Properties

Label 1170.2.e.f.469.6
Level $1170$
Weight $2$
Character 1170.469
Analytic conductor $9.342$
Analytic rank $0$
Dimension $6$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1170,2,Mod(469,1170)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1170, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1170.469"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1170.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [6,0,0,-6,0,0,0,0,0,-4,-12] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.34249703649\)
Analytic rank: \(0\)
Dimension: \(6\)
Coefficient field: 6.0.3534400.1
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{6} - 2x^{5} - 3x^{4} + 16x^{3} + x^{2} - 12x + 40 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 469.6
Root \(0.627553 - 1.14620i\) of defining polynomial
Character \(\chi\) \(=\) 1170.469
Dual form 1170.2.e.f.469.3

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{4} +(1.14620 - 1.91995i) q^{5} +1.25511i q^{7} -1.00000i q^{8} +(1.91995 + 1.14620i) q^{10} -2.00000 q^{11} +1.00000i q^{13} -1.25511 q^{14} +1.00000 q^{16} +4.80261i q^{17} +5.09501 q^{19} +(-1.14620 + 1.91995i) q^{20} -2.00000i q^{22} +2.58480i q^{23} +(-2.37245 - 4.40131i) q^{25} -1.00000 q^{26} -1.25511i q^{28} +5.09501 q^{29} +8.58480 q^{31} +1.00000i q^{32} -4.80261 q^{34} +(2.40974 + 1.43860i) q^{35} +7.83991i q^{37} +5.09501i q^{38} +(-1.91995 - 1.14620i) q^{40} +9.67982 q^{41} -10.8772i q^{43} +2.00000 q^{44} -2.58480 q^{46} -2.74489i q^{47} +5.42471 q^{49} +(4.40131 - 2.37245i) q^{50} -1.00000i q^{52} +2.58480i q^{53} +(-2.29240 + 3.83991i) q^{55} +1.25511 q^{56} +5.09501i q^{58} -5.09501 q^{59} +13.6798 q^{61} +8.58480i q^{62} -1.00000 q^{64} +(1.91995 + 1.14620i) q^{65} +8.58480i q^{67} -4.80261i q^{68} +(-1.43860 + 2.40974i) q^{70} -5.38741 q^{71} -6.00000i q^{73} -7.83991 q^{74} -5.09501 q^{76} -2.51021i q^{77} -15.0950 q^{79} +(1.14620 - 1.91995i) q^{80} +9.67982i q^{82} +11.0950i q^{83} +(9.22079 + 5.50476i) q^{85} +10.8772 q^{86} +2.00000i q^{88} +5.09501 q^{89} -1.25511 q^{91} -2.58480i q^{92} +2.74489 q^{94} +(5.83991 - 9.78219i) q^{95} -6.26462i q^{97} +5.42471i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 6 q - 6 q^{4} - 4 q^{10} - 12 q^{11} - 4 q^{14} + 6 q^{16} - 4 q^{19} - 16 q^{25} - 6 q^{26} - 4 q^{29} + 24 q^{31} - 8 q^{34} + 6 q^{35} + 4 q^{40} - 4 q^{41} + 12 q^{44} + 12 q^{46} - 26 q^{49} + 16 q^{50}+ \cdots + 4 q^{95}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1170\mathbb{Z}\right)^\times\).

\(n\) \(911\) \(937\) \(1081\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) 1.14620 1.91995i 0.512597 0.858630i
\(6\) 0 0
\(7\) 1.25511i 0.474385i 0.971463 + 0.237193i \(0.0762272\pi\)
−0.971463 + 0.237193i \(0.923773\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 1.91995 + 1.14620i 0.607143 + 0.362461i
\(11\) −2.00000 −0.603023 −0.301511 0.953463i \(-0.597491\pi\)
−0.301511 + 0.953463i \(0.597491\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) −1.25511 −0.335441
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 4.80261i 1.16480i 0.812901 + 0.582402i \(0.197887\pi\)
−0.812901 + 0.582402i \(0.802113\pi\)
\(18\) 0 0
\(19\) 5.09501 1.16888 0.584438 0.811438i \(-0.301315\pi\)
0.584438 + 0.811438i \(0.301315\pi\)
\(20\) −1.14620 + 1.91995i −0.256298 + 0.429315i
\(21\) 0 0
\(22\) 2.00000i 0.426401i
\(23\) 2.58480i 0.538969i 0.963005 + 0.269484i \(0.0868533\pi\)
−0.963005 + 0.269484i \(0.913147\pi\)
\(24\) 0 0
\(25\) −2.37245 4.40131i −0.474489 0.880261i
\(26\) −1.00000 −0.196116
\(27\) 0 0
\(28\) 1.25511i 0.237193i
\(29\) 5.09501 0.946120 0.473060 0.881030i \(-0.343149\pi\)
0.473060 + 0.881030i \(0.343149\pi\)
\(30\) 0 0
\(31\) 8.58480 1.54188 0.770938 0.636910i \(-0.219788\pi\)
0.770938 + 0.636910i \(0.219788\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) −4.80261 −0.823641
\(35\) 2.40974 + 1.43860i 0.407321 + 0.243168i
\(36\) 0 0
\(37\) 7.83991i 1.28887i 0.764658 + 0.644436i \(0.222908\pi\)
−0.764658 + 0.644436i \(0.777092\pi\)
\(38\) 5.09501i 0.826520i
\(39\) 0 0
\(40\) −1.91995 1.14620i −0.303571 0.181230i
\(41\) 9.67982 1.51173 0.755867 0.654726i \(-0.227216\pi\)
0.755867 + 0.654726i \(0.227216\pi\)
\(42\) 0 0
\(43\) 10.8772i 1.65876i −0.558686 0.829379i \(-0.688694\pi\)
0.558686 0.829379i \(-0.311306\pi\)
\(44\) 2.00000 0.301511
\(45\) 0 0
\(46\) −2.58480 −0.381108
\(47\) 2.74489i 0.400384i −0.979757 0.200192i \(-0.935843\pi\)
0.979757 0.200192i \(-0.0641566\pi\)
\(48\) 0 0
\(49\) 5.42471 0.774959
\(50\) 4.40131 2.37245i 0.622439 0.335515i
\(51\) 0 0
\(52\) 1.00000i 0.138675i
\(53\) 2.58480i 0.355050i 0.984116 + 0.177525i \(0.0568091\pi\)
−0.984116 + 0.177525i \(0.943191\pi\)
\(54\) 0 0
\(55\) −2.29240 + 3.83991i −0.309107 + 0.517773i
\(56\) 1.25511 0.167720
\(57\) 0 0
\(58\) 5.09501i 0.669008i
\(59\) −5.09501 −0.663314 −0.331657 0.943400i \(-0.607608\pi\)
−0.331657 + 0.943400i \(0.607608\pi\)
\(60\) 0 0
\(61\) 13.6798 1.75152 0.875761 0.482746i \(-0.160361\pi\)
0.875761 + 0.482746i \(0.160361\pi\)
