365i \(-0.790621\pi\)
−0.133783 0.991011i \(-0.542713\pi\)
\(674\) −3.00000 5.19615i −0.115556 0.200148i
\(675\) 0 0
\(676\) −11.0000 6.92820i −0.423077 0.266469i
\(677\) 6.00000 0.230599 0.115299 0.993331i \(-0.463217\pi\)
0.115299 + 0.993331i \(0.463217\pi\)
\(678\) 0 0
\(679\) −12.0000 20.7846i −0.460518 0.797640i
\(680\) 0 0
\(681\) 0 0
\(682\) −9.00000 + 15.5885i −0.344628 + 0.596913i
\(683\) 15.0000 25.9808i 0.573959 0.994126i −0.422195 0.906505i \(-0.638740\pi\)
0.996154 0.0876211i \(-0.0279265\pi\)
\(684\) 0 0
\(685\) 6.00000 10.3923i 0.229248 0.397070i
\(686\) 7.50000 + 12.9904i 0.286351 + 0.495975i
\(687\) 0 0
\(688\) −10.0000 −0.381246
\(689\) 22.5000 + 23.3827i 0.857182 + 0.890809i
\(690\) 0 0
\(691\) 3.50000 + 6.06218i 0.133146 + 0.230616i 0.924888 0.380240i \(-0.124159\pi\)
−0.791742 + 0.610856i \(0.790825\pi\)
\(692\) 6.50000 + 11.2583i 0.247093 + 0.427977i
\(693\) 0 0
\(694\) 24.0000 0.911028
\(695\) 8.50000 14.7224i 0.322423 0.558454i
\(696\) 0 0
\(697\) 0 0
\(698\) −8.00000 + 13.8564i −0.302804 + 0.524473i
\(699\) 0 0
\(700\) −1.50000 2.59808i −0.0566947 0.0981981i
\(701\) −24.0000 −0.906467 −0.453234 0.891392i \(-0.649730\pi\)
−0.453234 + 0.891392i \(0.649730\pi\)
\(702\) 0 0
\(703\) 27.0000 1.01832
\(704\) −1.50000 2.59808i −0.0565334 0.0979187i
\(705\) 0 0
\(706\) −4.00000 + 6.92820i −0.150542 + 0.260746i
\(707\) 0 0
\(708\) 0 0
\(709\) 20.0000 34.6410i 0.751116 1.30097i −0.196167 0.980571i \(-0.562849\pi\)
0.947282 0.320400i \(-0.103817\pi\)
\(710\) 14.0000 0.525411
\(711\) 0 0
\(712\) −1.50000 2.59808i −0.0562149 0.0973670i
\(713\) −12.0000 20.7846i −0.449404 0.778390i
\(714\) 0 0
\(715\) −3.00000 + 10.3923i −0.112194 + 0.388650i
\(716\) −4.00000 −0.149487
\(717\) 0 0
\(718\) 15.0000 + 25.9808i 0.559795 + 0.969593i
\(719\) −18.0000 + 31.1769i −0.671287 + 1.16270i 0.306253 + 0.951950i \(0.400925\pi\)
−0.977539 + 0.210752i \(0.932409\pi\)
\(720\) 0 0
\(721\) 22.5000 38.9711i 0.837944 1.45136i
\(722\) 5.00000 8.66025i 0.186081 0.322301i
\(723\) 0 0
\(724\) 5.00000 8.66025i 0.185824 0.321856i
\(725\) −2.00000 3.46410i −0.0742781 0.128654i
\(726\) 0 0
\(727\) −3.00000 −0.111264 −0.0556319 0.998451i \(-0.517717\pi\)
−0.0556319 + 0.998451i \(0.517717\pi\)
\(728\) 10.5000 2.59808i 0.389156 0.0962911i
\(729\) 0 0
\(730\) 4.00000 + 6.92820i 0.148047 + 0.256424i
\(731\) 0 0
\(732\) 0 0
