Properties

Label 1170.2.e.e.469.1
Level $1170$
Weight $2$
Character 1170.469
Analytic conductor $9.342$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1170,2,Mod(469,1170)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1170.469"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1170, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 1, 0])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1170.e (of order \(2\), degree \(1\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [4,0,0,-4,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(11)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.34249703649\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(i, \sqrt{5})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} + 3x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 390)
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 469.1
Root \(0.618034i\) of defining polynomial
Character \(\chi\) \(=\) 1170.469
Dual form 1170.2.e.e.469.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-1.00000i q^{2} -1.00000 q^{4} -2.23607i q^{5} +1.23607i q^{7} +1.00000i q^{8} -2.23607 q^{10} +4.47214 q^{11} +1.00000i q^{13} +1.23607 q^{14} +1.00000 q^{16} +2.76393i q^{17} +7.23607 q^{19} +2.23607i q^{20} -4.47214i q^{22} -7.23607i q^{23} -5.00000 q^{25} +1.00000 q^{26} -1.23607i q^{28} +9.70820 q^{29} -4.00000 q^{31} -1.00000i q^{32} +2.76393 q^{34} +2.76393 q^{35} -6.94427i q^{37} -7.23607i q^{38} +2.23607 q^{40} -12.4721 q^{41} +6.47214i q^{43} -4.47214 q^{44} -7.23607 q^{46} -4.94427i q^{47} +5.47214 q^{49} +5.00000i q^{50} -1.00000i q^{52} -8.47214i q^{53} -10.0000i q^{55} -1.23607 q^{56} -9.70820i q^{58} +0.472136 q^{59} +6.94427 q^{61} +4.00000i q^{62} -1.00000 q^{64} +2.23607 q^{65} -2.76393i q^{68} -2.76393i q^{70} -6.47214 q^{71} +8.76393i q^{73} -6.94427 q^{74} -7.23607 q^{76} +5.52786i q^{77} +4.00000 q^{79} -2.23607i q^{80} +12.4721i q^{82} -12.9443i q^{83} +6.18034 q^{85} +6.47214 q^{86} +4.47214i q^{88} -8.47214 q^{89} -1.23607 q^{91} +7.23607i q^{92} -4.94427 q^{94} -16.1803i q^{95} -9.70820i q^{97} -5.47214i q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{4} - 4 q^{14} + 4 q^{16} + 20 q^{19} - 20 q^{25} + 4 q^{26} + 12 q^{29} - 16 q^{31} + 20 q^{34} + 20 q^{35} - 32 q^{41} - 20 q^{46} + 4 q^{49} + 4 q^{56} - 16 q^{59} - 8 q^{61} - 4 q^{64} - 8 q^{71}+ \cdots + 16 q^{94}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1170\mathbb{Z}\right)^\times\).

\(n\) \(911\) \(937\) \(1081\)
\(\chi(n)\) \(1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) − 1.00000i − 0.707107i
\(3\) 0 0
\(4\) −1.00000 −0.500000
