Properties

Label 1170.2.e.e.469.3
Level $1170$
Weight $2$
Character 1170.469
Analytic conductor $9.342$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1170,2,Mod(469,1170)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1170.469"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1170, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1170.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-4,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.34249703649\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 390)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 469.3
Root \(1.61803i\) of defining polynomial
Character \(\chi\) \(=\) 1170.469
Dual form 1170.2.e.e.469.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.00000i q^{2} -1.00000 q^{4} -2.23607i q^{5} +3.23607i q^{7} -1.00000i q^{8} +2.23607 q^{10} -4.47214 q^{11} -1.00000i q^{13} -3.23607 q^{14} +1.00000 q^{16} -7.23607i q^{17} +2.76393 q^{19} +2.23607i q^{20} -4.47214i q^{22} +2.76393i q^{23} -5.00000 q^{25} +1.00000 q^{26} -3.23607i q^{28} -3.70820 q^{29} -4.00000 q^{31} +1.00000i q^{32} +7.23607 q^{34} +7.23607 q^{35} -10.9443i q^{37} +2.76393i q^{38} -2.23607 q^{40} -3.52786 q^{41} +2.47214i q^{43} +4.47214 q^{44} -2.76393 q^{46} -12.9443i q^{47} -3.47214 q^{49} -5.00000i q^{50} +1.00000i q^{52} -0.472136i q^{53} +10.0000i q^{55} +3.23607 q^{56} -3.70820i q^{58} -8.47214 q^{59} -10.9443 q^{61} -4.00000i q^{62} -1.00000 q^{64} -2.23607 q^{65} +7.23607i q^{68} +7.23607i q^{70} +2.47214 q^{71} -13.2361i q^{73} +10.9443 q^{74} -2.76393 q^{76} -14.4721i q^{77} +4.00000 q^{79} -2.23607i q^{80} -3.52786i q^{82} -4.94427i q^{83} -16.1803 q^{85} -2.47214 q^{86} +4.47214i q^{88} +0.472136 q^{89} +3.23607 q^{91} -2.76393i q^{92} +12.9443 q^{94} -6.18034i q^{95} -3.70820i q^{97} -3.47214i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} - 4 q^{14} + 4 q^{16} + 20 q^{19} - 20 q^{25} + 4 q^{26} + 12 q^{29} - 16 q^{31} + 20 q^{34} + 20 q^{35} - 32 q^{41} - 20 q^{46} + 4 q^{49} + 4 q^{56} - 16 q^{59} - 8 q^{61} - 4 q^{64} - 8 q^{71}+ \cdots + 16 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1170\mathbb{Z}\right)^\times\).

\(n\) \(911\) \(937\) \(1081\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000i 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) − 2.23607i − 1.00000i
\(6\) 0 0
\(7\) 3.23607i 1.22312i 0.791199 + 0.611559i \(0.209457\pi\)
−0.791199 + 0.611559i \(0.790543\pi\)
\(8\) − 1.00000i − 0.353553i
\(9\) 0 0
\(10\) 2.23607 0.707107
\(11\) −4.47214 −1.34840 −0.674200 0.738549i \(-0.735511\pi\)
−0.674200 + 0.738549i \(0.735511\pi\)
\(12\) 0 0
\(13\) − 1.00000i − 0.277350i
\(14\) −3.23607 −0.864876
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) − 7.23607i − 1.75500i −0.479573 0.877502i \(-0.659208\pi\)
0.479573 0.877502i \(-0.340792\pi\)
\(18\) 0 0
\(19\) 2.76393 0.634089 0.317045 0.948411i \(-0.397309\pi\)
0.317045 + 0.948411i \(0.397309\pi\)
\(20\) 2.23607i 0.500000i
\(21\) 0 0
\(22\) − 4.47214i − 0.953463i
\(23\) 2.76393i 0.576320i 0.957582 + 0.288160i \(0.0930434\pi\)
−0.957582 + 0.288160i \(0.906957\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 1.00000 0.196116
\(27\) 0 0
\(28\) − 3.23607i − 0.611559i
\(29\) −3.70820 −0.688596 −0.344298 0.938860i \(-0.611883\pi\)
−0.344298 + 0.938860i \(0.611883\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) 1.00000i 0.176777i
\(33\) 0 0
\(34\) 7.23607 1.24098
\(35\) 7.23607 1.22312
\(36\) 0 0
\(37\) − 10.9443i − 1.79923i −0.436687 0.899614i \(-0.643848\pi\)
0.436687 0.899614i \(-0.356152\pi\)
\(38\) 2.76393i 0.448369i
\(39\) 0 0
\(40\) −2.23607 −0.353553
\(41\) −3.52786 −0.550960 −0.275480 0.961307i \(-0.588837\pi\)
−0.275480 + 0.961307i \(0.588837\pi\)
\(42\) 0 0
\(43\) 2.47214i 0.376997i 0.982073 + 0.188499i \(0.0603621\pi\)
−0.982073 + 0.188499i \(0.939638\pi\)
\(44\) 4.47214 0.674200
\(45\) 0 0
\(46\) −2.76393 −0.407520
\(47\) − 12.9443i − 1.88812i −0.329779 0.944058i \(-0.606974\pi\)
0.329779 0.944058i \(-0.393026\pi\)
\(48\) 0 0
\(49\) −3.47214 −0.496019
\(50\) − 5.00000i − 0.707107i
\(51\) 0 0
\(52\) 1.00000i 0.138675i
\(53\) − 0.472136i − 0.0648529i −0.999474 0.0324264i \(-0.989677\pi\)
0.999474 0.0324264i \(-0.0103235\pi\)
\(54\) 0 0
\(55\) 10.0000i 1.34840i
\(56\) 3.23607 0.432438
\(57\) 0 0
\(58\) − 3.70820i − 0.486911i
\(59\) −8.47214 −1.10298 −0.551489 0.834182i \(-0.685940\pi\)
−0.551489 + 0.834182i \(0.685940\pi\)
\(60\) 0 0
\(61\) −10.9443 −1.40127 −0.700635 0.713520i \(-0.747100\pi\)
−0.700635 + 0.713520i \(0.747100\pi\)
\(62\) − 4.00000i − 0.508001i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −2.23607 −0.277350