\(733\) 53.0000 1.95760 0.978800 0.204819i \(-0.0656606\pi\)
0.978800 + 0.204819i \(0.0656606\pi\)
\(734\) −4.00000 + 6.92820i −0.147643 + 0.255725i
\(735\) 0 0
\(736\) 4.00000 0.147442
\(737\) 12.0000 20.7846i 0.442026 0.765611i
\(738\) 0 0
\(739\) −5.50000 9.52628i −0.202321 0.350430i 0.746955 0.664875i \(-0.231515\pi\)
−0.949276 + 0.314445i \(0.898182\pi\)
\(740\) 9.00000 0.330847
\(741\) 0 0
\(742\) −27.0000 −0.991201
\(743\) 24.0000 + 41.5692i 0.880475 + 1.52503i 0.850814 + 0.525467i \(0.176109\pi\)
0.0296605 + 0.999560i \(0.490557\pi\)
\(744\) 0 0
\(745\) −1.00000 + 1.73205i −0.0366372 + 0.0634574i
\(746\) −26.0000 −0.951928
\(747\) 0 0
\(748\) 0 0
\(749\) −6.00000 −0.219235
\(750\) 0 0
\(751\) 12.0000 + 20.7846i 0.437886 + 0.758441i 0.997526 0.0702946i \(-0.0223939\pi\)
−0.559640 + 0.828736i \(0.689061\pi\)
\(752\) −1.50000 2.59808i −0.0546994 0.0947421i
\(753\) 0 0
\(754\) 14.0000 3.46410i 0.509850 0.126155i
\(755\) 14.0000 0.509512
\(756\) 0 0
\(757\) −8.50000 14.7224i −0.308938 0.535096i 0.669193 0.743089i \(-0.266640\pi\)
−0.978130 + 0.207993i \(0.933307\pi\)
\(758\) 16.5000 28.5788i 0.599307 1.03803i
\(759\) 0 0
\(760\) −1.50000 + 2.59808i −0.0544107 + 0.0942421i
\(761\) −15.5000 + 26.8468i −0.561875 + 0.973195i 0.435458 + 0.900209i \(0.356586\pi\)
−0.997333 + 0.0729864i \(0.976747\pi\)
\(762\) 0 0
\(763\) 3.00000 5.19615i 0.108607 0.188113i
\(764\) −3.00000 5.19615i −0.108536 0.187990i
\(765\) 0 0
\(766\) −4.00000 −0.144526
\(767\) −42.0000 + 10.3923i −1.51653 + 0.375244i
\(768\) 0 0
\(769\) −23.0000 39.8372i −0.829401 1.43657i −0.898509 0.438956i \(-0.855348\pi\)
0.0691074 0.997609i \(-0.477985\pi\)
\(770\) −4.50000 7.79423i −0.162169 0.280885i
\(771\) 0 0
\(772\) 8.00000 0.287926
\(773\) −3.50000 + 6.06218i −0.125886 + 0.218041i −0.922079 0.387002i \(-0.873511\pi\)
0.796193 + 0.605043i \(0.206844\pi\)
\(774\) 0 0
\(775\) 6.00000 0.215526
\(776\) −4.00000 + 6.92820i −0.143592 + 0.248708i
\(777\) 0 0
\(778\) 12.0000 + 20.7846i 0.430221 + 0.745164i
\(779\) 30.0000 1.07486
\(780\) 0 0
\(781\) 42.0000 1.50288
\(782\) 0 0
\(783\) 0 0
\(784\) −1.00000 + 1.73205i −0.0357143 + 0.0618590i
\(785\) −17.0000 −0.606756
\(786\) 0 0
\(787\) 18.0000 31.1769i 0.641631 1.11134i −0.343438 0.939175i \(-0.611592\pi\)
0.985069 0.172162i \(-0.0550751\pi\)
\(788\) −11.0000 −0.391859
\(789\) 0 0
\(790\) −3.00000 5.19615i −0.106735 0.184871i