\(5\) − 2.23607i − 1.00000i
\(6\) 0 0
\(7\) 1.23607i 0.467190i 0.972334 + 0.233595i \(0.0750489\pi\)
−0.972334 + 0.233595i \(0.924951\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) −2.23607 −0.707107
\(11\) 4.47214 1.34840 0.674200 0.738549i \(-0.264489\pi\)
0.674200 + 0.738549i \(0.264489\pi\)
\(12\) 0 0
\(13\) 1.00000i 0.277350i
\(14\) 1.23607 0.330353
\(15\) 0 0
\(16\) 1.00000 0.250000
\(17\) 2.76393i 0.670352i 0.942156 + 0.335176i \(0.108796\pi\)
−0.942156 + 0.335176i \(0.891204\pi\)
\(18\) 0 0
\(19\) 7.23607 1.66007 0.830034 0.557713i \(-0.188321\pi\)
0.830034 + 0.557713i \(0.188321\pi\)
\(20\) 2.23607i 0.500000i
\(21\) 0 0
\(22\) − 4.47214i − 0.953463i
\(23\) − 7.23607i − 1.50882i −0.656401 0.754412i \(-0.727922\pi\)
0.656401 0.754412i \(-0.272078\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 1.00000 0.196116
\(27\) 0 0
\(28\) − 1.23607i − 0.233595i
\(29\) 9.70820 1.80277 0.901384 0.433020i \(-0.142552\pi\)
0.901384 + 0.433020i \(0.142552\pi\)
\(30\) 0 0
\(31\) −4.00000 −0.718421 −0.359211 0.933257i \(-0.616954\pi\)
−0.359211 + 0.933257i \(0.616954\pi\)
\(32\) − 1.00000i − 0.176777i
\(33\) 0 0
\(34\) 2.76393 0.474010
\(35\) 2.76393 0.467190
\(36\) 0 0
\(37\) − 6.94427i − 1.14163i −0.821078 0.570816i \(-0.806627\pi\)
0.821078 0.570816i \(-0.193373\pi\)
\(38\) − 7.23607i − 1.17385i
\(39\) 0 0
\(40\) 2.23607 0.353553
\(41\) −12.4721 −1.94782 −0.973910 0.226934i \(-0.927130\pi\)
−0.973910 + 0.226934i \(0.927130\pi\)
\(42\) 0 0
\(43\) 6.47214i 0.986991i 0.869748 + 0.493496i \(0.164281\pi\)
−0.869748 + 0.493496i \(0.835719\pi\)
\(44\) −4.47214 −0.674200
\(45\) 0 0
\(46\) −7.23607 −1.06690
\(47\) − 4.94427i − 0.721196i −0.932721 0.360598i \(-0.882573\pi\)
0.932721 0.360598i \(-0.117427\pi\)
\(48\) 0 0
\(49\) 5.47214 0.781734
\(50\) 5.00000i 0.707107i
\(51\) 0 0
\(52\) − 1.00000i − 0.138675i
\(53\) − 8.47214i − 1.16374i −0.813283 0.581869i \(-0.802322\pi\)
0.813283 0.581869i \(-0.197678\pi\)
\(54\) 0 0
\(55\) − 10.0000i − 1.34840i
\(56\) −1.23607 −0.165177
\(57\) 0 0
\(58\) − 9.70820i − 1.27475i
\(59\) 0.472136 0.0614669 0.0307334 0.999528i \(-0.490216\pi\)
0.0307334 + 0.999528i \(0.490216\pi\)
\(60\) 0 0
\(61\) 6.94427 0.889123 0.444561 0.895748i \(-0.353360\pi\)
0.444561 + 0.895748i \(0.353360\pi\)
\(62\) 4.00000i 0.508001i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) 2.23607 0.277350
\(66\) 0 0
\(67\) 0 0 1.00000 \(0\)
−1.00000 \(\pi\)
\(68\) − 2.76393i − 0.335176i
\(69\) 0 0
\(70\) − 2.76393i − 0.330353i
\(71\) −6.47214 −0.768101 −0.384051 0.923312i \(-0.625471\pi\)
−0.384051 + 0.923312i \(0.625471\pi\)
\(72\) 0 0