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) 7.23607i 0.877502i
\(69\) 0 0
\(70\) 7.23607i 0.864876i
\(71\) 2.47214 0.293389 0.146694 0.989182i \(-0.453137\pi\)
0.146694 + 0.989182i \(0.453137\pi\)
\(72\) 0 0
\(73\) − 13.2361i − 1.54916i −0.632473 0.774582i \(-0.717960\pi\)
0.632473 0.774582i \(-0.282040\pi\)
\(74\) 10.9443 1.27225
\(75\) 0 0
\(76\) −2.76393 −0.317045
\(77\) − 14.4721i − 1.64925i
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) − 2.23607i − 0.250000i
\(81\) 0 0
\(82\) − 3.52786i − 0.389587i
\(83\) − 4.94427i − 0.542704i −0.962480 0.271352i \(-0.912529\pi\)
0.962480 0.271352i \(-0.0874708\pi\)
\(84\) 0 0
\(85\) −16.1803 −1.75500
\(86\) −2.47214 −0.266577
\(87\) 0 0
\(88\) 4.47214i 0.476731i
\(89\) 0.472136 0.0500463 0.0250232 0.999687i \(-0.492034\pi\)
0.0250232 + 0.999687i \(0.492034\pi\)
\(90\) 0 0
\(91\) 3.23607 0.339232
\(92\) − 2.76393i − 0.288160i
\(93\) 0 0
\(94\) 12.9443 1.33510
\(95\) − 6.18034i − 0.634089i
\(96\) 0 0
\(97\) − 3.70820i − 0.376511i −0.982120 0.188256i \(-0.939717\pi\)
0.982120 0.188256i \(-0.0602833\pi\)
\(98\) − 3.47214i − 0.350739i
\(99\) 0 0
\(100\) 5.00000 0.500000
\(101\) 9.23607 0.919023 0.459512 0.888172i \(-0.348024\pi\)
0.459512 + 0.888172i \(0.348024\pi\)
\(102\) 0 0
\(103\) − 8.47214i − 0.834784i −0.908726 0.417392i \(-0.862944\pi\)
0.908726 0.417392i \(-0.137056\pi\)
\(104\) −1.00000 −0.0980581
\(105\) 0 0
\(106\) 0.472136 0.0458579
\(107\) 1.52786i 0.147704i 0.997269 + 0.0738521i \(0.0235293\pi\)
−0.997269 + 0.0738521i \(0.976471\pi\)
\(108\) 0 0
\(109\) 2.29180 0.219514 0.109757 0.993958i \(-0.464993\pi\)
0.109757 + 0.993958i \(0.464993\pi\)
\(110\) −10.0000 −0.953463
\(111\) 0 0
\(112\) 3.23607i 0.305780i
\(113\) 18.6525i 1.75468i 0.479872 + 0.877339i \(0.340683\pi\)
−0.479872 + 0.877339i \(0.659317\pi\)
\(114\) 0 0
\(115\) 6.18034 0.576320
\(116\) 3.70820 0.344298
\(117\) 0 0
\(118\) − 8.47214i − 0.779923i
\(119\) 23.4164 2.14658
\(120\) 0 0
\(121\) 9.00000 0.818182
\(122\) − 10.9443i − 0.990848i
\(123\) 0 0
\(124\) 4.00000 0.359211
\(125\) 11.1803i 1.00000i
\(126\) 0 0
\(127\) 21.4164i 1.90040i 0.311642 + 0.950199i \(0.399121\pi\)
−0.311642 + 0.950199i \(0.600879\pi\)
\(128\) − 1.00000i − 0.0883883i
\(129\) 0 0
\(130\) − 2.23607i − 0.196116i
\(131\) −9.70820 −0.848210 −0.424105 0.905613i \(-0.639411\pi\)
−0.424105 + 0.905613i \(0.639411\pi\)
\(132\) 0 0
\(133\) 8.94427i 0.775567i
\(134\) 0 0
\(135\) 0 0
\(136\) −7.23607 −0.620488
\(137\) 19.8885i 1.69919i 0.527433 + 0.849596i \(0.323154\pi\)
−0.527433 + 0.849596i \(0.676846\pi\)
\(138\) 0 0
\(139\) 6.47214 0.548959 0.274480 0.961593i \(-0.411494\pi\)
0.274480 + 0.961593i \(0.411494\pi\)
\(140\) −7.23607 −0.611559
\(141\) 0 0
\(142\) 2.47214i 0.207457i
\(143\) 4.47214i 0.373979i
\(144\) 0 0
\(145\) 8.29180i 0.688596i
\(146\) 13.2361 1.09542
\(147\) 0 0
\(148\) 10.9443i 0.899614i
\(149\) 13.5279 1.10825 0.554123 0.832435i \(-0.313054\pi\)
0.554123 + 0.832435i \(0.313054\pi\)
\(150\) 0 0
\(151\) −19.4164 −1.58008 −0.790042 0.613052i \(-0.789942\pi\)
−0.790042 + 0.613052i \(0.789942\pi\)
\(152\) − 2.76393i − 0.224184i
\(153\) 0 0
\(154\) 14.4721 1.16620
\(155\) 8.94427i 0.718421i
\(156\) 0 0
\(157\) − 18.9443i − 1.51192i −0.654619 0.755959i \(-0.727171\pi\)
0.654619 0.755959i \(-0.272829\pi\)
\(158\) 4.00000i 0.318223i
\(159\) 0 0
\(160\) 2.23607 0.176777
\(161\) −8.94427 −0.704907
\(162\) 0 0
\(163\) − 12.9443i − 1.01387i −0.861983 0.506937i \(-0.830778\pi\)
0.861983 0.506937i \(-0.169222\pi\)
\(164\) 3.52786 0.275480
\(165\) 0 0
\(166\) 4.94427 0.383750
\(167\) 19.4164i 1.50249i 0.660025 + 0.751243i \(0.270546\pi\)
−0.660025 + 0.751243i \(0.729454\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) − 16.1803i − 1.24098i
\(171\) 0 0
\(172\) − 2.47214i − 0.188499i
\(173\) − 22.9443i − 1.74442i −0.489131 0.872210i \(-0.662686\pi\)
0.489131 0.872210i \(-0.337314\pi\)
\(174\) 0 0
\(175\) − 16.1803i − 1.22312i
\(176\) −4.47214 −0.337100
\(177\) 0 0
\(178\) 0.472136i 0.0353881i
\(179\) 8.18034 0.611427 0.305714 0.952124i \(-0.401105\pi\)
0.305714 + 0.952124i \(0.401105\pi\)
\(180\) 0 0
\(181\) 17.4164 1.29455 0.647276 0.762256i \(-0.275908\pi\)
0.647276 + 0.762256i \(0.275908\pi\)
\(182\) 3.23607i 0.239873i
\(183\) 0 0
\(184\) 2.76393 0.203760
\(185\) −24.4721 −1.79923
\(186\) 0 0
\(187\) 32.3607i 2.36645i
\(188\) 12.9443i 0.944058i
\(189\) 0 0
\(190\) 6.18034 0.448369
\(191\) −22.4721 −1.62603 −0.813013 0.582245i \(-0.802174\pi\)
−0.813013 + 0.582245i \(0.802174\pi\)
\(192\) 0 0
\(193\) 8.29180i 0.596857i 0.954432 + 0.298428i \(0.0964624\pi\)
−0.954432 + 0.298428i \(0.903538\pi\)
\(194\) 3.70820 0.266234
\(195\) 0 0
\(196\) 3.47214 0.248010