\(62\) 8.58480i 1.09027i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 1.91995 + 1.14620i 0.238141 + 0.142169i
\(66\) 0 0
\(67\) 8.58480i 1.04880i 0.851472 + 0.524400i \(0.175710\pi\)
−0.851472 + 0.524400i \(0.824290\pi\)
\(68\) 4.80261i 0.582402i
\(69\) 0 0
\(70\) −1.43860 + 2.40974i −0.171946 + 0.288020i
\(71\) −5.38741 −0.639369 −0.319684 0.947524i \(-0.603577\pi\)
−0.319684 + 0.947524i \(0.603577\pi\)
\(72\) 0 0
\(73\) 6.00000i 0.702247i −0.936329 0.351123i \(-0.885800\pi\)
0.936329 0.351123i \(-0.114200\pi\)
\(74\) −7.83991 −0.911371
\(75\) 0 0
\(76\) −5.09501 −0.584438
\(77\) 2.51021i 0.286065i
\(78\) 0 0
\(79\) −15.0950 −1.69832 −0.849161 0.528134i \(-0.822892\pi\)
−0.849161 + 0.528134i \(0.822892\pi\)
\(80\) 1.14620 1.91995i 0.128149 0.214657i
\(81\) 0 0
\(82\) 9.67982i 1.06896i
\(83\) 11.0950i 1.21784i 0.793233 + 0.608918i \(0.208396\pi\)
−0.793233 + 0.608918i \(0.791604\pi\)
\(84\) 0 0
\(85\) 9.22079 + 5.50476i 1.00014 + 0.597075i
\(86\) 10.8772 1.17292
\(87\) 0 0
\(88\) 2.00000i 0.213201i
\(89\) 5.09501 0.540070 0.270035 0.962850i \(-0.412965\pi\)
0.270035 + 0.962850i \(0.412965\pi\)
\(90\) 0 0
\(91\) −1.25511 −0.131571
\(92\) 2.58480i 0.269484i
\(93\) 0 0
\(94\) 2.74489 0.283114
\(95\) 5.83991 9.78219i 0.599162 1.00363i
\(96\) 0 0
\(97\) 6.26462i 0.636076i −0.948078 0.318038i \(-0.896976\pi\)
0.948078 0.318038i \(-0.103024\pi\)
\(98\) 5.42471i 0.547979i
\(99\) 0 0
\(100\) 2.37245 + 4.40131i 0.237245 + 0.440131i
\(101\) 12.6594 1.25966 0.629829 0.776734i \(-0.283125\pi\)
0.629829 + 0.776734i \(0.283125\pi\)
\(102\) 0 0
\(103\) 7.60522i 0.749365i 0.927153 + 0.374682i \(0.122248\pi\)
−0.927153 + 0.374682i \(0.877752\pi\)
\(104\) 1.00000 0.0980581
\(105\) 0 0
\(106\) −2.58480 −0.251058
\(107\) 4.58480i 0.443230i 0.975134 + 0.221615i \(0.0711328\pi\)
−0.975134 + 0.221615i \(0.928867\pi\)
\(108\) 0 0
\(109\) −14.8772 −1.42498 −0.712489 0.701683i \(-0.752432\pi\)
−0.712489 + 0.701683i \(0.752432\pi\)
\(110\) −3.83991 2.29240i −0.366121 0.218572i
\(111\) 0 0
\(112\) 1.25511i 0.118596i
\(113\) 4.00000i 0.376288i −0.982141 0.188144i \(-0.939753\pi\)
0.982141 0.188144i \(-0.0602472\pi\)
\(114\) 0 0
\(115\) 4.96270 + 2.96270i 0.462774 + 0.276274i
\(116\) −5.09501 −0.473060
\(117\) 0 0
\(118\) 5.09501i 0.469034i
\(119\) −6.02778 −0.552566
\(120\) 0 0
\(121\) −7.00000 −0.636364
\(122\) 13.6798i 1.23851i
\(123\) 0 0
\(124\) −8.58480 −0.770938
\(125\) −11.1696 0.489790i −0.999040 0.0438081i
\(126\) 0 0
\(127\) 1.41520i 0.125578i −0.998027 0.0627892i \(-0.980000\pi\)
0.998027 0.0627892i \(-0.0199996\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) −1.14620 + 1.91995i −0.100528 + 0.168391i
\(131\) −11.0095 −0.961906 −0.480953 0.876746i \(-0.659709\pi\)
−0.480953 + 0.876746i \(0.659709\pi\)
\(132\) 0 0
\(133\) 6.39478i 0.554497i
\(134\) −8.58480 −0.741614
\(135\) 0 0
\(136\) 4.80261 0.411821
\(137\) 14.5848i 1.24606i 0.782196 + 0.623032i \(0.214099\pi\)
−0.782196 + 0.623032i \(0.785901\pi\)
\(138\) 0 0
\(139\) −7.32970 −0.621697 −0.310848 0.950459i \(-0.600613\pi\)
−0.310848 + 0.950459i \(0.600613\pi\)
\(140\) −2.40974 1.43860i −0.203661 0.121584i
\(141\) 0 0
\(142\) 5.38741i 0.452102i
\(143\) 2.00000i 0.167248i
\(144\) 0 0
\(145\) 5.83991 9.78219i 0.484978 0.812367i
\(146\) 6.00000 0.496564
\(147\) 0 0
\(148\) 7.83991i 0.644436i
\(149\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(150\) 0 0
\(151\) −14.5570 −1.18463 −0.592317 0.805705i \(-0.701787\pi\)
−0.592317 + 0.805705i \(0.701787\pi\)
\(152\) 5.09501i 0.413260i
\(153\) 0 0
\(154\) 2.51021 0.202278
\(155\) 9.83991 16.4824i 0.790360 1.32390i
\(156\) 0 0
\(157\) 13.0950i 1.04510i −0.852610 0.522548i \(-0.824982\pi\)
0.852610 0.522548i \(-0.175018\pi\)
\(158\) 15.0950i 1.20089i
\(159\) 0 0
\(160\) 1.91995 + 1.14620i 0.151786 + 0.0906151i
\(161\) −3.24420 −0.255679
\(162\) 0 0
\(163\) 12.2646i 0.960639i 0.877094 + 0.480320i \(0.159479\pi\)
−0.877094 + 0.480320i \(0.840521\pi\)
\(164\) −9.67982 −0.755867
\(165\) 0 0
\(166\) −11.0950 −0.861140
\(167\) 18.3392i 1.41913i −0.704640 0.709565i \(-0.748891\pi\)
0.704640 0.709565i \(-0.251109\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) −5.50476 + 9.22079i −0.422196 + 0.707203i
\(171\) 0 0
\(172\) 10.8772i 0.829379i
\(173\) 9.41520i 0.715824i 0.933755 + 0.357912i \(0.116511\pi\)
−0.933755 + 0.357912i \(0.883489\pi\)
\(174\) 0 0
\(175\) 5.52410 2.97767i 0.417583 0.225091i
\(176\) −2.00000 −0.150756
\(177\) 0 0
\(178\) 5.09501i 0.381887i
\(179\) −7.32970 −0.547847 −0.273924 0.961751i \(-0.588322\pi\)
−0.273924 + 0.961751i \(0.588322\pi\)
\(180\) 0 0
\(181\) 11.7544 0.873698 0.436849 0.899535i \(-0.356094\pi\)
0.436849 + 0.899535i \(0.356094\pi\)
\(182\) 1.25511i 0.0930346i
\(183\) 0 0
\(184\) 2.58480 0.190554
\(185\) 15.0523 + 8.98611i 1.10666 + 0.660672i
\(186\) 0 0
\(187\) 9.60522i 0.702403i
\(188\) 2.74489i 0.200192i
\(189\) 0 0
\(190\) 9.78219 + 5.83991i 0.709675 + 0.423671i
\(191\) 1.60522 0.116150 0.0580749 0.998312i \(-0.481504\pi\)
0.0580749 + 0.998312i \(0.481504\pi\)
\(192\) 0 0
\(193\) 15.7544i 1.13403i −0.823708 0.567014i \(-0.808099\pi\)
0.823708 0.567014i \(-0.191901\pi\)