\(73\) 8.76393i 1.02574i 0.858466 + 0.512870i \(0.171418\pi\)
−0.858466 + 0.512870i \(0.828582\pi\)
\(74\) −6.94427 −0.807255
\(75\) 0 0
\(76\) −7.23607 −0.830034
\(77\) 5.52786i 0.629959i
\(78\) 0 0
\(79\) 4.00000 0.450035 0.225018 0.974355i \(-0.427756\pi\)
0.225018 + 0.974355i \(0.427756\pi\)
\(80\) − 2.23607i − 0.250000i
\(81\) 0 0
\(82\) 12.4721i 1.37732i
\(83\) − 12.9443i − 1.42082i −0.703789 0.710409i \(-0.748510\pi\)
0.703789 0.710409i \(-0.251490\pi\)
\(84\) 0 0
\(85\) 6.18034 0.670352
\(86\) 6.47214 0.697908
\(87\) 0 0
\(88\) 4.47214i 0.476731i
\(89\) −8.47214 −0.898045 −0.449022 0.893521i \(-0.648228\pi\)
−0.449022 + 0.893521i \(0.648228\pi\)
\(90\) 0 0
\(91\) −1.23607 −0.129575
\(92\) 7.23607i 0.754412i
\(93\) 0 0
\(94\) −4.94427 −0.509963
\(95\) − 16.1803i − 1.66007i
\(96\) 0 0
\(97\) − 9.70820i − 0.985719i −0.870109 0.492859i \(-0.835952\pi\)
0.870109 0.492859i \(-0.164048\pi\)
\(98\) − 5.47214i − 0.552769i
\(99\) 0 0
\(100\) 5.00000 0.500000
\(101\) 4.76393 0.474029 0.237014 0.971506i \(-0.423831\pi\)
0.237014 + 0.971506i \(0.423831\pi\)
\(102\) 0 0
\(103\) − 0.472136i − 0.0465209i −0.999729 0.0232605i \(-0.992595\pi\)
0.999729 0.0232605i \(-0.00740471\pi\)
\(104\) −1.00000 −0.0980581
\(105\) 0 0
\(106\) −8.47214 −0.822887
\(107\) − 10.4721i − 1.01238i −0.862422 0.506190i \(-0.831054\pi\)
0.862422 0.506190i \(-0.168946\pi\)
\(108\) 0 0
\(109\) 15.7082 1.50457 0.752287 0.658836i \(-0.228951\pi\)
0.752287 + 0.658836i \(0.228951\pi\)
\(110\) −10.0000 −0.953463
\(111\) 0 0
\(112\) 1.23607i 0.116797i
\(113\) 12.6525i 1.19024i 0.803635 + 0.595122i \(0.202896\pi\)
−0.803635 + 0.595122i \(0.797104\pi\)
\(114\) 0 0
\(115\) −16.1803 −1.50882
\(116\) −9.70820 −0.901384
\(117\) 0 0
\(118\) − 0.472136i − 0.0434636i
\(119\) −3.41641 −0.313182
\(120\) 0 0
\(121\) 9.00000 0.818182
\(122\) − 6.94427i − 0.628705i
\(123\) 0 0
\(124\) 4.00000 0.359211
\(125\) 11.1803i 1.00000i
\(126\) 0 0
\(127\) 5.41641i 0.480628i 0.970695 + 0.240314i \(0.0772505\pi\)
−0.970695 + 0.240314i \(0.922750\pi\)
\(128\) 1.00000i 0.0883883i
\(129\) 0 0
\(130\) − 2.23607i − 0.196116i
\(131\) 3.70820 0.323987 0.161994 0.986792i \(-0.448208\pi\)
0.161994 + 0.986792i \(0.448208\pi\)
\(132\) 0 0
\(133\) 8.94427i 0.775567i
\(134\) 0 0
\(135\) 0 0
\(136\) −2.76393 −0.237005
\(137\) 15.8885i 1.35745i 0.734393 + 0.678725i \(0.237467\pi\)
−0.734393 + 0.678725i \(0.762533\pi\)
\(138\) 0 0
\(139\) −2.47214 −0.209684 −0.104842 0.994489i \(-0.533434\pi\)
−0.104842 + 0.994489i \(0.533434\pi\)
\(140\) −2.76393 −0.233595
\(141\) 0 0
\(142\) 6.47214i 0.543130i
\(143\) 4.47214i 0.373979i
\(144\) 0 0
\(145\) − 21.7082i − 1.80277i