\(791\) −12.0000 20.7846i −0.426671 0.739016i
\(792\) 0 0
\(793\) −21.0000 + 5.19615i −0.745732 + 0.184521i
\(794\) −23.0000 −0.816239
\(795\) 0 0
\(796\) 5.00000 + 8.66025i 0.177220 + 0.306955i
\(797\) −21.0000 + 36.3731i −0.743858 + 1.28840i 0.206868 + 0.978369i \(0.433673\pi\)
−0.950726 + 0.310031i \(0.899660\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) −0.500000 + 0.866025i −0.0176777 + 0.0306186i
\(801\) 0 0
\(802\) −13.5000 + 23.3827i −0.476702 + 0.825671i
\(803\) 12.0000 + 20.7846i 0.423471 + 0.733473i
\(804\) 0 0
\(805\) 12.0000 0.422944
\(806\) −6.00000 + 20.7846i −0.211341 + 0.732107i
\(807\) 0 0
\(808\) 0 0
\(809\) −5.00000 8.66025i −0.175791 0.304478i 0.764644 0.644453i \(-0.222915\pi\)
−0.940435 + 0.339975i \(0.889582\pi\)
\(810\) 0 0
\(811\) −31.0000 −1.08856 −0.544279 0.838905i \(-0.683197\pi\)
−0.544279 + 0.838905i \(0.683197\pi\)
\(812\) −6.00000 + 10.3923i −0.210559 + 0.364698i
\(813\) 0 0
\(814\) 27.0000 0.946350
\(815\) −10.0000 + 17.3205i −0.350285 + 0.606711i
\(816\) 0 0
\(817\) 15.0000 + 25.9808i 0.524784 + 0.908952i
\(818\) −7.00000 −0.244749
\(819\) 0 0
\(820\) 10.0000 0.349215
\(821\) 25.0000 + 43.3013i 0.872506 + 1.51122i 0.859396 + 0.511311i \(0.170840\pi\)
0.0131101 + 0.999914i \(0.495827\pi\)
\(822\) 0 0
\(823\) 5.50000 9.52628i 0.191718 0.332065i −0.754102 0.656758i \(-0.771927\pi\)
0.945820 + 0.324692i \(0.105261\pi\)
\(824\) −15.0000 −0.522550
\(825\) 0 0
\(826\) 18.0000 31.1769i 0.626300 1.08478i
\(827\) 18.0000 0.625921 0.312961 0.949766i \(-0.398679\pi\)
0.312961 + 0.949766i \(0.398679\pi\)
\(828\) 0 0
\(829\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(830\) 8.00000 + 13.8564i 0.277684 + 0.480963i
\(831\) 0 0
\(832\) −2.50000 2.59808i −0.0866719 0.0900721i
\(833\) 0 0
\(834\) 0 0
\(835\) 4.50000 + 7.79423i 0.155729 + 0.269730i
\(836\) −4.50000 + 7.79423i −0.155636 + 0.269569i
\(837\) 0 0
\(838\) −6.00000 + 10.3923i −0.207267 + 0.358996i
\(839\) −3.00000 + 5.19615i −0.103572 + 0.179391i −0.913154 0.407615i \(-0.866360\pi\)
0.809582 + 0.587007i \(0.199694\pi\)
\(840\) 0 0
\(841\) 6.50000 11.2583i 0.224138 0.388218i
\(842\) 14.0000 + 24.2487i 0.482472 + 0.835666i
\(843\) 0 0
\(844\) 9.00000 0.309793
\(845\) −0.500000 + 12.9904i −0.0172005 + 0.446883i
\(846\) 0 0
\(847\) 3.00000 + 5.19615i 0.103081 + 0.178542i
\(848\) 4.50000 + 7.79423i 0.154531 + 0.267655i
\(849\) 0 0
\(850\) 0 0