\(194\) 6.26462 0.449773
\(195\) 0 0
\(196\) −5.42471 −0.387479
\(197\) 1.00951i 0.0719249i −0.999353 0.0359625i \(-0.988550\pi\)
0.999353 0.0359625i \(-0.0114497\pi\)
\(198\) 0 0
\(199\) −0.435617 −0.0308801 −0.0154400 0.999881i \(-0.504915\pi\)
−0.0154400 + 0.999881i \(0.504915\pi\)
\(200\) −4.40131 + 2.37245i −0.311219 + 0.167757i
\(201\) 0 0
\(202\) 12.6594i 0.890712i
\(203\) 6.39478i 0.448825i
\(204\) 0 0
\(205\) 11.0950 18.5848i 0.774909 1.29802i
\(206\) −7.60522 −0.529881
\(207\) 0 0
\(208\) 1.00000i 0.0693375i
\(209\) −10.1900 −0.704859
\(210\) 0 0
\(211\) 16.3501 1.12559 0.562794 0.826597i \(-0.309726\pi\)
0.562794 + 0.826597i \(0.309726\pi\)
\(212\) 2.58480i 0.177525i
\(213\) 0 0
\(214\) −4.58480 −0.313411
\(215\) −20.8837 12.4675i −1.42426 0.850274i
\(216\) 0 0
\(217\) 10.7748i 0.731443i
\(218\) 14.8772i 1.00761i
\(219\) 0 0
\(220\) 2.29240 3.83991i 0.154554 0.258887i
\(221\) −4.80261 −0.323059
\(222\) 0 0
\(223\) 21.7843i 1.45879i −0.684094 0.729394i \(-0.739802\pi\)
0.684094 0.729394i \(-0.260198\pi\)
\(224\) −1.25511 −0.0838602
\(225\) 0 0
\(226\) 4.00000 0.266076
\(227\) 9.02042i 0.598706i −0.954142 0.299353i \(-0.903229\pi\)
0.954142 0.299353i \(-0.0967709\pi\)
\(228\) 0 0
\(229\) −4.68718 −0.309737 −0.154869 0.987935i \(-0.549495\pi\)
−0.154869 + 0.987935i \(0.549495\pi\)
\(230\) −2.96270 + 4.96270i −0.195355 + 0.327231i
\(231\) 0 0
\(232\) 5.09501i 0.334504i
\(233\) 13.5366i 0.886812i −0.896321 0.443406i \(-0.853770\pi\)
0.896321 0.443406i \(-0.146230\pi\)
\(234\) 0 0
\(235\) −5.27007 3.14620i −0.343782 0.205236i
\(236\) 5.09501 0.331657
\(237\) 0 0
\(238\) 6.02778i 0.390723i
\(239\) 3.19739 0.206822 0.103411 0.994639i \(-0.467024\pi\)
0.103411 + 0.994639i \(0.467024\pi\)
\(240\) 0 0
\(241\) 14.1154 0.909255 0.454627 0.890682i \(-0.349772\pi\)
0.454627 + 0.890682i \(0.349772\pi\)
\(242\) 7.00000i 0.449977i
\(243\) 0 0
\(244\) −13.6798 −0.875761
\(245\) 6.21781 10.4152i 0.397241 0.665403i
\(246\) 0 0
\(247\) 5.09501i 0.324188i
\(248\) 8.58480i 0.545136i
\(249\) 0 0
\(250\) 0.489790 11.1696i 0.0309770 0.706428i
\(251\) 21.1696 1.33621 0.668107 0.744065i \(-0.267105\pi\)
0.668107 + 0.744065i \(0.267105\pi\)
\(252\) 0 0
\(253\) 5.16961i 0.325010i
\(254\) 1.41520 0.0887973
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 8.21781i 0.512613i 0.966596 + 0.256306i \(0.0825056\pi\)
−0.966596 + 0.256306i \(0.917494\pi\)
\(258\) 0 0
\(259\) −9.83991 −0.611422
\(260\) −1.91995 1.14620i −0.119070 0.0710844i
\(261\) 0 0
\(262\) 11.0095i 0.680170i
\(263\) 4.51021i 0.278111i 0.990285 + 0.139056i \(0.0444067\pi\)
−0.990285 + 0.139056i \(0.955593\pi\)
\(264\) 0 0
\(265\) 4.96270 + 2.96270i 0.304856 + 0.181997i
\(266\) −6.39478 −0.392089
\(267\) 0 0
\(268\) 8.58480i 0.524400i
\(269\) −8.51021 −0.518877 −0.259438 0.965760i \(-0.583537\pi\)
−0.259438 + 0.965760i \(0.583537\pi\)
\(270\) 0 0
\(271\) 4.95180 0.300800 0.150400 0.988625i \(-0.451944\pi\)
0.150400 + 0.988625i \(0.451944\pi\)
\(272\) 4.80261i 0.291201i
\(273\) 0 0
\(274\) −14.5848 −0.881100
\(275\) 4.74489 + 8.80261i 0.286128 + 0.530817i
\(276\) 0 0
\(277\) 19.8698i 1.19386i −0.802292 0.596932i \(-0.796386\pi\)
0.802292 0.596932i \(-0.203614\pi\)
\(278\) 7.32970i 0.439606i
\(279\) 0 0
\(280\) 1.43860 2.40974i 0.0859729 0.144010i
\(281\) −30.2646 −1.80544 −0.902718 0.430233i \(-0.858431\pi\)
−0.902718 + 0.430233i \(0.858431\pi\)
\(282\) 0 0
\(283\) 26.9240i 1.60047i 0.599689 + 0.800233i \(0.295291\pi\)
−0.599689 + 0.800233i \(0.704709\pi\)
\(284\) 5.38741 0.319684
\(285\) 0 0
\(286\) 2.00000 0.118262
\(287\) 12.1492i 0.717144i
\(288\) 0 0
\(289\) −6.06508 −0.356769
\(290\) 9.78219 + 5.83991i 0.574430 + 0.342931i
\(291\) 0 0
\(292\) 6.00000i 0.351123i
\(293\) 5.18051i 0.302649i −0.988484 0.151324i \(-0.951646\pi\)
0.988484 0.151324i \(-0.0483538\pi\)
\(294\) 0 0
\(295\) −5.83991 + 9.78219i −0.340013 + 0.569541i
\(296\) 7.83991 0.455685
\(297\) 0 0
\(298\) 0 0
\(299\) −2.58480 −0.149483
\(300\) 0 0
\(301\) 13.6520 0.786890
\(302\) 14.5570i 0.837662i
\(303\) 0 0
\(304\) 5.09501 0.292219
\(305\) 15.6798 26.2646i 0.897824 1.50391i
\(306\) 0 0
\(307\) 0.320184i 0.0182738i 0.999958 + 0.00913692i \(0.00290841\pi\)
−0.999958 + 0.00913692i \(0.997092\pi\)
\(308\) 2.51021i 0.143032i
\(309\) 0 0
\(310\) 16.4824 + 9.83991i 0.936139 + 0.558869i
\(311\) 9.86984 0.559667 0.279834 0.960048i \(-0.409721\pi\)
0.279834 + 0.960048i \(0.409721\pi\)
\(312\) 0 0
\(313\) 10.6126i 0.599859i 0.953961 + 0.299929i \(0.0969631\pi\)
−0.953961 + 0.299929i \(0.903037\pi\)
\(314\) 13.0950 0.738994
\(315\) 0 0
\(316\) 15.0950 0.849161
\(317\) 12.1900i 0.684660i −0.939580 0.342330i \(-0.888784\pi\)
0.939580 0.342330i \(-0.111216\pi\)
\(318\) 0 0
\(319\) −10.1900 −0.570532
\(320\) −1.14620 + 1.91995i −0.0640746 + 0.107329i
\(321\) 0 0
\(322\) 3.24420i 0.180792i
\(323\) 24.4694i 1.36151i
\(324\) 0 0
\(325\) 4.40131 2.37245i 0.244141 0.131600i
\(326\) −12.2646 −0.679274
\(327\) 0 0
\(328\) 9.67982i 0.534478i
\(329\) 3.44513 0.189936
\(330\) 0 0
\(331\) −17.9444 −0.986315 −0.493158 0.869940i \(-0.664157\pi\)