\(146\) 8.76393 0.725308
\(147\) 0 0
\(148\) 6.94427i 0.570816i
\(149\) 22.4721 1.84099 0.920495 0.390755i \(-0.127786\pi\)
0.920495 + 0.390755i \(0.127786\pi\)
\(150\) 0 0
\(151\) 7.41641 0.603539 0.301769 0.953381i \(-0.402423\pi\)
0.301769 + 0.953381i \(0.402423\pi\)
\(152\) 7.23607i 0.586923i
\(153\) 0 0
\(154\) 5.52786 0.445448
\(155\) 8.94427i 0.718421i
\(156\) 0 0
\(157\) 1.05573i 0.0842563i 0.999112 + 0.0421281i \(0.0134138\pi\)
−0.999112 + 0.0421281i \(0.986586\pi\)
\(158\) − 4.00000i − 0.318223i
\(159\) 0 0
\(160\) −2.23607 −0.176777
\(161\) 8.94427 0.704907
\(162\) 0 0
\(163\) − 4.94427i − 0.387265i −0.981074 0.193633i \(-0.937973\pi\)
0.981074 0.193633i \(-0.0620270\pi\)
\(164\) 12.4721 0.973910
\(165\) 0 0
\(166\) −12.9443 −1.00467
\(167\) 7.41641i 0.573899i 0.957946 + 0.286949i \(0.0926412\pi\)
−0.957946 + 0.286949i \(0.907359\pi\)
\(168\) 0 0
\(169\) −1.00000 −0.0769231
\(170\) − 6.18034i − 0.474010i
\(171\) 0 0
\(172\) − 6.47214i − 0.493496i
\(173\) 5.05573i 0.384380i 0.981358 + 0.192190i \(0.0615590\pi\)
−0.981358 + 0.192190i \(0.938441\pi\)
\(174\) 0 0
\(175\) − 6.18034i − 0.467190i
\(176\) 4.47214 0.337100
\(177\) 0 0
\(178\) 8.47214i 0.635013i
\(179\) −14.1803 −1.05989 −0.529944 0.848033i \(-0.677787\pi\)
−0.529944 + 0.848033i \(0.677787\pi\)
\(180\) 0 0
\(181\) −9.41641 −0.699916 −0.349958 0.936765i \(-0.613804\pi\)
−0.349958 + 0.936765i \(0.613804\pi\)
\(182\) 1.23607i 0.0916235i
\(183\) 0 0
\(184\) 7.23607 0.533450
\(185\) −15.5279 −1.14163
\(186\) 0 0
\(187\) 12.3607i 0.903902i
\(188\) 4.94427i 0.360598i
\(189\) 0 0
\(190\) −16.1803 −1.17385
\(191\) −13.5279 −0.978842 −0.489421 0.872048i \(-0.662792\pi\)
−0.489421 + 0.872048i \(0.662792\pi\)
\(192\) 0 0
\(193\) − 21.7082i − 1.56259i −0.624161 0.781295i \(-0.714559\pi\)
0.624161 0.781295i \(-0.285441\pi\)
\(194\) −9.70820 −0.697008
\(195\) 0 0
\(196\) −5.47214 −0.390867
\(197\) 2.94427i 0.209771i 0.994484 + 0.104885i \(0.0334476\pi\)
−0.994484 + 0.104885i \(0.966552\pi\)
\(198\) 0 0
\(199\) −16.9443 −1.20115 −0.600574 0.799569i \(-0.705061\pi\)
−0.600574 + 0.799569i \(0.705061\pi\)
\(200\) − 5.00000i − 0.353553i
\(201\) 0 0
\(202\) − 4.76393i − 0.335189i
\(203\) 12.0000i 0.842235i
\(204\) 0 0
\(205\) 27.8885i 1.94782i
\(206\) −0.472136 −0.0328953
\(207\) 0 0
\(208\) 1.00000i 0.0693375i
\(209\) 32.3607 2.23844
\(210\) 0 0
\(211\) −21.8885 −1.50687 −0.753435 0.657523i \(-0.771604\pi\)
−0.753435 + 0.657523i \(0.771604\pi\)
\(212\) 8.47214i 0.581869i
\(213\) 0 0
\(214\) −10.4721 −0.715860
\(215\) 14.4721 0.986991
\(216\) 0 0
\(217\) − 4.94427i − 0.335639i
\(218\) − 15.7082i − 1.06389i
\(219\) 0 0