\(197\) 14.9443i 1.06474i 0.846513 + 0.532368i \(0.178698\pi\)
−0.846513 + 0.532368i \(0.821302\pi\)
\(198\) 0 0
\(199\) 0.944272 0.0669377 0.0334688 0.999440i \(-0.489345\pi\)
0.0334688 + 0.999440i \(0.489345\pi\)
\(200\) 5.00000i 0.353553i
\(201\) 0 0
\(202\) 9.23607i 0.649847i
\(203\) − 12.0000i − 0.842235i
\(204\) 0 0
\(205\) 7.88854i 0.550960i
\(206\) 8.47214 0.590282
\(207\) 0 0
\(208\) − 1.00000i − 0.0693375i
\(209\) −12.3607 −0.855006
\(210\) 0 0
\(211\) 13.8885 0.956127 0.478063 0.878325i \(-0.341339\pi\)
0.478063 + 0.878325i \(0.341339\pi\)
\(212\) 0.472136i 0.0324264i
\(213\) 0 0
\(214\) −1.52786 −0.104443
\(215\) 5.52786 0.376997
\(216\) 0 0
\(217\) − 12.9443i − 0.878714i
\(218\) 2.29180i 0.155220i
\(219\) 0 0
\(220\) − 10.0000i − 0.674200i
\(221\) −7.23607 −0.486751
\(222\) 0 0
\(223\) − 16.7639i − 1.12260i −0.827614 0.561298i \(-0.810302\pi\)
0.827614 0.561298i \(-0.189698\pi\)
\(224\) −3.23607 −0.216219
\(225\) 0 0
\(226\) −18.6525 −1.24074
\(227\) − 7.05573i − 0.468305i −0.972200 0.234153i \(-0.924768\pi\)
0.972200 0.234153i \(-0.0752315\pi\)
\(228\) 0 0
\(229\) −9.70820 −0.641536 −0.320768 0.947158i \(-0.603941\pi\)
−0.320768 + 0.947158i \(0.603941\pi\)
\(230\) 6.18034i 0.407520i
\(231\) 0 0
\(232\) 3.70820i 0.243456i
\(233\) 20.1803i 1.32206i 0.750360 + 0.661029i \(0.229880\pi\)
−0.750360 + 0.661029i \(0.770120\pi\)
\(234\) 0 0
\(235\) −28.9443 −1.88812
\(236\) 8.47214 0.551489
\(237\) 0 0
\(238\) 23.4164i 1.51786i
\(239\) −21.8885 −1.41585 −0.707926 0.706287i \(-0.750369\pi\)
−0.707926 + 0.706287i \(0.750369\pi\)
\(240\) 0 0
\(241\) 3.52786 0.227250 0.113625 0.993524i \(-0.463754\pi\)
0.113625 + 0.993524i \(0.463754\pi\)
\(242\) 9.00000i 0.578542i
\(243\) 0 0
\(244\) 10.9443 0.700635
\(245\) 7.76393i 0.496019i
\(246\) 0 0
\(247\) − 2.76393i − 0.175865i
\(248\) 4.00000i 0.254000i
\(249\) 0 0
\(250\) −11.1803 −0.707107
\(251\) −2.29180 −0.144657 −0.0723284 0.997381i \(-0.523043\pi\)
−0.0723284 + 0.997381i \(0.523043\pi\)
\(252\) 0 0
\(253\) − 12.3607i − 0.777109i
\(254\) −21.4164 −1.34378
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) − 0.763932i − 0.0476528i −0.999716 0.0238264i \(-0.992415\pi\)
0.999716 0.0238264i \(-0.00758489\pi\)
\(258\) 0 0
\(259\) 35.4164 2.20067
\(260\) 2.23607 0.138675
\(261\) 0 0
\(262\) − 9.70820i − 0.599775i
\(263\) 10.1803i 0.627747i 0.949465 + 0.313873i \(0.101627\pi\)
−0.949465 + 0.313873i \(0.898373\pi\)
\(264\) 0 0
\(265\) −1.05573 −0.0648529
\(266\) −8.94427 −0.548408
\(267\) 0 0
\(268\) 0 0
\(269\) 6.76393 0.412404 0.206202 0.978509i \(-0.433890\pi\)
0.206202 + 0.978509i \(0.433890\pi\)
\(270\) 0 0
\(271\) −11.4164 −0.693497 −0.346749 0.937958i \(-0.612714\pi\)
−0.346749 + 0.937958i \(0.612714\pi\)
\(272\) − 7.23607i − 0.438751i
\(273\) 0 0
\(274\) −19.8885 −1.20151
\(275\) 22.3607 1.34840
\(276\) 0 0
\(277\) 20.8328i 1.25172i 0.779934 + 0.625861i \(0.215252\pi\)
−0.779934 + 0.625861i \(0.784748\pi\)
\(278\) 6.47214i 0.388173i
\(279\) 0 0
\(280\) − 7.23607i − 0.432438i
\(281\) −24.4721 −1.45989 −0.729943 0.683508i \(-0.760453\pi\)
−0.729943 + 0.683508i \(0.760453\pi\)
\(282\) 0 0
\(283\) 11.4164i 0.678635i 0.940672 + 0.339318i \(0.110196\pi\)
−0.940672 + 0.339318i \(0.889804\pi\)
\(284\) −2.47214 −0.146694
\(285\) 0 0
\(286\) −4.47214 −0.264443
\(287\) − 11.4164i − 0.673889i
\(288\) 0 0
\(289\) −35.3607 −2.08004
\(290\) −8.29180 −0.486911
\(291\) 0 0
\(292\) 13.2361i 0.774582i
\(293\) 2.94427i 0.172006i 0.996295 + 0.0860031i \(0.0274095\pi\)
−0.996295 + 0.0860031i \(0.972591\pi\)
\(294\) 0 0
\(295\) 18.9443i 1.10298i
\(296\) −10.9443 −0.636123
\(297\) 0 0
\(298\) 13.5279i 0.783648i
\(299\) 2.76393 0.159842
\(300\) 0 0
\(301\) −8.00000 −0.461112
\(302\) − 19.4164i − 1.11729i
\(303\) 0 0
\(304\) 2.76393 0.158522
\(305\) 24.4721i 1.40127i
\(306\) 0 0
\(307\) − 24.3607i − 1.39034i −0.718847 0.695169i \(-0.755330\pi\)
0.718847 0.695169i \(-0.244670\pi\)
\(308\) 14.4721i 0.824626i
\(309\) 0 0
\(310\) −8.94427 −0.508001
\(311\) 22.4721 1.27428 0.637139 0.770749i \(-0.280118\pi\)
0.637139 + 0.770749i \(0.280118\pi\)
\(312\) 0 0
\(313\) 19.4164i 1.09748i 0.835993 + 0.548740i \(0.184892\pi\)
−0.835993 + 0.548740i \(0.815108\pi\)
\(314\) 18.9443 1.06909
\(315\) 0 0
\(316\) −4.00000 −0.225018
\(317\) − 13.4164i − 0.753541i −0.926307 0.376770i \(-0.877035\pi\)
0.926307 0.376770i \(-0.122965\pi\)
\(318\) 0 0
\(319\) 16.5836 0.928503
\(320\) 2.23607i 0.125000i
\(321\) 0 0
\(322\) − 8.94427i − 0.498445i
\(323\) − 20.0000i − 1.11283i
\(324\) 0 0
\(325\) 5.00000i 0.277350i
\(326\) 12.9443 0.716917
\(327\) 0 0
\(328\) 3.52786i 0.194794i
\(329\) 41.8885 2.30939
\(330\) 0 0