−0.493158 + 0.869940i \(0.664157\pi\)
\(332\) 11.0950i 0.608918i
\(333\) 0 0
\(334\) 18.3392 1.00348
\(335\) 16.4824 + 9.83991i 0.900531 + 0.537612i
\(336\) 0 0
\(337\) 20.9518i 1.14132i −0.821187 0.570659i \(-0.806688\pi\)
0.821187 0.570659i \(-0.193312\pi\)
\(338\) 1.00000i 0.0543928i
\(339\) 0 0
\(340\) −9.22079 5.50476i −0.500068 0.298537i
\(341\) −17.1696 −0.929786
\(342\) 0 0
\(343\) 15.5943i 0.842014i
\(344\) −10.8772 −0.586460
\(345\) 0 0
\(346\) −9.41520 −0.506164
\(347\) 3.51757i 0.188833i −0.995533 0.0944166i \(-0.969901\pi\)
0.995533 0.0944166i \(-0.0300986\pi\)
\(348\) 0 0
\(349\) −17.8568 −0.955852 −0.477926 0.878400i \(-0.658611\pi\)
−0.477926 + 0.878400i \(0.658611\pi\)
\(350\) 2.97767 + 5.52410i 0.159163 + 0.295276i
\(351\) 0 0
\(352\) 2.00000i 0.106600i
\(353\) 36.9240i 1.96527i −0.185557 0.982634i \(-0.559409\pi\)
0.185557 0.982634i \(-0.440591\pi\)
\(354\) 0 0
\(355\) −6.17506 + 10.3436i −0.327738 + 0.548981i
\(356\) −5.09501 −0.270035
\(357\) 0 0
\(358\) 7.32970i 0.387387i
\(359\) −6.77483 −0.357562 −0.178781 0.983889i \(-0.557215\pi\)
−0.178781 + 0.983889i \(0.557215\pi\)
\(360\) 0 0
\(361\) 6.95916 0.366272
\(362\) 11.7544i 0.617798i
\(363\) 0 0
\(364\) 1.25511 0.0657854
\(365\) −11.5197 6.87720i −0.602970 0.359969i
\(366\) 0 0
\(367\) 7.80997i 0.407677i −0.979004 0.203839i \(-0.934658\pi\)
0.979004 0.203839i \(-0.0653418\pi\)
\(368\) 2.58480i 0.134742i
\(369\) 0 0
\(370\) −8.98611 + 15.0523i −0.467166 + 0.782530i
\(371\) −3.24420 −0.168430
\(372\) 0 0
\(373\) 15.8698i 0.821709i 0.911701 + 0.410855i \(0.134770\pi\)
−0.911701 + 0.410855i \(0.865230\pi\)
\(374\) 9.60522 0.496674
\(375\) 0 0
\(376\) −2.74489 −0.141557
\(377\) 5.09501i 0.262407i
\(378\) 0 0
\(379\) 16.7748 0.861665 0.430833 0.902432i \(-0.358220\pi\)
0.430833 + 0.902432i \(0.358220\pi\)
\(380\) −5.83991 + 9.78219i −0.299581 + 0.501816i
\(381\) 0 0
\(382\) 1.60522i 0.0821304i
\(383\) 16.6147i 0.848973i −0.905434 0.424487i \(-0.860455\pi\)
0.905434 0.424487i \(-0.139545\pi\)
\(384\) 0 0
\(385\) −4.81949 2.87720i −0.245624 0.146636i
\(386\) 15.7544 0.801878
\(387\) 0 0
\(388\) 6.26462i 0.318038i
\(389\) 36.7193 1.86174 0.930870 0.365350i \(-0.119051\pi\)
0.930870 + 0.365350i \(0.119051\pi\)
\(390\) 0 0
\(391\) −12.4138 −0.627793
\(392\) 5.42471i 0.273989i
\(393\) 0 0
\(394\) 1.00951 0.0508586
\(395\) −17.3019 + 28.9817i −0.870554 + 1.45823i
\(396\) 0 0
\(397\) 29.2104i 1.46603i 0.680212 + 0.733015i \(0.261888\pi\)
−0.680212 + 0.733015i \(0.738112\pi\)
\(398\) 0.435617i 0.0218355i
\(399\) 0 0
\(400\) −2.37245 4.40131i −0.118622 0.220065i
\(401\) −15.6052 −0.779288 −0.389644 0.920966i \(-0.627402\pi\)
−0.389644 + 0.920966i \(0.627402\pi\)
\(402\) 0 0
\(403\) 8.58480i 0.427640i
\(404\) −12.6594 −0.629829
\(405\) 0 0
\(406\) −6.39478 −0.317367
\(407\) 15.6798i 0.777220i
\(408\) 0 0
\(409\) −13.7952 −0.682131 −0.341066 0.940039i \(-0.610788\pi\)
−0.341066 + 0.940039i \(0.610788\pi\)
\(410\) 18.5848 + 11.0950i 0.917838 + 0.547944i
\(411\) 0 0
\(412\) 7.60522i 0.374682i
\(413\) 6.39478i 0.314666i
\(414\) 0 0
\(415\) 21.3019 + 12.7171i 1.04567 + 0.624259i
\(416\) −1.00000 −0.0490290
\(417\) 0 0
\(418\) 10.1900i 0.498410i
\(419\) −30.6893 −1.49927 −0.749636 0.661850i \(-0.769771\pi\)
−0.749636 + 0.661850i \(0.769771\pi\)
\(420\) 0 0
\(421\) −16.9180 −0.824535 −0.412268 0.911063i \(-0.635263\pi\)
−0.412268 + 0.911063i \(0.635263\pi\)
\(422\) 16.3501i 0.795911i
\(423\) 0 0
\(424\) 2.58480 0.125529
\(425\) 21.1378 11.3939i 1.02533 0.552687i
\(426\) 0 0
\(427\) 17.1696i 0.830895i
\(428\) 4.58480i 0.221615i
\(429\) 0 0
\(430\) 12.4675 20.8837i 0.601234 1.00710i
\(431\) 17.9722 0.865691 0.432846 0.901468i \(-0.357510\pi\)
0.432846 + 0.901468i \(0.357510\pi\)
\(432\) 0 0
\(433\) 2.61259i 0.125553i −0.998028 0.0627764i \(-0.980004\pi\)
0.998028 0.0627764i \(-0.0199955\pi\)
\(434\) −10.7748 −0.517208
\(435\) 0 0
\(436\) 14.8772 0.712489
\(437\) 13.1696i 0.629988i
\(438\) 0 0
\(439\) −14.6594 −0.699655 −0.349827 0.936814i \(-0.613760\pi\)
−0.349827 + 0.936814i \(0.613760\pi\)
\(440\) 3.83991 + 2.29240i 0.183060 + 0.109286i
\(441\) 0 0
\(442\) 4.80261i 0.228437i
\(443\) 8.33324i 0.395924i 0.980210 + 0.197962i \(0.0634323\pi\)
−0.980210 + 0.197962i \(0.936568\pi\)
\(444\) 0 0
\(445\) 5.83991 9.78219i 0.276838 0.463720i
\(446\) 21.7843 1.03152
\(447\) 0 0
\(448\) 1.25511i 0.0592981i
\(449\) −4.04084 −0.190699 −0.0953495 0.995444i \(-0.530397\pi\)
−0.0953495 + 0.995444i \(0.530397\pi\)
\(450\) 0 0
\(451\) −19.3596 −0.911610
\(452\) 4.00000i 0.188144i
\(453\) 0 0
\(454\) 9.02042 0.423349
\(455\) −1.43860 + 2.40974i −0.0674427 + 0.112971i
\(456\) 0 0
\(457\) 0.979580i 0.0458228i −0.999737 0.0229114i \(-0.992706\pi\)
0.999737 0.0229114i \(-0.00729357\pi\)
\(458\) 4.68718i 0.219017i
\(459\) 0 0
\(460\) −4.96270 2.96270i −0.231387 0.138137i
\(461\) −10.7280 −0.499654 −0.249827 0.968291i \(-0.580374\pi\)
−0.249827 + 0.968291i \(0.580374\pi\)
\(462\) 0 0
\(463\) 23.2104i 1.07868i −0.842088 0.539340i \(-0.818674\pi\)
0.842088 0.539340i \(-0.181326\pi\)
\(464\) 5.09501 0.236530
\(465\) 0 0