\(220\) 10.0000i 0.674200i
\(221\) −2.76393 −0.185922
\(222\) 0 0
\(223\) 21.2361i 1.42207i 0.703155 + 0.711036i \(0.251774\pi\)
−0.703155 + 0.711036i \(0.748226\pi\)
\(224\) 1.23607 0.0825883
\(225\) 0 0
\(226\) 12.6525 0.841630
\(227\) 24.9443i 1.65561i 0.561016 + 0.827805i \(0.310410\pi\)
−0.561016 + 0.827805i \(0.689590\pi\)
\(228\) 0 0
\(229\) 3.70820 0.245045 0.122523 0.992466i \(-0.460902\pi\)
0.122523 + 0.992466i \(0.460902\pi\)
\(230\) 16.1803i 1.06690i
\(231\) 0 0
\(232\) 9.70820i 0.637375i
\(233\) 2.18034i 0.142839i 0.997446 + 0.0714194i \(0.0227529\pi\)
−0.997446 + 0.0714194i \(0.977247\pi\)
\(234\) 0 0
\(235\) −11.0557 −0.721196
\(236\) −0.472136 −0.0307334
\(237\) 0 0
\(238\) 3.41641i 0.221453i
\(239\) 13.8885 0.898375 0.449188 0.893437i \(-0.351713\pi\)
0.449188 + 0.893437i \(0.351713\pi\)
\(240\) 0 0
\(241\) 12.4721 0.803401 0.401700 0.915771i \(-0.368419\pi\)
0.401700 + 0.915771i \(0.368419\pi\)
\(242\) − 9.00000i − 0.578542i
\(243\) 0 0
\(244\) −6.94427 −0.444561
\(245\) − 12.2361i − 0.781734i
\(246\) 0 0
\(247\) 7.23607i 0.460420i
\(248\) − 4.00000i − 0.254000i
\(249\) 0 0
\(250\) 11.1803 0.707107
\(251\) −15.7082 −0.991493 −0.495747 0.868467i \(-0.665105\pi\)
−0.495747 + 0.868467i \(0.665105\pi\)
\(252\) 0 0
\(253\) − 32.3607i − 2.03450i
\(254\) 5.41641 0.339856
\(255\) 0 0
\(256\) 1.00000 0.0625000
\(257\) 5.23607i 0.326617i 0.986575 + 0.163308i \(0.0522166\pi\)
−0.986575 + 0.163308i \(0.947783\pi\)
\(258\) 0 0
\(259\) 8.58359 0.533358
\(260\) −2.23607 −0.138675
\(261\) 0 0
\(262\) − 3.70820i − 0.229094i
\(263\) 12.1803i 0.751072i 0.926808 + 0.375536i \(0.122541\pi\)
−0.926808 + 0.375536i \(0.877459\pi\)
\(264\) 0 0
\(265\) −18.9443 −1.16374
\(266\) 8.94427 0.548408
\(267\) 0 0
\(268\) 0 0
\(269\) 11.2361 0.685075 0.342538 0.939504i \(-0.388714\pi\)
0.342538 + 0.939504i \(0.388714\pi\)
\(270\) 0 0
\(271\) 15.4164 0.936480 0.468240 0.883601i \(-0.344888\pi\)
0.468240 + 0.883601i \(0.344888\pi\)
\(272\) 2.76393i 0.167588i
\(273\) 0 0
\(274\) 15.8885 0.959862
\(275\) −22.3607 −1.34840
\(276\) 0 0
\(277\) 32.8328i 1.97273i 0.164564 + 0.986366i \(0.447378\pi\)
−0.164564 + 0.986366i \(0.552622\pi\)
\(278\) 2.47214i 0.148269i
\(279\) 0 0
\(280\) 2.76393i 0.165177i
\(281\) −15.5279 −0.926315 −0.463157 0.886276i \(-0.653284\pi\)
−0.463157 + 0.886276i \(0.653284\pi\)
\(282\) 0 0
\(283\) 15.4164i 0.916410i 0.888846 + 0.458205i \(0.151508\pi\)
−0.888846 + 0.458205i \(0.848492\pi\)
\(284\) 6.47214 0.384051
\(285\) 0 0
\(286\) 4.47214 0.264443
\(287\) − 15.4164i − 0.910002i
\(288\) 0 0
\(289\) 9.36068 0.550628
\(290\) −21.7082 −1.27475
\(291\) 0 0