\(331\) −2.76393 −0.151919 −0.0759597 0.997111i \(-0.524202\pi\)
−0.0759597 + 0.997111i \(0.524202\pi\)
\(332\) 4.94427i 0.271352i
\(333\) 0 0
\(334\) −19.4164 −1.06242
\(335\) 0 0
\(336\) 0 0
\(337\) − 6.47214i − 0.352560i −0.984340 0.176280i \(-0.943594\pi\)
0.984340 0.176280i \(-0.0564064\pi\)
\(338\) − 1.00000i − 0.0543928i
\(339\) 0 0
\(340\) 16.1803 0.877502
\(341\) 17.8885 0.968719
\(342\) 0 0
\(343\) 11.4164i 0.616428i
\(344\) 2.47214 0.133289
\(345\) 0 0
\(346\) 22.9443 1.23349
\(347\) − 1.52786i − 0.0820200i −0.999159 0.0410100i \(-0.986942\pi\)
0.999159 0.0410100i \(-0.0130576\pi\)
\(348\) 0 0
\(349\) 15.2361 0.815568 0.407784 0.913078i \(-0.366302\pi\)
0.407784 + 0.913078i \(0.366302\pi\)
\(350\) 16.1803 0.864876
\(351\) 0 0
\(352\) − 4.47214i − 0.238366i
\(353\) − 26.9443i − 1.43410i −0.697022 0.717049i \(-0.745492\pi\)
0.697022 0.717049i \(-0.254508\pi\)
\(354\) 0 0
\(355\) − 5.52786i − 0.293389i
\(356\) −0.472136 −0.0250232
\(357\) 0 0
\(358\) 8.18034i 0.432344i
\(359\) 6.47214 0.341586 0.170793 0.985307i \(-0.445367\pi\)
0.170793 + 0.985307i \(0.445367\pi\)
\(360\) 0 0
\(361\) −11.3607 −0.597931
\(362\) 17.4164i 0.915386i
\(363\) 0 0
\(364\) −3.23607 −0.169616
\(365\) −29.5967 −1.54916
\(366\) 0 0
\(367\) 0.472136i 0.0246453i 0.999924 + 0.0123226i \(0.00392252\pi\)
−0.999924 + 0.0123226i \(0.996077\pi\)
\(368\) 2.76393i 0.144080i
\(369\) 0 0
\(370\) − 24.4721i − 1.27225i
\(371\) 1.52786 0.0793227
\(372\) 0 0
\(373\) − 2.00000i − 0.103556i −0.998659 0.0517780i \(-0.983511\pi\)
0.998659 0.0517780i \(-0.0164888\pi\)
\(374\) −32.3607 −1.67333
\(375\) 0 0
\(376\) −12.9443 −0.667550
\(377\) 3.70820i 0.190982i
\(378\) 0 0
\(379\) 35.1246 1.80423 0.902115 0.431496i \(-0.142014\pi\)
0.902115 + 0.431496i \(0.142014\pi\)
\(380\) 6.18034i 0.317045i
\(381\) 0 0
\(382\) − 22.4721i − 1.14977i
\(383\) 5.52786i 0.282461i 0.989977 + 0.141230i \(0.0451058\pi\)
−0.989977 + 0.141230i \(0.954894\pi\)
\(384\) 0 0
\(385\) −32.3607 −1.64925
\(386\) −8.29180 −0.422041
\(387\) 0 0
\(388\) 3.70820i 0.188256i
\(389\) 12.6525 0.641506 0.320753 0.947163i \(-0.396064\pi\)
0.320753 + 0.947163i \(0.396064\pi\)
\(390\) 0 0
\(391\) 20.0000 1.01144
\(392\) 3.47214i 0.175369i
\(393\) 0 0
\(394\) −14.9443 −0.752882
\(395\) − 8.94427i − 0.450035i
\(396\) 0 0
\(397\) 17.4164i 0.874104i 0.899436 + 0.437052i \(0.143978\pi\)
−0.899436 + 0.437052i \(0.856022\pi\)
\(398\) 0.944272i 0.0473321i
\(399\) 0 0
\(400\) −5.00000 −0.250000
\(401\) 24.4721 1.22208 0.611040 0.791600i \(-0.290751\pi\)
0.611040 + 0.791600i \(0.290751\pi\)
\(402\) 0 0
\(403\) 4.00000i 0.199254i
\(404\) −9.23607 −0.459512
\(405\) 0 0
\(406\) 12.0000 0.595550
\(407\) 48.9443i 2.42608i
\(408\) 0 0
\(409\) −6.00000 −0.296681 −0.148340 0.988936i \(-0.547393\pi\)
−0.148340 + 0.988936i \(0.547393\pi\)
\(410\) −7.88854 −0.389587
\(411\) 0 0
\(412\) 8.47214i 0.417392i
\(413\) − 27.4164i − 1.34907i
\(414\) 0 0
\(415\) −11.0557 −0.542704
\(416\) 1.00000 0.0490290
\(417\) 0 0
\(418\) − 12.3607i − 0.604581i
\(419\) 27.5967 1.34819 0.674095 0.738645i \(-0.264534\pi\)
0.674095 + 0.738645i \(0.264534\pi\)
\(420\) 0 0
\(421\) −13.7082 −0.668097 −0.334048 0.942556i \(-0.608415\pi\)
−0.334048 + 0.942556i \(0.608415\pi\)
\(422\) 13.8885i 0.676084i
\(423\) 0 0
\(424\) −0.472136 −0.0229289
\(425\) 36.1803i 1.75500i
\(426\) 0 0
\(427\) − 35.4164i − 1.71392i
\(428\) − 1.52786i − 0.0738521i
\(429\) 0 0
\(430\) 5.52786i 0.266577i
\(431\) 14.8328 0.714472 0.357236 0.934014i \(-0.383719\pi\)
0.357236 + 0.934014i \(0.383719\pi\)
\(432\) 0 0
\(433\) 9.52786i 0.457880i 0.973441 + 0.228940i \(0.0735259\pi\)
−0.973441 + 0.228940i \(0.926474\pi\)
\(434\) 12.9443 0.621345
\(435\) 0 0
\(436\) −2.29180 −0.109757
\(437\) 7.63932i 0.365438i
\(438\) 0 0
\(439\) 4.94427 0.235977 0.117989 0.993015i \(-0.462355\pi\)
0.117989 + 0.993015i \(0.462355\pi\)
\(440\) 10.0000 0.476731
\(441\) 0 0
\(442\) − 7.23607i − 0.344185i
\(443\) − 22.4721i − 1.06768i −0.845584 0.533842i \(-0.820748\pi\)
0.845584 0.533842i \(-0.179252\pi\)
\(444\) 0 0
\(445\) − 1.05573i − 0.0500463i
\(446\) 16.7639 0.793795
\(447\) 0 0
\(448\) − 3.23607i − 0.152890i
\(449\) 0.472136 0.0222815 0.0111407 0.999938i \(-0.496454\pi\)
0.0111407 + 0.999938i \(0.496454\pi\)
\(450\) 0 0
\(451\) 15.7771 0.742914
\(452\) − 18.6525i − 0.877339i
\(453\) 0 0
\(454\) 7.05573 0.331142
\(455\) − 7.23607i − 0.339232i
\(456\) 0 0
\(457\) − 3.70820i − 0.173462i −0.996232 0.0867312i \(-0.972358\pi\)
0.996232 0.0867312i \(-0.0276421\pi\)
\(458\) − 9.70820i − 0.453635i
\(459\) 0 0
\(460\) −6.18034 −0.288160
\(461\) −41.8885 −1.95094 −0.975472 0.220124i \(-0.929354\pi\)
−0.975472 + 0.220124i \(0.929354\pi\)
\(462\) 0 0