\(466\) 13.5366 0.627071
\(467\) 28.5848i 1.32275i −0.750057 0.661373i \(-0.769974\pi\)
0.750057 0.661373i \(-0.230026\pi\)
\(468\) 0 0
\(469\) −10.7748 −0.497535
\(470\) 3.14620 5.27007i 0.145123 0.243090i
\(471\) 0 0
\(472\) 5.09501i 0.234517i
\(473\) 21.7544i 1.00027i
\(474\) 0 0
\(475\) −12.0877 22.4247i −0.554619 1.02892i
\(476\) 6.02778 0.276283
\(477\) 0 0
\(478\) 3.19739i 0.146245i
\(479\) −30.4078 −1.38937 −0.694685 0.719314i \(-0.744456\pi\)
−0.694685 + 0.719314i \(0.744456\pi\)
\(480\) 0 0
\(481\) −7.83991 −0.357469
\(482\) 14.1154i 0.642940i
\(483\) 0 0
\(484\) 7.00000 0.318182
\(485\) −12.0278 7.18051i −0.546153 0.326050i
\(486\) 0 0
\(487\) 8.00000i 0.362515i −0.983436 0.181257i \(-0.941983\pi\)
0.983436 0.181257i \(-0.0580167\pi\)
\(488\) 13.6798i 0.619256i
\(489\) 0 0
\(490\) 10.4152 + 6.21781i 0.470511 + 0.280892i
\(491\) −22.6893 −1.02396 −0.511978 0.858999i \(-0.671087\pi\)
−0.511978 + 0.858999i \(0.671087\pi\)
\(492\) 0 0
\(493\) 24.4694i 1.10204i
\(494\) −5.09501 −0.229235
\(495\) 0 0
\(496\) 8.58480 0.385469
\(497\) 6.76177i 0.303307i
\(498\) 0 0
\(499\) −31.8698 −1.42669 −0.713345 0.700813i \(-0.752821\pi\)
−0.713345 + 0.700813i \(0.752821\pi\)
\(500\) 11.1696 + 0.489790i 0.499520 + 0.0219041i
\(501\) 0 0
\(502\) 21.1696i 0.944846i
\(503\) 14.2646i 0.636028i 0.948086 + 0.318014i \(0.103016\pi\)
−0.948086 + 0.318014i \(0.896984\pi\)
\(504\) 0 0
\(505\) 14.5102 24.3055i 0.645696 1.08158i
\(506\) 5.16961 0.229817
\(507\) 0 0
\(508\) 1.41520i 0.0627892i
\(509\) 23.3596 1.03540 0.517699 0.855563i \(-0.326789\pi\)
0.517699 + 0.855563i \(0.326789\pi\)
\(510\) 0 0
\(511\) 7.53063 0.333135
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) −8.21781 −0.362472
\(515\) 14.6017 + 8.71711i 0.643427 + 0.384122i
\(516\) 0 0
\(517\) 5.48979i 0.241441i
\(518\) 9.83991i 0.432341i
\(519\) 0 0
\(520\) 1.14620 1.91995i 0.0502642 0.0841956i
\(521\) 40.4247 1.77104 0.885519 0.464602i \(-0.153803\pi\)
0.885519 + 0.464602i \(0.153803\pi\)
\(522\) 0 0
\(523\) 37.9853i 1.66098i 0.557033 + 0.830490i \(0.311940\pi\)
−0.557033 + 0.830490i \(0.688060\pi\)
\(524\) 11.0095 0.480953
\(525\) 0 0
\(526\) −4.51021 −0.196655
\(527\) 41.2295i 1.79598i
\(528\) 0 0
\(529\) 16.3188 0.709513
\(530\) −2.96270 + 4.96270i −0.128692 + 0.215566i
\(531\) 0 0
\(532\) 6.39478i 0.277249i
\(533\) 9.67982i 0.419279i
\(534\) 0 0
\(535\) 8.80261 + 5.25511i 0.380570 + 0.227198i
\(536\) 8.58480 0.370807
\(537\) 0 0
\(538\) 8.51021i 0.366901i
\(539\) −10.8494 −0.467318
\(540\) 0 0
\(541\) 26.8772 1.15554 0.577771 0.816199i \(-0.303923\pi\)
0.577771 + 0.816199i \(0.303923\pi\)
\(542\) 4.95180i 0.212698i
\(543\) 0 0
\(544\) −4.80261 −0.205910
\(545\) −17.0523 + 28.5636i −0.730439 + 1.22353i
\(546\) 0 0
\(547\) 19.8976i 0.850761i −0.905015 0.425381i \(-0.860140\pi\)
0.905015 0.425381i \(-0.139860\pi\)
\(548\) 14.5848i 0.623032i
\(549\) 0 0
\(550\) −8.80261 + 4.74489i −0.375345 + 0.202323i
\(551\) 25.9592 1.10590
\(552\) 0 0
\(553\) 18.9458i 0.805659i
\(554\) 19.8698 0.844189
\(555\) 0 0
\(556\) 7.32970 0.310848
\(557\) 1.50070i 0.0635865i −0.999494 0.0317933i \(-0.989878\pi\)
0.999494 0.0317933i \(-0.0101218\pi\)
\(558\) 0 0
\(559\) 10.8772 0.460057
\(560\) 2.40974 + 1.43860i 0.101830 + 0.0607920i
\(561\) 0 0
\(562\) 30.2646i 1.27664i
\(563\) 20.6872i 0.871861i 0.899980 + 0.435930i \(0.143581\pi\)
−0.899980 + 0.435930i \(0.856419\pi\)
\(564\) 0 0
\(565\) −7.67982 4.58480i −0.323092 0.192884i
\(566\) −26.9240 −1.13170
\(567\) 0 0
\(568\) 5.38741i 0.226051i
\(569\) −6.08550 −0.255117 −0.127559 0.991831i \(-0.540714\pi\)
−0.127559 + 0.991831i \(0.540714\pi\)
\(570\) 0 0
\(571\) −9.98909 −0.418031 −0.209015 0.977912i \(-0.567026\pi\)
−0.209015 + 0.977912i \(0.567026\pi\)
\(572\) 2.00000i 0.0836242i
\(573\) 0 0
\(574\) −12.1492 −0.507097
\(575\) 11.3765 6.13231i 0.474433 0.255735i
\(576\) 0 0
\(577\) 8.33921i 0.347166i 0.984819 + 0.173583i \(0.0555345\pi\)
−0.984819 + 0.173583i \(0.944466\pi\)
\(578\) 6.06508i 0.252274i
\(579\) 0 0
\(580\) −5.83991 + 9.78219i −0.242489 + 0.406183i
\(581\) −13.9254 −0.577723
\(582\) 0 0
\(583\) 5.16961i 0.214103i
\(584\) −6.00000 −0.248282
\(585\) 0 0
\(586\) 5.18051 0.214005
\(587\) 23.2442i 0.959391i −0.877435 0.479695i \(-0.840747\pi\)
0.877435 0.479695i \(-0.159253\pi\)
\(588\) 0 0
\(589\) 43.7397 1.80226
\(590\) −9.78219 5.83991i −0.402726 0.240425i
\(591\) 0 0
\(592\) 7.83991i 0.322218i
\(593\) 34.2646i 1.40708i 0.710656 + 0.703540i \(0.248398\pi\)
−0.710656 + 0.703540i \(0.751602\pi\)
\(594\) 0 0
\(595\) −6.90905 + 11.5731i −0.283243 + 0.474449i
\(596\) 0 0
\(597\) 0 0
\(598\) 2.58480i 0.105700i
\(599\) −31.1886 −1.27433 −0.637167 0.770726i \(-0.719894\pi\)
−0.637167 + 0.770726i \(0.719894\pi\)
\(600\) 0 0
\(601\) −3.40429 −0.138864 −0.0694320 0.997587i \(-0.522119\pi\)
−0.0694320 + 0.997587i \(0.522119\pi\)
\(602\) 13.6520i 0.556415i
\(603\) 0 0
\(604\) 14.5570 0.592317
\(605\) −8.02341 + 13.4397i −0.326198 + 0.546401i
\(606\) 0 0
\(607\) 0.945827i 0.0383899i 0.999816 + 0.0191950i \(0.00611032\pi\)
−0.999816 + 0.0191950i \(0.993890\pi\)