\(292\) − 8.76393i − 0.512870i
\(293\) 14.9443i 0.873054i 0.899691 + 0.436527i \(0.143792\pi\)
−0.899691 + 0.436527i \(0.856208\pi\)
\(294\) 0 0
\(295\) − 1.05573i − 0.0614669i
\(296\) 6.94427 0.403628
\(297\) 0 0
\(298\) − 22.4721i − 1.30178i
\(299\) 7.23607 0.418473
\(300\) 0 0
\(301\) −8.00000 −0.461112
\(302\) − 7.41641i − 0.426766i
\(303\) 0 0
\(304\) 7.23607 0.415017
\(305\) − 15.5279i − 0.889123i
\(306\) 0 0
\(307\) − 20.3607i − 1.16205i −0.813887 0.581023i \(-0.802653\pi\)
0.813887 0.581023i \(-0.197347\pi\)
\(308\) − 5.52786i − 0.314979i
\(309\) 0 0
\(310\) 8.94427 0.508001
\(311\) 13.5279 0.767095 0.383547 0.923521i \(-0.374702\pi\)
0.383547 + 0.923521i \(0.374702\pi\)
\(312\) 0 0
\(313\) 7.41641i 0.419200i 0.977787 + 0.209600i \(0.0672162\pi\)
−0.977787 + 0.209600i \(0.932784\pi\)
\(314\) 1.05573 0.0595782
\(315\) 0 0
\(316\) −4.00000 −0.225018
\(317\) − 13.4164i − 0.753541i −0.926307 0.376770i \(-0.877035\pi\)
0.926307 0.376770i \(-0.122965\pi\)
\(318\) 0 0
\(319\) 43.4164 2.43085
\(320\) 2.23607i 0.125000i
\(321\) 0 0
\(322\) − 8.94427i − 0.498445i
\(323\) 20.0000i 1.11283i
\(324\) 0 0
\(325\) − 5.00000i − 0.277350i
\(326\) −4.94427 −0.273838
\(327\) 0 0
\(328\) − 12.4721i − 0.688659i
\(329\) 6.11146 0.336935
\(330\) 0 0
\(331\) −7.23607 −0.397730 −0.198865 0.980027i \(-0.563726\pi\)
−0.198865 + 0.980027i \(0.563726\pi\)
\(332\) 12.9443i 0.710409i
\(333\) 0 0
\(334\) 7.41641 0.405808
\(335\) 0 0
\(336\) 0 0
\(337\) − 2.47214i − 0.134666i −0.997731 0.0673329i \(-0.978551\pi\)
0.997731 0.0673329i \(-0.0214490\pi\)
\(338\) 1.00000i 0.0543928i
\(339\) 0 0
\(340\) −6.18034 −0.335176
\(341\) −17.8885 −0.968719
\(342\) 0 0
\(343\) 15.4164i 0.832408i
\(344\) −6.47214 −0.348954
\(345\) 0 0
\(346\) 5.05573 0.271798
\(347\) 10.4721i 0.562174i 0.959682 + 0.281087i \(0.0906949\pi\)
−0.959682 + 0.281087i \(0.909305\pi\)
\(348\) 0 0
\(349\) 10.7639 0.576180 0.288090 0.957603i \(-0.406980\pi\)
0.288090 + 0.957603i \(0.406980\pi\)
\(350\) −6.18034 −0.330353
\(351\) 0 0
\(352\) − 4.47214i − 0.238366i
\(353\) 9.05573i 0.481988i 0.970527 + 0.240994i \(0.0774734\pi\)
−0.970527 + 0.240994i \(0.922527\pi\)
\(354\) 0 0
\(355\) 14.4721i 0.768101i
\(356\) 8.47214 0.449022
\(357\) 0 0
\(358\) 14.1803i 0.749454i
\(359\) −2.47214 −0.130474 −0.0652372 0.997870i \(-0.520780\pi\)
−0.0652372 + 0.997870i \(0.520780\pi\)
\(360\) 0 0
\(361\) 33.3607 1.75583
\(362\) 9.41641i 0.494915i
\(363\) 0 0
\(364\) 1.23607 0.0647876
\(365\) 19.5967 1.02574
\(366\) 0 0
\(367\) 8.47214i 0.442242i 0.975246 + 0.221121i \(0.0709716\pi\)
−0.975246 + 0.221121i \(0.929028\pi\)
\(368\) − 7.23607i − 0.377206i