\(463\) 22.2918i 1.03599i 0.855384 + 0.517994i \(0.173321\pi\)
−0.855384 + 0.517994i \(0.826679\pi\)
\(464\) −3.70820 −0.172149
\(465\) 0 0
\(466\) −20.1803 −0.934836
\(467\) − 6.47214i − 0.299495i −0.988724 0.149747i \(-0.952154\pi\)
0.988724 0.149747i \(-0.0478460\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) − 28.9443i − 1.33510i
\(471\) 0 0
\(472\) 8.47214i 0.389962i
\(473\) − 11.0557i − 0.508343i
\(474\) 0 0
\(475\) −13.8197 −0.634089
\(476\) −23.4164 −1.07329
\(477\) 0 0
\(478\) − 21.8885i − 1.00116i
\(479\) −36.0000 −1.64488 −0.822441 0.568850i \(-0.807388\pi\)
−0.822441 + 0.568850i \(0.807388\pi\)
\(480\) 0 0
\(481\) −10.9443 −0.499016
\(482\) 3.52786i 0.160690i
\(483\) 0 0
\(484\) −9.00000 −0.409091
\(485\) −8.29180 −0.376511
\(486\) 0 0
\(487\) − 23.5967i − 1.06927i −0.845083 0.534635i \(-0.820449\pi\)
0.845083 0.534635i \(-0.179551\pi\)
\(488\) 10.9443i 0.495424i
\(489\) 0 0
\(490\) −7.76393 −0.350739
\(491\) 16.1803 0.730209 0.365104 0.930967i \(-0.381033\pi\)
0.365104 + 0.930967i \(0.381033\pi\)
\(492\) 0 0
\(493\) 26.8328i 1.20849i
\(494\) 2.76393 0.124355
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) 8.00000i 0.358849i
\(498\) 0 0
\(499\) 39.1246 1.75146 0.875729 0.482803i \(-0.160381\pi\)
0.875729 + 0.482803i \(0.160381\pi\)
\(500\) − 11.1803i − 0.500000i
\(501\) 0 0
\(502\) − 2.29180i − 0.102288i
\(503\) − 30.7639i − 1.37170i −0.727745 0.685848i \(-0.759431\pi\)
0.727745 0.685848i \(-0.240569\pi\)
\(504\) 0 0
\(505\) − 20.6525i − 0.919023i
\(506\) 12.3607 0.549499
\(507\) 0 0
\(508\) − 21.4164i − 0.950199i
\(509\) −15.0557 −0.667333 −0.333667 0.942691i \(-0.608286\pi\)
−0.333667 + 0.942691i \(0.608286\pi\)
\(510\) 0 0
\(511\) 42.8328 1.89481
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 0.763932 0.0336956
\(515\) −18.9443 −0.834784
\(516\) 0 0
\(517\) 57.8885i 2.54594i
\(518\) 35.4164i 1.55611i
\(519\) 0 0
\(520\) 2.23607i 0.0980581i
\(521\) −20.8328 −0.912702 −0.456351 0.889800i \(-0.650844\pi\)
−0.456351 + 0.889800i \(0.650844\pi\)
\(522\) 0 0
\(523\) − 8.00000i − 0.349816i −0.984585 0.174908i \(-0.944037\pi\)
0.984585 0.174908i \(-0.0559627\pi\)
\(524\) 9.70820 0.424105
\(525\) 0 0
\(526\) −10.1803 −0.443884
\(527\) 28.9443i 1.26083i
\(528\) 0 0
\(529\) 15.3607 0.667856
\(530\) − 1.05573i − 0.0458579i
\(531\) 0 0
\(532\) − 8.94427i − 0.387783i
\(533\) 3.52786i 0.152809i
\(534\) 0 0
\(535\) 3.41641 0.147704
\(536\) 0 0
\(537\) 0 0
\(538\) 6.76393i 0.291614i
\(539\) 15.5279 0.668832
\(540\) 0 0
\(541\) −4.76393 −0.204817 −0.102409 0.994742i \(-0.532655\pi\)
−0.102409 + 0.994742i \(0.532655\pi\)
\(542\) − 11.4164i − 0.490377i
\(543\) 0 0
\(544\) 7.23607 0.310244
\(545\) − 5.12461i − 0.219514i
\(546\) 0 0
\(547\) 12.0000i 0.513083i 0.966533 + 0.256541i \(0.0825830\pi\)
−0.966533 + 0.256541i \(0.917417\pi\)
\(548\) − 19.8885i − 0.849596i
\(549\) 0 0
\(550\) 22.3607i 0.953463i
\(551\) −10.2492 −0.436632
\(552\) 0 0
\(553\) 12.9443i 0.550446i
\(554\) −20.8328 −0.885102
\(555\) 0 0
\(556\) −6.47214 −0.274480
\(557\) − 19.3050i − 0.817977i −0.912540 0.408989i \(-0.865882\pi\)
0.912540 0.408989i \(-0.134118\pi\)
\(558\) 0 0
\(559\) 2.47214 0.104560
\(560\) 7.23607 0.305780
\(561\) 0 0
\(562\) − 24.4721i − 1.03229i
\(563\) − 19.4164i − 0.818304i −0.912466 0.409152i \(-0.865825\pi\)
0.912466 0.409152i \(-0.134175\pi\)
\(564\) 0 0
\(565\) 41.7082 1.75468
\(566\) −11.4164 −0.479867
\(567\) 0 0
\(568\) − 2.47214i − 0.103729i
\(569\) 34.9443 1.46494 0.732470 0.680799i \(-0.238367\pi\)
0.732470 + 0.680799i \(0.238367\pi\)
\(570\) 0 0
\(571\) −8.58359 −0.359212 −0.179606 0.983739i \(-0.557482\pi\)
−0.179606 + 0.983739i \(0.557482\pi\)
\(572\) − 4.47214i − 0.186989i
\(573\) 0 0
\(574\) 11.4164 0.476512
\(575\) − 13.8197i − 0.576320i
\(576\) 0 0
\(577\) − 43.1246i − 1.79530i −0.440708 0.897651i \(-0.645273\pi\)
0.440708 0.897651i \(-0.354727\pi\)
\(578\) − 35.3607i − 1.47081i
\(579\) 0 0
\(580\) − 8.29180i − 0.344298i
\(581\) 16.0000 0.663792
\(582\) 0 0
\(583\) 2.11146i 0.0874476i
\(584\) −13.2361 −0.547712
\(585\) 0 0
\(586\) −2.94427 −0.121627
\(587\) 2.11146i 0.0871491i 0.999050 + 0.0435746i \(0.0138746\pi\)
−0.999050 + 0.0435746i \(0.986125\pi\)
\(588\) 0 0
\(589\) −11.0557 −0.455543
\(590\) −18.9443 −0.779923
\(591\) 0 0
\(592\) − 10.9443i − 0.449807i
\(593\) 3.52786i 0.144872i 0.997373 + 0.0724360i \(0.0230773\pi\)
−0.997373 + 0.0724360i \(0.976923\pi\)
\(594\) 0 0
\(595\) − 52.3607i − 2.14658i
\(596\) −13.5279 −0.554123
\(597\) 0 0
\(598\) 2.76393i 0.113026i
\(599\) −6.11146 −0.249707 −0.124854 0.992175i \(-0.539846\pi\)
−0.124854 + 0.992175i \(0.539846\pi\)
\(600\) 0 0