\(851\) −18.0000 + 31.1769i −0.617032 + 1.06873i
\(852\) 0 0
\(853\) −26.0000 −0.890223 −0.445112 0.895475i \(-0.646836\pi\)
−0.445112 + 0.895475i \(0.646836\pi\)
\(854\) 9.00000 15.5885i 0.307974 0.533426i
\(855\) 0 0
\(856\) 1.00000 + 1.73205i 0.0341793 + 0.0592003i
\(857\) 50.0000 1.70797 0.853984 0.520300i \(-0.174180\pi\)
0.853984 + 0.520300i \(0.174180\pi\)
\(858\) 0 0
\(859\) −5.00000 −0.170598 −0.0852989 0.996355i \(-0.527185\pi\)
−0.0852989 + 0.996355i \(0.527185\pi\)
\(860\) 5.00000 + 8.66025i 0.170499 + 0.295312i
\(861\) 0 0
\(862\) −6.00000 + 10.3923i −0.204361 + 0.353963i
\(863\) 24.0000 0.816970 0.408485 0.912765i \(-0.366057\pi\)
0.408485 + 0.912765i \(0.366057\pi\)
\(864\) 0 0
\(865\) 6.50000 11.2583i 0.221007 0.382795i
\(866\) −16.0000 −0.543702
\(867\) 0 0
\(868\) −9.00000 15.5885i −0.305480 0.529107i
\(869\) −9.00000 15.5885i −0.305304 0.528802i
\(870\) 0 0
\(871\) 8.00000 27.7128i 0.271070 0.939013i
\(872\) −2.00000 −0.0677285
\(873\) 0 0
\(874\) −6.00000 10.3923i −0.202953 0.351525i
\(875\) −1.50000 + 2.59808i −0.0507093 + 0.0878310i
\(876\) 0 0
\(877\) 19.0000 32.9090i 0.641584 1.11126i −0.343495 0.939155i \(-0.611611\pi\)
0.985079 0.172102i \(-0.0550559\pi\)
\(878\) 15.0000 25.9808i 0.506225 0.876808i
\(879\) 0 0
\(880\) −1.50000 + 2.59808i −0.0505650 + 0.0875811i
\(881\) −11.5000 19.9186i −0.387445 0.671074i 0.604660 0.796484i \(-0.293309\pi\)
−0.992105 + 0.125409i \(0.959976\pi\)
\(882\) 0 0
\(883\) 22.0000 0.740359 0.370179 0.928960i \(-0.379296\pi\)
0.370179 + 0.928960i \(0.379296\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) −5.00000 8.66025i −0.167978 0.290947i
\(887\) 4.50000 + 7.79423i 0.151095 + 0.261705i 0.931630 0.363407i \(-0.118387\pi\)
−0.780535 + 0.625112i \(0.785053\pi\)
\(888\) 0 0
\(889\) 9.00000 0.301850
\(890\) −1.50000 + 2.59808i −0.0502801 + 0.0870877i
\(891\) 0 0
\(892\) −11.0000 −0.368307
\(893\) −4.50000 + 7.79423i −0.150587 + 0.260824i
\(894\) 0 0
\(895\) 2.00000 + 3.46410i 0.0668526 + 0.115792i
\(896\) 3.00000 0.100223
\(897\) 0 0
\(898\) 35.0000 1.16797
\(899\) −12.0000 20.7846i −0.400222 0.693206i
\(900\) 0 0
\(901\) 0 0
\(902\) 30.0000 0.998891
\(903\) 0 0
\(904\) −4.00000 + 6.92820i −0.133038 + 0.230429i
\(905\) −10.0000 −0.332411
\(906\) 0 0
\(907\) 7.00000 + 12.1244i 0.232431 + 0.402583i 0.958523 0.285015i \(-0.0919986\pi\)
−0.726092 + 0.687598i \(0.758665\pi\)