\(369\) 0 0
\(370\) 15.5279i 0.807255i
\(371\) 10.4721 0.543686
\(372\) 0 0
\(373\) 2.00000i 0.103556i 0.998659 + 0.0517780i \(0.0164888\pi\)
−0.998659 + 0.0517780i \(0.983511\pi\)
\(374\) 12.3607 0.639156
\(375\) 0 0
\(376\) 4.94427 0.254981
\(377\) 9.70820i 0.499998i
\(378\) 0 0
\(379\) −5.12461 −0.263234 −0.131617 0.991301i \(-0.542017\pi\)
−0.131617 + 0.991301i \(0.542017\pi\)
\(380\) 16.1803i 0.830034i
\(381\) 0 0
\(382\) 13.5279i 0.692146i
\(383\) − 14.4721i − 0.739492i −0.929133 0.369746i \(-0.879445\pi\)
0.929133 0.369746i \(-0.120555\pi\)
\(384\) 0 0
\(385\) 12.3607 0.629959
\(386\) −21.7082 −1.10492
\(387\) 0 0
\(388\) 9.70820i 0.492859i
\(389\) −18.6525 −0.945718 −0.472859 0.881138i \(-0.656778\pi\)
−0.472859 + 0.881138i \(0.656778\pi\)
\(390\) 0 0
\(391\) 20.0000 1.01144
\(392\) 5.47214i 0.276385i
\(393\) 0 0
\(394\) 2.94427 0.148330
\(395\) − 8.94427i − 0.450035i
\(396\) 0 0
\(397\) 9.41641i 0.472596i 0.971681 + 0.236298i \(0.0759341\pi\)
−0.971681 + 0.236298i \(0.924066\pi\)
\(398\) 16.9443i 0.849340i
\(399\) 0 0
\(400\) −5.00000 −0.250000
\(401\) 15.5279 0.775425 0.387712 0.921780i \(-0.373265\pi\)
0.387712 + 0.921780i \(0.373265\pi\)
\(402\) 0 0
\(403\) − 4.00000i − 0.199254i
\(404\) −4.76393 −0.237014
\(405\) 0 0
\(406\) 12.0000 0.595550
\(407\) − 31.0557i − 1.53938i
\(408\) 0 0
\(409\) −6.00000 −0.296681 −0.148340 0.988936i \(-0.547393\pi\)
−0.148340 + 0.988936i \(0.547393\pi\)
\(410\) 27.8885 1.37732
\(411\) 0 0
\(412\) 0.472136i 0.0232605i
\(413\) 0.583592i 0.0287167i
\(414\) 0 0
\(415\) −28.9443 −1.42082
\(416\) 1.00000 0.0490290
\(417\) 0 0
\(418\) − 32.3607i − 1.58281i
\(419\) −21.5967 −1.05507 −0.527535 0.849533i \(-0.676884\pi\)
−0.527535 + 0.849533i \(0.676884\pi\)
\(420\) 0 0
\(421\) −0.291796 −0.0142213 −0.00711064 0.999975i \(-0.502263\pi\)
−0.00711064 + 0.999975i \(0.502263\pi\)
\(422\) 21.8885i 1.06552i
\(423\) 0 0
\(424\) 8.47214 0.411443
\(425\) − 13.8197i − 0.670352i
\(426\) 0 0
\(427\) 8.58359i 0.415389i
\(428\) 10.4721i 0.506190i
\(429\) 0 0
\(430\) − 14.4721i − 0.697908i
\(431\) −38.8328 −1.87051 −0.935255 0.353973i \(-0.884830\pi\)
−0.935255 + 0.353973i \(0.884830\pi\)
\(432\) 0 0
\(433\) − 18.4721i − 0.887714i −0.896098 0.443857i \(-0.853610\pi\)
0.896098 0.443857i \(-0.146390\pi\)
\(434\) −4.94427 −0.237333
\(435\) 0 0
\(436\) −15.7082 −0.752287
\(437\) − 52.3607i − 2.50475i
\(438\) 0 0
\(439\) −12.9443 −0.617796 −0.308898 0.951095i \(-0.599960\pi\)
−0.308898 + 0.951095i \(0.599960\pi\)
\(440\) 10.0000 0.476731
\(441\) 0 0
\(442\) 2.76393i 0.131467i
\(443\) 13.5279i 0.642728i 0.946956 + 0.321364i \(0.104141\pi\)