\(608\) 5.09501i 0.206630i
\(609\) 0 0
\(610\) 26.2646 + 15.6798i 1.06342 + 0.634857i
\(611\) 2.74489 0.111047
\(612\) 0 0
\(613\) 40.7193i 1.64464i 0.569028 + 0.822318i \(0.307319\pi\)
−0.569028 + 0.822318i \(0.692681\pi\)
\(614\) −0.320184 −0.0129216
\(615\) 0 0
\(616\) −2.51021 −0.101139
\(617\) 12.6594i 0.509648i 0.966987 + 0.254824i \(0.0820176\pi\)
−0.966987 + 0.254824i \(0.917982\pi\)
\(618\) 0 0
\(619\) −5.03945 −0.202553 −0.101276 0.994858i \(-0.532293\pi\)
−0.101276 + 0.994858i \(0.532293\pi\)
\(620\) −9.83991 + 16.4824i −0.395180 + 0.661950i
\(621\) 0 0
\(622\) 9.86984i 0.395745i
\(623\) 6.39478i 0.256201i
\(624\) 0 0
\(625\) −13.7430 + 20.8837i −0.549719 + 0.835349i
\(626\) −10.6126 −0.424164
\(627\) 0 0
\(628\) 13.0950i 0.522548i
\(629\) −37.6520 −1.50128
\(630\) 0 0
\(631\) −1.00736 −0.0401024 −0.0200512 0.999799i \(-0.506383\pi\)
−0.0200512 + 0.999799i \(0.506383\pi\)
\(632\) 15.0950i 0.600447i
\(633\) 0 0
\(634\) 12.1900 0.484128
\(635\) −2.71711 1.62210i −0.107825 0.0643711i
\(636\) 0 0
\(637\) 5.42471i 0.214935i
\(638\) 10.1900i 0.403427i
\(639\) 0 0
\(640\) −1.91995 1.14620i −0.0758928 0.0453076i
\(641\) 41.3596 1.63361 0.816804 0.576916i \(-0.195744\pi\)
0.816804 + 0.576916i \(0.195744\pi\)
\(642\) 0 0
\(643\) 3.26601i 0.128799i −0.997924 0.0643994i \(-0.979487\pi\)
0.997924 0.0643994i \(-0.0205132\pi\)
\(644\) 3.24420 0.127839
\(645\) 0 0
\(646\) −24.4694 −0.962734
\(647\) 19.4342i 0.764038i 0.924154 + 0.382019i \(0.124771\pi\)
−0.924154 + 0.382019i \(0.875229\pi\)
\(648\) 0 0
\(649\) 10.1900 0.399994
\(650\) 2.37245 + 4.40131i 0.0930550 + 0.172633i
\(651\) 0 0
\(652\) 12.2646i 0.480320i
\(653\) 4.51021i 0.176498i 0.996098 + 0.0882491i \(0.0281271\pi\)
−0.996098 + 0.0882491i \(0.971873\pi\)
\(654\) 0 0
\(655\) −12.6191 + 21.1378i −0.493070 + 0.825921i
\(656\) 9.67982 0.377933
\(657\) 0 0
\(658\) 3.44513i 0.134305i
\(659\) 27.2104 1.05997 0.529984 0.848007i \(-0.322198\pi\)
0.529984 + 0.848007i \(0.322198\pi\)
\(660\) 0 0
\(661\) −24.5292 −0.954077 −0.477038 0.878882i \(-0.658290\pi\)
−0.477038 + 0.878882i \(0.658290\pi\)
\(662\) 17.9444i 0.697430i
\(663\) 0 0
\(664\) 11.0950 0.430570
\(665\) 12.2777 + 7.32970i 0.476108 + 0.284234i
\(666\) 0 0
\(667\) 13.1696i 0.509929i
\(668\) 18.3392i 0.709565i
\(669\) 0 0
\(670\) −9.83991 + 16.4824i −0.380149 + 0.636772i
\(671\) −27.3596 −1.05621
\(672\) 0 0
\(673\) 8.95180i 0.345066i −0.985004 0.172533i \(-0.944805\pi\)
0.985004 0.172533i \(-0.0551952\pi\)
\(674\) 20.9518 0.807033
\(675\) 0 0
\(676\) 1.00000 0.0384615
\(677\) 32.6256i 1.25391i −0.779057 0.626953i \(-0.784302\pi\)
0.779057 0.626953i \(-0.215698\pi\)
\(678\) 0 0
\(679\) 7.86276 0.301745
\(680\) 5.50476 9.22079i 0.211098 0.353601i
\(681\) 0 0
\(682\) 17.1696i 0.657458i
\(683\) 11.0950i 0.424539i 0.977211 + 0.212269i \(0.0680854\pi\)
−0.977211 + 0.212269i \(0.931915\pi\)
\(684\) 0 0
\(685\) 28.0022 + 16.7171i 1.06991 + 0.638728i
\(686\) −15.5943 −0.595394
\(687\) 0 0
\(688\) 10.8772i 0.414690i
\(689\) −2.58480 −0.0984732
\(690\) 0 0
\(691\) −13.5306 −0.514729 −0.257365 0.966314i \(-0.582854\pi\)
−0.257365 + 0.966314i \(0.582854\pi\)
\(692\) 9.41520i 0.357912i
\(693\) 0 0
\(694\) 3.51757 0.133525
\(695\) −8.40131 + 14.0727i −0.318680 + 0.533807i
\(696\) 0 0
\(697\) 46.4884i 1.76087i
\(698\) 17.8568i 0.675889i
\(699\) 0 0
\(700\) −5.52410 + 2.97767i −0.208791 + 0.112545i
\(701\) 48.1345 1.81801 0.909007 0.416781i \(-0.136842\pi\)
0.909007 + 0.416781i \(0.136842\pi\)
\(702\) 0 0
\(703\) 39.9444i 1.50653i
\(704\) 2.00000 0.0753778
\(705\) 0 0
\(706\) 36.9240 1.38965
\(707\) 15.8889i 0.597563i
\(708\) 0 0
\(709\) −16.5292 −0.620769 −0.310384 0.950611i \(-0.600458\pi\)
−0.310384 + 0.950611i \(0.600458\pi\)
\(710\) −10.3436 6.17506i −0.388188 0.231746i
\(711\) 0 0
\(712\) 5.09501i 0.190944i
\(713\) 22.1900i 0.831023i
\(714\) 0 0
\(715\) −3.83991 2.29240i −0.143604 0.0857310i
\(716\) 7.32970 0.273924
\(717\) 0 0
\(718\) 6.77483i 0.252834i
\(719\) −6.39478 −0.238485 −0.119242 0.992865i \(-0.538047\pi\)
−0.119242 + 0.992865i \(0.538047\pi\)
\(720\) 0 0
\(721\) −9.54535 −0.355488
\(722\) 6.95916i 0.258993i
\(723\) 0 0
\(724\) −11.7544 −0.436849
\(725\) −12.0877 22.4247i −0.448924 0.832833i
\(726\) 0 0
\(727\) 35.0204i 1.29884i −0.760432 0.649418i \(-0.775013\pi\)
0.760432 0.649418i \(-0.224987\pi\)
\(728\) 1.25511i 0.0465173i
\(729\) 0 0
\(730\) 6.87720 11.5197i 0.254537 0.426364i
\(731\) 52.2390 1.93213
\(732\) 0 0
\(733\) 22.6485i 0.836541i −0.908322 0.418271i \(-0.862636\pi\)
0.908322 0.418271i \(-0.137364\pi\)
\(734\) 7.80997 0.288271
\(735\) 0 0
\(736\) −2.58480 −0.0952771
\(737\) 17.1696i 0.632451i
\(738\) 0 0
\(739\) −25.0394 −0.921091 −0.460546 0.887636i \(-0.652346\pi\)
−0.460546 + 0.887636i \(0.652346\pi\)
\(740\) −15.0523 8.98611i −0.553332 0.330336i
\(741\) 0 0
\(742\) 3.24420i 0.119098i
\(743\) 35.8252i 1.31430i 0.753760 + 0.657149i \(0.228238\pi\)
−0.753760 + 0.657149i \(0.771762\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) −15.8698 −0.581036
\(747\) 0 0
\(748\) 9.60522i 0.351202i
\(749\) −5.75441 −0.210262