\(908\) −8.00000 13.8564i −0.265489 0.459841i
\(909\) 0 0
\(910\) −7.50000 7.79423i −0.248623 0.258376i
\(911\) −28.0000 −0.927681 −0.463841 0.885919i \(-0.653529\pi\)
−0.463841 + 0.885919i \(0.653529\pi\)
\(912\) 0 0
\(913\) 24.0000 + 41.5692i 0.794284 + 1.37574i
\(914\) 21.0000 36.3731i 0.694618 1.20311i
\(915\) 0 0
\(916\) 5.00000 8.66025i 0.165205 0.286143i
\(917\) −4.50000 + 7.79423i −0.148603 + 0.257388i
\(918\) 0 0
\(919\) −7.00000 + 12.1244i −0.230909 + 0.399946i −0.958076 0.286515i \(-0.907503\pi\)
0.727167 + 0.686461i \(0.240837\pi\)
\(920\) −2.00000 3.46410i −0.0659380 0.114208i
\(921\) 0 0
\(922\) 32.0000 1.05386
\(923\) 49.0000 12.1244i 1.61285 0.399078i
\(924\) 0 0
\(925\) −4.50000 7.79423i −0.147959 0.256273i
\(926\) 12.0000 + 20.7846i 0.394344 + 0.683025i
\(927\) 0 0
\(928\) 4.00000 0.131306
\(929\) 1.00000 1.73205i 0.0328089 0.0568267i −0.849155 0.528144i \(-0.822888\pi\)
0.881964 + 0.471317i \(0.156221\pi\)
\(930\) 0 0
\(931\) 6.00000 0.196642
\(932\) −3.00000 + 5.19615i −0.0982683 + 0.170206i
\(933\) 0 0
\(934\) 4.00000 + 6.92820i 0.130884 + 0.226698i
\(935\) 0 0
\(936\) 0 0
\(937\) 14.0000 0.457360 0.228680 0.973502i \(-0.426559\pi\)
0.228680 + 0.973502i \(0.426559\pi\)
\(938\) 12.0000 + 20.7846i 0.391814 + 0.678642i
\(939\) 0 0
\(940\) −1.50000 + 2.59808i −0.0489246 + 0.0847399i
\(941\) 32.0000 1.04317 0.521585 0.853199i \(-0.325341\pi\)
0.521585 + 0.853199i \(0.325341\pi\)
\(942\) 0 0
\(943\) −20.0000 + 34.6410i −0.651290 + 1.12807i
\(944\) −12.0000 −0.390567
\(945\) 0 0
\(946\) 15.0000 + 25.9808i 0.487692 + 0.844707i
\(947\) 9.00000 + 15.5885i 0.292461 + 0.506557i 0.974391 0.224860i \(-0.0721926\pi\)
−0.681930 + 0.731417i \(0.738859\pi\)
\(948\) 0 0
\(949\) 20.0000 + 20.7846i 0.649227 + 0.674697i
\(950\) 3.00000 0.0973329
\(951\) 0 0
\(952\) 0 0
\(953\) 17.0000 29.4449i 0.550684 0.953813i −0.447541 0.894263i \(-0.647700\pi\)
0.998225 0.0595495i \(-0.0189664\pi\)
\(954\) 0 0
\(955\) −3.00000 + 5.19615i −0.0970777 + 0.168144i
\(956\) −13.0000 + 22.5167i −0.420450 + 0.728241i
\(957\) 0 0
\(958\) 6.00000 10.3923i 0.193851 0.335760i
\(959\) 18.0000 + 31.1769i 0.581250 + 1.00676i
\(960\) 0 0
\(961\) 5.00000 0.161290
\(962\) 31.5000 7.79423i 1.01560 0.251296i
\(963\) 0 0
\(964\) −3.50000 6.06218i −0.112727 0.195250i
\(965\) −4.00000 6.92820i −0.128765 0.223027i
\(966\) 0 0
\(967\) 25.0000 0.803946 0.401973 0.915652i \(-0.368325\pi\)