\(601\) 13.4164 0.547267 0.273633 0.961834i \(-0.411775\pi\)
0.273633 + 0.961834i \(0.411775\pi\)
\(602\) − 8.00000i − 0.326056i
\(603\) 0 0
\(604\) 19.4164 0.790042
\(605\) − 20.1246i − 0.818182i
\(606\) 0 0
\(607\) 1.41641i 0.0574902i 0.999587 + 0.0287451i \(0.00915111\pi\)
−0.999587 + 0.0287451i \(0.990849\pi\)
\(608\) 2.76393i 0.112092i
\(609\) 0 0
\(610\) −24.4721 −0.990848
\(611\) −12.9443 −0.523669
\(612\) 0 0
\(613\) − 18.0000i − 0.727013i −0.931592 0.363507i \(-0.881579\pi\)
0.931592 0.363507i \(-0.118421\pi\)
\(614\) 24.3607 0.983117
\(615\) 0 0
\(616\) −14.4721 −0.583099
\(617\) − 35.8885i − 1.44482i −0.691466 0.722409i \(-0.743035\pi\)
0.691466 0.722409i \(-0.256965\pi\)
\(618\) 0 0
\(619\) 25.2361 1.01432 0.507162 0.861851i \(-0.330695\pi\)
0.507162 + 0.861851i \(0.330695\pi\)
\(620\) − 8.94427i − 0.359211i
\(621\) 0 0
\(622\) 22.4721i 0.901051i
\(623\) 1.52786i 0.0612126i
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) −19.4164 −0.776036
\(627\) 0 0
\(628\) 18.9443i 0.755959i
\(629\) −79.1935 −3.15765
\(630\) 0 0
\(631\) −12.5836 −0.500945 −0.250472 0.968124i \(-0.580586\pi\)
−0.250472 + 0.968124i \(0.580586\pi\)
\(632\) − 4.00000i − 0.159111i
\(633\) 0 0
\(634\) 13.4164 0.532834
\(635\) 47.8885 1.90040
\(636\) 0 0
\(637\) 3.47214i 0.137571i
\(638\) 16.5836i 0.656551i
\(639\) 0 0
\(640\) −2.23607 −0.0883883
\(641\) 23.3050 0.920490 0.460245 0.887792i \(-0.347762\pi\)
0.460245 + 0.887792i \(0.347762\pi\)
\(642\) 0 0
\(643\) − 19.0557i − 0.751485i −0.926724 0.375742i \(-0.877388\pi\)
0.926724 0.375742i \(-0.122612\pi\)
\(644\) 8.94427 0.352454
\(645\) 0 0
\(646\) 20.0000 0.786889
\(647\) 3.70820i 0.145785i 0.997340 + 0.0728923i \(0.0232229\pi\)
−0.997340 + 0.0728923i \(0.976777\pi\)
\(648\) 0 0
\(649\) 37.8885 1.48726
\(650\) −5.00000 −0.196116
\(651\) 0 0
\(652\) 12.9443i 0.506937i
\(653\) − 30.3607i − 1.18811i −0.804426 0.594053i \(-0.797527\pi\)
0.804426 0.594053i \(-0.202473\pi\)
\(654\) 0 0
\(655\) 21.7082i 0.848210i
\(656\) −3.52786 −0.137740
\(657\) 0 0
\(658\) 41.8885i 1.63299i
\(659\) −10.0689 −0.392228 −0.196114 0.980581i \(-0.562832\pi\)
−0.196114 + 0.980581i \(0.562832\pi\)
\(660\) 0 0
\(661\) −41.7082 −1.62226 −0.811131 0.584865i \(-0.801147\pi\)
−0.811131 + 0.584865i \(0.801147\pi\)
\(662\) − 2.76393i − 0.107423i
\(663\) 0 0
\(664\) −4.94427 −0.191875
\(665\) 20.0000 0.775567
\(666\) 0 0
\(667\) − 10.2492i − 0.396852i
\(668\) − 19.4164i − 0.751243i
\(669\) 0 0
\(670\) 0 0
\(671\) 48.9443 1.88947
\(672\) 0 0
\(673\) − 44.0000i − 1.69608i −0.529936 0.848038i \(-0.677784\pi\)
0.529936 0.848038i \(-0.322216\pi\)
\(674\) 6.47214 0.249297
\(675\) 0 0
\(676\) 1.00000 0.0384615
\(677\) − 27.5279i − 1.05798i −0.848628 0.528991i \(-0.822571\pi\)
0.848628 0.528991i \(-0.177429\pi\)
\(678\) 0 0
\(679\) 12.0000 0.460518
\(680\) 16.1803i 0.620488i
\(681\) 0 0
\(682\) 17.8885i 0.684988i
\(683\) − 41.8885i − 1.60282i −0.598115 0.801410i \(-0.704083\pi\)
0.598115 0.801410i \(-0.295917\pi\)
\(684\) 0 0
\(685\) 44.4721 1.69919
\(686\) −11.4164 −0.435880
\(687\) 0 0
\(688\) 2.47214i 0.0942493i
\(689\) −0.472136 −0.0179869
\(690\) 0 0
\(691\) 0.291796 0.0111004 0.00555022 0.999985i \(-0.498233\pi\)
0.00555022 + 0.999985i \(0.498233\pi\)
\(692\) 22.9443i 0.872210i
\(693\) 0 0
\(694\) 1.52786 0.0579969
\(695\) − 14.4721i − 0.548959i
\(696\) 0 0
\(697\) 25.5279i 0.966937i
\(698\) 15.2361i 0.576694i
\(699\) 0 0
\(700\) 16.1803i 0.611559i
\(701\) 24.0689 0.909069 0.454535 0.890729i \(-0.349806\pi\)
0.454535 + 0.890729i \(0.349806\pi\)
\(702\) 0 0
\(703\) − 30.2492i − 1.14087i
\(704\) 4.47214 0.168550
\(705\) 0 0
\(706\) 26.9443 1.01406
\(707\) 29.8885i 1.12407i
\(708\) 0 0
\(709\) −32.5410 −1.22210 −0.611052 0.791591i \(-0.709253\pi\)
−0.611052 + 0.791591i \(0.709253\pi\)
\(710\) 5.52786 0.207457
\(711\) 0 0
\(712\) − 0.472136i − 0.0176940i
\(713\) − 11.0557i − 0.414040i
\(714\) 0 0
\(715\) 10.0000 0.373979
\(716\) −8.18034 −0.305714
\(717\) 0 0
\(718\) 6.47214i 0.241538i
\(719\) 20.9443 0.781090 0.390545 0.920584i \(-0.372287\pi\)
0.390545 + 0.920584i \(0.372287\pi\)
\(720\) 0 0
\(721\) 27.4164 1.02104
\(722\) − 11.3607i − 0.422801i
\(723\) 0 0
\(724\) −17.4164 −0.647276
\(725\) 18.5410 0.688596
\(726\) 0 0
\(727\) 18.0000i 0.667583i 0.942647 + 0.333792i \(0.108328\pi\)
−0.942647 + 0.333792i \(0.891672\pi\)
\(728\) − 3.23607i − 0.119937i
\(729\) 0 0
\(730\) − 29.5967i − 1.09542i
\(731\) 17.8885 0.661632
\(732\) 0 0
\(733\) − 33.4164i − 1.23426i −0.786860 0.617132i \(-0.788295\pi\)
0.786860 0.617132i \(-0.211705\pi\)
\(734\) −0.472136 −0.0174269
\(735\) 0 0
\(736\) −2.76393 −0.101880
\(737\) 0 0
\(738\) 0 0
\(739\) 0.291796 0.0107339 0.00536695 0.999986i \(-0.498292\pi\)