\(750\) 0 0
\(751\) 41.6988 1.52161 0.760806 0.648979i \(-0.224804\pi\)
0.760806 + 0.648979i \(0.224804\pi\)
\(752\) 2.74489i 0.100096i
\(753\) 0 0
\(754\) −5.09501 −0.185549
\(755\) −16.6853 + 27.9488i −0.607239 + 1.01716i
\(756\) 0 0
\(757\) 11.6052i 0.421799i −0.977508 0.210900i \(-0.932361\pi\)
0.977508 0.210900i \(-0.0676393\pi\)
\(758\) 16.7748i 0.609289i
\(759\) 0 0
\(760\) −9.78219 5.83991i −0.354837 0.211836i
\(761\) −30.2646 −1.09709 −0.548546 0.836121i \(-0.684818\pi\)
−0.548546 + 0.836121i \(0.684818\pi\)
\(762\) 0 0
\(763\) 18.6725i 0.675988i
\(764\) −1.60522 −0.0580749
\(765\) 0 0
\(766\) 16.6147 0.600315
\(767\) 5.09501i 0.183970i
\(768\) 0 0
\(769\) −24.6594 −0.889241 −0.444620 0.895719i \(-0.646661\pi\)
−0.444620 + 0.895719i \(0.646661\pi\)
\(770\) 2.87720 4.81949i 0.103687 0.173682i
\(771\) 0 0
\(772\) 15.7544i 0.567014i
\(773\) 30.3501i 1.09162i 0.837910 + 0.545809i \(0.183778\pi\)
−0.837910 + 0.545809i \(0.816222\pi\)
\(774\) 0 0
\(775\) −20.3670 37.7843i −0.731604 1.35725i
\(776\) −6.26462 −0.224887
\(777\) 0 0
\(778\) 36.7193i 1.31645i
\(779\) 49.3188 1.76703
\(780\) 0 0
\(781\) 10.7748 0.385554
\(782\) 12.4138i 0.443917i
\(783\) 0 0
\(784\) 5.42471 0.193740
\(785\) −25.1418 15.0095i −0.897350 0.535713i
\(786\) 0 0
\(787\) 11.1288i 0.396698i 0.980131 + 0.198349i \(0.0635579\pi\)
−0.980131 + 0.198349i \(0.936442\pi\)
\(788\) 1.00951i 0.0359625i
\(789\) 0 0
\(790\) −28.9817 17.3019i −1.03112 0.615575i
\(791\) 5.02042 0.178506
\(792\) 0 0
\(793\) 13.6798i 0.485785i
\(794\) −29.2104 −1.03664
\(795\) 0 0
\(796\) 0.435617 0.0154400
\(797\) 46.7939i 1.65752i −0.559602 0.828762i \(-0.689046\pi\)
0.559602 0.828762i \(-0.310954\pi\)
\(798\) 0 0
\(799\) 13.1827 0.466369
\(800\) 4.40131 2.37245i 0.155610 0.0838787i
\(801\) 0 0
\(802\) 15.6052i 0.551040i
\(803\) 12.0000i 0.423471i
\(804\) 0 0
\(805\) −3.71850 + 6.22871i −0.131060 + 0.219533i
\(806\) −8.58480 −0.302387
\(807\) 0 0
\(808\) 12.6594i 0.445356i
\(809\) 50.4437 1.77351 0.886754 0.462242i \(-0.152955\pi\)
0.886754 + 0.462242i \(0.152955\pi\)
\(810\) 0 0
\(811\) −36.3991 −1.27814 −0.639072 0.769147i \(-0.720682\pi\)
−0.639072 + 0.769147i \(0.720682\pi\)
\(812\) 6.39478i 0.224413i
\(813\) 0 0
\(814\) 15.6798 0.549577
\(815\) 23.5475 + 14.0577i 0.824833 + 0.492420i
\(816\) 0 0
\(817\) 55.4195i 1.93888i
\(818\) 13.7952i 0.482340i
\(819\) 0 0
\(820\) −11.0950 + 18.5848i −0.387455 + 0.649009i
\(821\) 6.23684 0.217667 0.108834 0.994060i \(-0.465288\pi\)
0.108834 + 0.994060i \(0.465288\pi\)
\(822\) 0 0
\(823\) 33.7734i 1.17727i −0.808400 0.588634i \(-0.799666\pi\)
0.808400 0.588634i \(-0.200334\pi\)
\(824\) 7.60522 0.264941
\(825\) 0 0
\(826\) 6.39478 0.222503
\(827\) 37.2295i 1.29460i −0.762237 0.647298i \(-0.775899\pi\)
0.762237 0.647298i \(-0.224101\pi\)
\(828\) 0 0
\(829\) 38.2646 1.32899 0.664493 0.747295i \(-0.268648\pi\)
0.664493 + 0.747295i \(0.268648\pi\)
\(830\) −12.7171 + 21.3019i −0.441417 + 0.739400i
\(831\) 0 0
\(832\) 1.00000i 0.0346688i
\(833\) 26.0528i 0.902675i
\(834\) 0 0
\(835\) −35.2104 21.0204i −1.21851 0.727442i
\(836\) 10.1900 0.352429
\(837\) 0 0
\(838\) 30.6893i 1.06015i
\(839\) 50.1345 1.73083 0.865417 0.501052i \(-0.167054\pi\)
0.865417 + 0.501052i \(0.167054\pi\)
\(840\) 0 0
\(841\) −3.04084 −0.104857
\(842\) 16.9180i 0.583034i
\(843\) 0 0
\(844\) −16.3501 −0.562794
\(845\) −1.14620 + 1.91995i −0.0394305 + 0.0660484i
\(846\) 0 0
\(847\) 8.78574i 0.301881i
\(848\) 2.58480i 0.0887625i
\(849\) 0 0
\(850\) 11.3939 + 21.1378i 0.390809 + 0.725019i
\(851\) −20.2646 −0.694662
\(852\) 0 0
\(853\) 12.3910i 0.424258i 0.977242 + 0.212129i \(0.0680398\pi\)
−0.977242 + 0.212129i \(0.931960\pi\)
\(854\) −17.1696 −0.587532
\(855\) 0 0
\(856\) 4.58480 0.156705
\(857\) 25.4005i 0.867664i 0.900994 + 0.433832i \(0.142839\pi\)
−0.900994 + 0.433832i \(0.857161\pi\)
\(858\) 0 0
\(859\) 50.1900 1.71246 0.856231 0.516593i \(-0.172800\pi\)
0.856231 + 0.516593i \(0.172800\pi\)
\(860\) 20.8837 + 12.4675i 0.712129 + 0.425137i
\(861\) 0 0
\(862\) 17.9722i 0.612136i
\(863\) 43.4451i 1.47889i −0.673217 0.739445i \(-0.735088\pi\)
0.673217 0.739445i \(-0.264912\pi\)
\(864\) 0 0
\(865\) 18.0767 + 10.7917i 0.614628 + 0.366929i
\(866\) 2.61259 0.0887793
\(867\) 0 0
\(868\) 10.7748i 0.365722i
\(869\) 30.1900 1.02413
\(870\) 0 0
\(871\) −8.58480 −0.290885
\(872\) 14.8772i 0.503806i
\(873\) 0 0
\(874\) −13.1696 −0.445469
\(875\) 0.614738 14.0190i 0.0207819 0.473930i
\(876\) 0 0
\(877\) 11.6689i 0.394031i −0.980400 0.197016i \(-0.936875\pi\)
0.980400 0.197016i \(-0.0631250\pi\)
\(878\) 14.6594i 0.494731i
\(879\) 0 0
\(880\) −2.29240 + 3.83991i −0.0772768 + 0.129443i
\(881\) 0.0446585 0.00150458 0.000752291 1.00000i \(-0.499761\pi\)
0.000752291 1.00000i \(0.499761\pi\)
\(882\) 0 0
\(883\) 24.4269i 0.822029i −0.911629 0.411015i \(-0.865174\pi\)
0.911629 0.411015i \(-0.134826\pi\)
\(884\) 4.80261 0.161529
\(885\) 0 0
\(886\) −8.33324 −0.279961
\(887\) 47.2295i 1.58581i −0.609345 0.792905i \(-0.708567\pi\)
0.609345 0.792905i \(-0.291433\pi\)
\(888\) 0 0
\(889\) 1.77622 0.0595725