0.401973 + 0.915652i \(0.368325\pi\)
\(968\) 1.00000 1.73205i 0.0321412 0.0556702i
\(969\) 0 0
\(970\) 8.00000 0.256865
\(971\) 7.50000 12.9904i 0.240686 0.416881i −0.720224 0.693742i \(-0.755961\pi\)
0.960910 + 0.276861i \(0.0892941\pi\)
\(972\) 0 0
\(973\) 25.5000 + 44.1673i 0.817492 + 1.41594i
\(974\) 29.0000 0.929220
\(975\) 0 0
\(976\) −6.00000 −0.192055
\(977\) −22.0000 38.1051i −0.703842 1.21909i −0.967108 0.254367i \(-0.918133\pi\)
0.263265 0.964723i \(-0.415201\pi\)
\(978\) 0 0
\(979\) −4.50000 + 7.79423i −0.143821 + 0.249105i
\(980\) 2.00000 0.0638877
\(981\) 0 0
\(982\) 2.50000 4.33013i 0.0797782 0.138180i
\(983\) −55.0000 −1.75423 −0.877114 0.480283i \(-0.840534\pi\)
−0.877114 + 0.480283i \(0.840534\pi\)
\(984\) 0 0
\(985\) 5.50000 + 9.52628i 0.175245 + 0.303533i
\(986\) 0 0
\(987\) 0 0
\(988\) −3.00000 + 10.3923i −0.0954427 + 0.330623i
\(989\) −40.0000 −1.27193
\(990\) 0 0
\(991\) −29.0000 50.2295i −0.921215 1.59559i −0.797537 0.603269i \(-0.793864\pi\)
−0.123678 0.992322i \(-0.539469\pi\)
\(992\) −3.00000 + 5.19615i −0.0952501 + 0.164978i
\(993\) 0 0
\(994\) −21.0000 + 36.3731i −0.666080 + 1.15368i
\(995\) 5.00000 8.66025i 0.158511 0.274549i
\(996\) 0 0
\(997\) −23.5000 + 40.7032i −0.744252 + 1.28908i 0.206291 + 0.978491i \(0.433861\pi\)
−0.950543 + 0.310592i \(0.899473\pi\)
\(998\) −10.0000 17.3205i −0.316544 0.548271i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1170.2.i.c.991.1 2
3.2 odd 2 390.2.i.e.211.1 yes 2
13.9 even 3 inner 1170.2.i.c.451.1 2
15.2 even 4 1950.2.z.d.1849.1 4
15.8 even 4 1950.2.z.d.1849.2 4
15.14 odd 2 1950.2.i.f.601.1 2
39.2 even 12 5070.2.b.b.1351.2 2
39.11 even 12 5070.2.b.b.1351.1 2
39.23 odd 6 5070.2.a.r.1.1 1
39.29 odd 6 5070.2.a.b.1.1 1
39.35 odd 6 390.2.i.e.61.1 2
195.74 odd 6 1950.2.i.f.451.1 2
195.113 even 12 1950.2.z.d.1699.1 4
195.152 even 12 1950.2.z.d.1699.2 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
390.2.i.e.61.1 2 39.35 odd 6
390.2.i.e.211.1 yes 2 3.2 odd 2
1170.2.i.c.451.1 2 13.9 even 3 inner
1170.2.i.c.991.1 2 1.1 even 1 trivial
1950.2.i.f.451.1 2 195.74 odd 6
1950.2.i.f.601.1 2 15.14 odd 2
1950.2.z.d.1699.1 4 195.113 even 12
1950.2.z.d.1699.2 4 195.152 even 12
1950.2.z.d.1849.1 4 15.2 even 4
1950.2.z.d.1849.2 4 15.8 even 4
5070.2.a.b.1.1 1 39.29 odd 6
5070.2.a.r.1.1 1 39.23 odd 6
5070.2.b.b.1351.1 2 39.11 even 12
5070.2.b.b.1351.2 2 39.2 even 12