0.00536695 + 0.999986i \(0.498292\pi\)
\(740\) 24.4721 0.899614
\(741\) 0 0
\(742\) 1.52786i 0.0560897i
\(743\) 28.3607i 1.04045i 0.854029 + 0.520226i \(0.174152\pi\)
−0.854029 + 0.520226i \(0.825848\pi\)
\(744\) 0 0
\(745\) − 30.2492i − 1.10825i
\(746\) 2.00000 0.0732252
\(747\) 0 0
\(748\) − 32.3607i − 1.18322i
\(749\) −4.94427 −0.180660
\(750\) 0 0
\(751\) −46.8328 −1.70895 −0.854477 0.519489i \(-0.826122\pi\)
−0.854477 + 0.519489i \(0.826122\pi\)
\(752\) − 12.9443i − 0.472029i
\(753\) 0 0
\(754\) −3.70820 −0.135045
\(755\) 43.4164i 1.58008i
\(756\) 0 0
\(757\) − 38.0000i − 1.38113i −0.723269 0.690567i \(-0.757361\pi\)
0.723269 0.690567i \(-0.242639\pi\)
\(758\) 35.1246i 1.27578i
\(759\) 0 0
\(760\) −6.18034 −0.224184
\(761\) −7.52786 −0.272885 −0.136442 0.990648i \(-0.543567\pi\)
−0.136442 + 0.990648i \(0.543567\pi\)
\(762\) 0 0
\(763\) 7.41641i 0.268492i
\(764\) 22.4721 0.813013
\(765\) 0 0
\(766\) −5.52786 −0.199730
\(767\) 8.47214i 0.305911i
\(768\) 0 0
\(769\) 4.83282 0.174276 0.0871379 0.996196i \(-0.472228\pi\)
0.0871379 + 0.996196i \(0.472228\pi\)
\(770\) − 32.3607i − 1.16620i
\(771\) 0 0
\(772\) − 8.29180i − 0.298428i
\(773\) − 2.94427i − 0.105898i −0.998597 0.0529491i \(-0.983138\pi\)
0.998597 0.0529491i \(-0.0168621\pi\)
\(774\) 0 0
\(775\) 20.0000 0.718421
\(776\) −3.70820 −0.133117
\(777\) 0 0
\(778\) 12.6525i 0.453613i
\(779\) −9.75078 −0.349358
\(780\) 0 0
\(781\) −11.0557 −0.395605
\(782\) 20.0000i 0.715199i
\(783\) 0 0
\(784\) −3.47214 −0.124005
\(785\) −42.3607 −1.51192
\(786\) 0 0
\(787\) 28.9443i 1.03175i 0.856663 + 0.515876i \(0.172533\pi\)
−0.856663 + 0.515876i \(0.827467\pi\)
\(788\) − 14.9443i − 0.532368i
\(789\) 0 0
\(790\) 8.94427 0.318223
\(791\) −60.3607 −2.14618
\(792\) 0 0
\(793\) 10.9443i 0.388642i
\(794\) −17.4164 −0.618085
\(795\) 0 0
\(796\) −0.944272 −0.0334688
\(797\) − 9.05573i − 0.320770i −0.987055 0.160385i \(-0.948726\pi\)
0.987055 0.160385i \(-0.0512736\pi\)
\(798\) 0 0
\(799\) −93.6656 −3.31365
\(800\) − 5.00000i − 0.176777i
\(801\) 0 0
\(802\) 24.4721i 0.864141i
\(803\) 59.1935i 2.08889i
\(804\) 0 0
\(805\) 20.0000i 0.704907i
\(806\) −4.00000 −0.140894
\(807\) 0 0
\(808\) − 9.23607i − 0.324924i
\(809\) 31.5279 1.10846 0.554230 0.832363i \(-0.313013\pi\)
0.554230 + 0.832363i \(0.313013\pi\)
\(810\) 0 0
\(811\) 4.29180 0.150705 0.0753527 0.997157i \(-0.475992\pi\)
0.0753527 + 0.997157i \(0.475992\pi\)
\(812\) 12.0000i 0.421117i
\(813\) 0 0
\(814\) −48.9443 −1.71550
\(815\) −28.9443 −1.01387
\(816\) 0 0
\(817\) 6.83282i 0.239050i
\(818\) − 6.00000i − 0.209785i
\(819\) 0 0
\(820\) − 7.88854i − 0.275480i
\(821\) 30.4721 1.06348 0.531742 0.846906i \(-0.321537\pi\)
0.531742 + 0.846906i \(0.321537\pi\)
\(822\) 0 0
\(823\) − 48.2492i − 1.68186i −0.541142 0.840931i \(-0.682008\pi\)
0.541142 0.840931i \(-0.317992\pi\)
\(824\) −8.47214 −0.295141
\(825\) 0 0
\(826\) 27.4164 0.953939
\(827\) 41.8885i 1.45661i 0.685254 + 0.728304i \(0.259691\pi\)
−0.685254 + 0.728304i \(0.740309\pi\)
\(828\) 0 0
\(829\) −42.7214 −1.48377 −0.741887 0.670525i \(-0.766069\pi\)
−0.741887 + 0.670525i \(0.766069\pi\)
\(830\) − 11.0557i − 0.383750i
\(831\) 0 0
\(832\) 1.00000i 0.0346688i
\(833\) 25.1246i 0.870516i
\(834\) 0 0
\(835\) 43.4164 1.50249
\(836\) 12.3607 0.427503
\(837\) 0 0
\(838\) 27.5967i 0.953314i
\(839\) −51.7771 −1.78754 −0.893772 0.448522i \(-0.851951\pi\)
−0.893772 + 0.448522i \(0.851951\pi\)
\(840\) 0 0
\(841\) −15.2492 −0.525835
\(842\) − 13.7082i − 0.472416i
\(843\) 0 0
\(844\) −13.8885 −0.478063
\(845\) 2.23607i 0.0769231i
\(846\) 0 0
\(847\) 29.1246i 1.00073i
\(848\) − 0.472136i − 0.0162132i
\(849\) 0 0
\(850\) −36.1803 −1.24098
\(851\) 30.2492 1.03693
\(852\) 0 0
\(853\) − 41.4164i − 1.41807i −0.705173 0.709035i \(-0.749131\pi\)
0.705173 0.709035i \(-0.250869\pi\)
\(854\) 35.4164 1.21192
\(855\) 0 0
\(856\) 1.52786 0.0522213
\(857\) 0.180340i 0.00616029i 0.999995 + 0.00308015i \(0.000980443\pi\)
−0.999995 + 0.00308015i \(0.999020\pi\)
\(858\) 0 0
\(859\) −36.0000 −1.22830 −0.614152 0.789188i \(-0.710502\pi\)
−0.614152 + 0.789188i \(0.710502\pi\)
\(860\) −5.52786 −0.188499
\(861\) 0 0
\(862\) 14.8328i 0.505208i
\(863\) 22.4721i 0.764960i 0.923964 + 0.382480i \(0.124930\pi\)
−0.923964 + 0.382480i \(0.875070\pi\)
\(864\) 0 0
\(865\) −51.3050 −1.74442
\(866\) −9.52786 −0.323770
\(867\) 0 0
\(868\) 12.9443i 0.439357i
\(869\) −17.8885 −0.606827
\(870\) 0 0
\(871\) 0 0
\(872\) − 2.29180i − 0.0776100i
\(873\) 0 0
\(874\) −7.63932 −0.258404
\(875\) −36.1803 −1.22312
\(876\) 0 0
\(877\) 24.4721i 0.826365i 0.910648 + 0.413183i \(0.135583\pi\)
−0.910648 + 0.413183i \(0.864417\pi\)