\(890\) 9.78219 + 5.83991i 0.327900 + 0.195754i
\(891\) 0 0
\(892\) 21.7843i 0.729394i
\(893\) 13.9853i 0.467999i
\(894\) 0 0
\(895\) −8.40131 + 14.0727i −0.280825 + 0.470398i
\(896\) 1.25511 0.0419301
\(897\) 0 0
\(898\) 4.04084i 0.134845i
\(899\) 43.7397 1.45880
\(900\) 0 0
\(901\) −12.4138 −0.413564
\(902\) 19.3596i 0.644605i
\(903\) 0 0
\(904\) −4.00000 −0.133038
\(905\) 13.4729 22.5679i 0.447855 0.750183i
\(906\) 0 0
\(907\) 44.7133i 1.48468i 0.670023 + 0.742340i \(0.266284\pi\)
−0.670023 + 0.742340i \(0.733716\pi\)
\(908\) 9.02042i 0.299353i
\(909\) 0 0
\(910\) −2.40974 1.43860i −0.0798822 0.0476892i
\(911\) −51.9444 −1.72100 −0.860498 0.509454i \(-0.829847\pi\)
−0.860498 + 0.509454i \(0.829847\pi\)
\(912\) 0 0
\(913\) 22.1900i 0.734383i
\(914\) 0.979580 0.0324016
\(915\) 0 0
\(916\) 4.68718 0.154869
\(917\) 13.8181i 0.456314i
\(918\) 0 0
\(919\) 13.5497 0.446962 0.223481 0.974708i \(-0.428258\pi\)
0.223481 + 0.974708i \(0.428258\pi\)
\(920\) 2.96270 4.96270i 0.0976774 0.163615i
\(921\) 0 0
\(922\) 10.7280i 0.353308i
\(923\) 5.38741i 0.177329i
\(924\) 0 0
\(925\) 34.5058 18.5998i 1.13454 0.611557i
\(926\) 23.2104 0.762743
\(927\) 0 0
\(928\) 5.09501i 0.167252i
\(929\) −44.1682 −1.44911 −0.724556 0.689216i \(-0.757955\pi\)
−0.724556 + 0.689216i \(0.757955\pi\)
\(930\) 0 0
\(931\) 27.6390 0.905831
\(932\) 13.5366i 0.443406i
\(933\) 0 0
\(934\) 28.5848 0.935323
\(935\) −18.4416 11.0095i −0.603104 0.360050i
\(936\) 0 0
\(937\) 41.6988i 1.36224i 0.732171 + 0.681121i \(0.238507\pi\)
−0.732171 + 0.681121i \(0.761493\pi\)
\(938\) 10.7748i 0.351811i
\(939\) 0 0
\(940\) 5.27007 + 3.14620i 0.171891 + 0.102618i
\(941\) −37.4473 −1.22075 −0.610373 0.792114i \(-0.708981\pi\)
−0.610373 + 0.792114i \(0.708981\pi\)
\(942\) 0 0
\(943\) 25.0204i 0.814777i
\(944\) −5.09501 −0.165829
\(945\) 0 0
\(946\) −21.7544 −0.707297
\(947\) 11.5644i 0.375792i −0.982189 0.187896i \(-0.939833\pi\)
0.982189 0.187896i \(-0.0601668\pi\)
\(948\) 0 0
\(949\) 6.00000 0.194768
\(950\) 22.4247 12.0877i 0.727554 0.392175i
\(951\) 0 0
\(952\) 6.02778i 0.195362i
\(953\) 53.4810i 1.73242i −0.499680 0.866210i \(-0.666549\pi\)
0.499680 0.866210i \(-0.333451\pi\)
\(954\) 0 0
\(955\) 1.83991 3.08196i 0.0595380 0.0997297i
\(956\) −3.19739 −0.103411
\(957\) 0 0
\(958\) 30.4078i 0.982433i
\(959\) −18.3055 −0.591114
\(960\) 0 0
\(961\) 42.6988 1.37738
\(962\) 7.83991i 0.252769i
\(963\) 0 0
\(964\) −14.1154 −0.454627
\(965\) −30.2477 18.0577i −0.973709 0.581298i
\(966\) 0 0
\(967\) 34.8941i 1.12212i −0.827776 0.561059i \(-0.810394\pi\)
0.827776 0.561059i \(-0.189606\pi\)
\(968\) 7.00000i 0.224989i
\(969\) 0 0
\(970\) 7.18051 12.0278i 0.230552 0.386189i
\(971\) −31.8807 −1.02310 −0.511551 0.859253i \(-0.670929\pi\)
−0.511551 + 0.859253i \(0.670929\pi\)
\(972\) 0 0
\(973\) 9.19954i 0.294924i
\(974\) 8.00000 0.256337
\(975\) 0 0
\(976\) 13.6798 0.437880
\(977\) 2.03375i 0.0650655i 0.999471 + 0.0325328i \(0.0103573\pi\)
−0.999471 + 0.0325328i \(0.989643\pi\)
\(978\) 0 0
\(979\) −10.1900 −0.325675
\(980\) −6.21781 + 10.4152i −0.198621 + 0.332701i
\(981\) 0 0
\(982\) 22.6893i 0.724046i
\(983\) 29.4043i 0.937851i −0.883238 0.468926i \(-0.844641\pi\)
0.883238 0.468926i \(-0.155359\pi\)
\(984\) 0 0
\(985\) −1.93822 1.15711i −0.0617569 0.0368685i
\(986\) −24.4694 −0.779263
\(987\) 0 0
\(988\) 5.09501i 0.162094i
\(989\) 28.1154 0.894019
\(990\) 0 0
\(991\) 32.9986 1.04824 0.524118 0.851646i \(-0.324395\pi\)
0.524118 + 0.851646i \(0.324395\pi\)
\(992\) 8.58480i 0.272568i
\(993\) 0 0
\(994\) 6.76177 0.214470
\(995\) −0.499304 + 0.836365i −0.0158290 + 0.0265145i
\(996\) 0 0
\(997\) 31.1696i 0.987151i −0.869703 0.493576i \(-0.835690\pi\)
0.869703 0.493576i \(-0.164310\pi\)
\(998\) 31.8698i 1.00882i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1170.2.e.f.469.6 6
3.2 odd 2 130.2.b.a.79.3 6
5.2 odd 4 5850.2.a.cp.1.2 3
5.3 odd 4 5850.2.a.cs.1.2 3
5.4 even 2 inner 1170.2.e.f.469.3 6
12.11 even 2 1040.2.d.b.209.2 6
15.2 even 4 650.2.a.o.1.3 3
15.8 even 4 650.2.a.n.1.1 3
15.14 odd 2 130.2.b.a.79.4 yes 6
39.5 even 4 1690.2.c.a.1689.5 6
39.8 even 4 1690.2.c.d.1689.5 6
39.38 odd 2 1690.2.b.a.339.6 6
60.23 odd 4 5200.2.a.ce.1.3 3
60.47 odd 4 5200.2.a.cf.1.1 3
60.59 even 2 1040.2.d.b.209.5 6
195.38 even 4 8450.2.a.cc.1.1 3
195.44 even 4 1690.2.c.d.1689.2 6
195.77 even 4 8450.2.a.bs.1.3 3
195.164 even 4 1690.2.c.a.1689.2 6
195.194 odd 2 1690.2.b.a.339.1 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.b.a.79.3 6 3.2 odd 2
130.2.b.a.79.4 yes 6 15.14 odd 2
650.2.a.n.1.1 3 15.8 even 4
650.2.a.o.1.3 3 15.2 even 4
1040.2.d.b.209.2 6 12.11 even 2
1040.2.d.b.209.5 6 60.59 even 2
1170.2.e.f.469.3 6 5.4 even 2 inner
1170.2.e.f.469.6 6 1.1 even 1 trivial
1690.2.b.a.339.1 6 195.194 odd 2
1690.2.b.a.339.6 6 39.38 odd 2
1690.2.c.a.1689.2 6 195.164 even 4
1690.2.c.a.1689.5 6 39.5 even 4
1690.2.c.d.1689.2 6 195.44 even 4
1690.2.c.d.1689.5 6 39.8 even 4
5200.2.a.ce.1.3 3 60.23 odd 4
5200.2.a.cf.1.1 3 60.47 odd 4
5850.2.a.cp.1.2 3 5.2 odd 4
5850.2.a.cs.1.2 3 5.3 odd 4
8450.2.a.bs.1.3 3 195.77 even 4
8450.2.a.cc.1.1 3 195.38 even 4