\(878\) 4.94427i 0.166861i
\(879\) 0 0
\(880\) 10.0000i 0.337100i
\(881\) −34.3607 −1.15764 −0.578820 0.815455i \(-0.696487\pi\)
−0.578820 + 0.815455i \(0.696487\pi\)
\(882\) 0 0
\(883\) − 25.8885i − 0.871219i −0.900136 0.435609i \(-0.856533\pi\)
0.900136 0.435609i \(-0.143467\pi\)
\(884\) 7.23607 0.243375
\(885\) 0 0
\(886\) 22.4721 0.754966
\(887\) 10.1803i 0.341822i 0.985286 + 0.170911i \(0.0546711\pi\)
−0.985286 + 0.170911i \(0.945329\pi\)
\(888\) 0 0
\(889\) −69.3050 −2.32441
\(890\) 1.05573 0.0353881
\(891\) 0 0
\(892\) 16.7639i 0.561298i
\(893\) − 35.7771i − 1.19723i
\(894\) 0 0
\(895\) − 18.2918i − 0.611427i
\(896\) 3.23607 0.108109
\(897\) 0 0
\(898\) 0.472136i 0.0157554i
\(899\) 14.8328 0.494702
\(900\) 0 0
\(901\) −3.41641 −0.113817
\(902\) 15.7771i 0.525320i
\(903\) 0 0
\(904\) 18.6525 0.620372
\(905\) − 38.9443i − 1.29455i
\(906\) 0 0
\(907\) 45.5279i 1.51173i 0.654729 + 0.755864i \(0.272783\pi\)
−0.654729 + 0.755864i \(0.727217\pi\)
\(908\) 7.05573i 0.234153i
\(909\) 0 0
\(910\) 7.23607 0.239873
\(911\) 11.0557 0.366293 0.183146 0.983086i \(-0.441372\pi\)
0.183146 + 0.983086i \(0.441372\pi\)
\(912\) 0 0
\(913\) 22.1115i 0.731782i
\(914\) 3.70820 0.122656
\(915\) 0 0
\(916\) 9.70820 0.320768
\(917\) − 31.4164i − 1.03746i
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) − 6.18034i − 0.203760i
\(921\) 0 0
\(922\) − 41.8885i − 1.37953i
\(923\) − 2.47214i − 0.0813713i
\(924\) 0 0
\(925\) 54.7214i 1.79923i
\(926\) −22.2918 −0.732554
\(927\) 0 0
\(928\) − 3.70820i − 0.121728i
\(929\) 32.4721 1.06538 0.532688 0.846312i \(-0.321182\pi\)
0.532688 + 0.846312i \(0.321182\pi\)
\(930\) 0 0
\(931\) −9.59675 −0.314521
\(932\) − 20.1803i − 0.661029i
\(933\) 0 0
\(934\) 6.47214 0.211775
\(935\) 72.3607 2.36645
\(936\) 0 0
\(937\) 19.7771i 0.646089i 0.946384 + 0.323045i \(0.104706\pi\)
−0.946384 + 0.323045i \(0.895294\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 28.9443 0.944058
\(941\) 37.5279 1.22337 0.611687 0.791100i \(-0.290491\pi\)
0.611687 + 0.791100i \(0.290491\pi\)
\(942\) 0 0
\(943\) − 9.75078i − 0.317529i
\(944\) −8.47214 −0.275745
\(945\) 0 0
\(946\) 11.0557 0.359453
\(947\) − 4.94427i − 0.160667i −0.996768 0.0803336i \(-0.974401\pi\)
0.996768 0.0803336i \(-0.0255986\pi\)
\(948\) 0 0
\(949\) −13.2361 −0.429661
\(950\) − 13.8197i − 0.448369i
\(951\) 0 0
\(952\) − 23.4164i − 0.758930i
\(953\) 29.1246i 0.943439i 0.881749 + 0.471719i \(0.156366\pi\)
−0.881749 + 0.471719i \(0.843634\pi\)
\(954\) 0 0
\(955\) 50.2492i 1.62603i
\(956\) 21.8885 0.707926
\(957\) 0 0
\(958\) − 36.0000i − 1.16311i
\(959\) −64.3607 −2.07831
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) − 10.9443i − 0.352857i
\(963\) 0 0
\(964\) −3.52786 −0.113625
\(965\) 18.5410 0.596857
\(966\) 0 0
\(967\) − 56.5410i − 1.81824i −0.416538 0.909118i \(-0.636757\pi\)
0.416538 0.909118i \(-0.363243\pi\)
\(968\) − 9.00000i − 0.289271i
\(969\) 0 0
\(970\) − 8.29180i − 0.266234i
\(971\) −23.2361 −0.745681 −0.372840 0.927895i \(-0.621616\pi\)
−0.372840 + 0.927895i \(0.621616\pi\)
\(972\) 0 0
\(973\) 20.9443i 0.671443i
\(974\) 23.5967 0.756089
\(975\) 0 0
\(976\) −10.9443 −0.350318
\(977\) 10.3607i 0.331468i 0.986171 + 0.165734i \(0.0529992\pi\)
−0.986171 + 0.165734i \(0.947001\pi\)
\(978\) 0 0
\(979\) −2.11146 −0.0674824
\(980\) − 7.76393i − 0.248010i
\(981\) 0 0
\(982\) 16.1803i 0.516335i
\(983\) − 7.41641i − 0.236547i −0.992981 0.118273i \(-0.962264\pi\)
0.992981 0.118273i \(-0.0377359\pi\)
\(984\) 0 0
\(985\) 33.4164 1.06474
\(986\) −26.8328 −0.854531
\(987\) 0 0
\(988\) 2.76393i 0.0879324i
\(989\) −6.83282 −0.217271
\(990\) 0 0
\(991\) 24.9443 0.792381 0.396190 0.918168i \(-0.370332\pi\)
0.396190 + 0.918168i \(0.370332\pi\)
\(992\) − 4.00000i − 0.127000i
\(993\) 0 0
\(994\) −8.00000 −0.253745
\(995\) − 2.11146i − 0.0669377i
\(996\) 0 0
\(997\) 43.8885i 1.38996i 0.719027 + 0.694982i \(0.244588\pi\)
−0.719027 + 0.694982i \(0.755412\pi\)
\(998\) 39.1246i 1.23847i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1170.2.e.e.469.3 4
3.2 odd 2 390.2.e.e.79.2 4
5.2 odd 4 5850.2.a.cf.1.1 2
5.3 odd 4 5850.2.a.cm.1.2 2
5.4 even 2 inner 1170.2.e.e.469.2 4
12.11 even 2 3120.2.l.k.1249.4 4
15.2 even 4 1950.2.a.bf.1.1 2
15.8 even 4 1950.2.a.be.1.2 2
15.14 odd 2 390.2.e.e.79.3 yes 4
60.59 even 2 3120.2.l.k.1249.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
390.2.e.e.79.2 4 3.2 odd 2
390.2.e.e.79.3 yes 4 15.14 odd 2
1170.2.e.e.469.2 4 5.4 even 2 inner
1170.2.e.e.469.3 4 1.1 even 1 trivial
1950.2.a.be.1.2 2 15.8 even 4
1950.2.a.bf.1.1 2 15.2 even 4
3120.2.l.k.1249.1 4 60.59 even 2
3120.2.l.k.1249.4 4 12.11 even 2
5850.2.a.cf.1.1 2 5.2 odd 4
5850.2.a.cm.1.2 2 5.3 odd 4