−0.946956 + 0.321364i \(0.895859\pi\)
\(444\) 0 0
\(445\) 18.9443i 0.898045i
\(446\) 21.2361 1.00556
\(447\) 0 0
\(448\) − 1.23607i − 0.0583987i
\(449\) −8.47214 −0.399825 −0.199912 0.979814i \(-0.564066\pi\)
−0.199912 + 0.979814i \(0.564066\pi\)
\(450\) 0 0
\(451\) −55.7771 −2.62644
\(452\) − 12.6525i − 0.595122i
\(453\) 0 0
\(454\) 24.9443 1.17069
\(455\) 2.76393i 0.129575i
\(456\) 0 0
\(457\) − 9.70820i − 0.454131i −0.973880 0.227065i \(-0.927087\pi\)
0.973880 0.227065i \(-0.0729131\pi\)
\(458\) − 3.70820i − 0.173273i
\(459\) 0 0
\(460\) 16.1803 0.754412
\(461\) −6.11146 −0.284639 −0.142319 0.989821i \(-0.545456\pi\)
−0.142319 + 0.989821i \(0.545456\pi\)
\(462\) 0 0
\(463\) − 35.7082i − 1.65950i −0.558135 0.829750i \(-0.688483\pi\)
0.558135 0.829750i \(-0.311517\pi\)
\(464\) 9.70820 0.450692
\(465\) 0 0
\(466\) 2.18034 0.101002
\(467\) − 2.47214i − 0.114397i −0.998363 0.0571984i \(-0.981783\pi\)
0.998363 0.0571984i \(-0.0182168\pi\)
\(468\) 0 0
\(469\) 0 0
\(470\) 11.0557i 0.509963i
\(471\) 0 0
\(472\) 0.472136i 0.0217318i
\(473\) 28.9443i 1.33086i
\(474\) 0 0
\(475\) −36.1803 −1.66007
\(476\) 3.41641 0.156591
\(477\) 0 0
\(478\) − 13.8885i − 0.635247i
\(479\) −36.0000 −1.64488 −0.822441 0.568850i \(-0.807388\pi\)
−0.822441 + 0.568850i \(0.807388\pi\)
\(480\) 0 0
\(481\) 6.94427 0.316632
\(482\) − 12.4721i − 0.568090i
\(483\) 0 0
\(484\) −9.00000 −0.409091
\(485\) −21.7082 −0.985719
\(486\) 0 0
\(487\) − 25.5967i − 1.15990i −0.814652 0.579950i \(-0.803072\pi\)
0.814652 0.579950i \(-0.196928\pi\)
\(488\) 6.94427i 0.314352i
\(489\) 0 0
\(490\) −12.2361 −0.552769
\(491\) −6.18034 −0.278915 −0.139457 0.990228i \(-0.544536\pi\)
−0.139457 + 0.990228i \(0.544536\pi\)
\(492\) 0 0
\(493\) 26.8328i 1.20849i
\(494\) 7.23607 0.325566
\(495\) 0 0
\(496\) −4.00000 −0.179605
\(497\) − 8.00000i − 0.358849i
\(498\) 0 0
\(499\) −1.12461 −0.0503445 −0.0251723 0.999683i \(-0.508013\pi\)
−0.0251723 + 0.999683i \(0.508013\pi\)
\(500\) − 11.1803i − 0.500000i
\(501\) 0 0
\(502\) 15.7082i 0.701091i
\(503\) 35.2361i 1.57110i 0.618799 + 0.785549i \(0.287620\pi\)
−0.618799 + 0.785549i \(0.712380\pi\)
\(504\) 0 0
\(505\) − 10.6525i − 0.474029i
\(506\) −32.3607 −1.43861
\(507\) 0 0
\(508\) − 5.41641i − 0.240314i
\(509\) −32.9443 −1.46023 −0.730115 0.683325i \(-0.760533\pi\)
−0.730115 + 0.683325i \(0.760533\pi\)
\(510\) 0 0
\(511\) −10.8328 −0.479216
\(512\) − 1.00000i − 0.0441942i
\(513\) 0 0
\(514\) 5.23607 0.230953
\(515\) −1.05573 −0.0465209
\(516\) 0 0
\(517\) − 22.1115i − 0.972461i
\(518\) − 8.58359i − 0.377141i
\(519\) 0 0
\(520\) 2.23607i 0.0980581i
\(521\) 32.8328 1.43843 0.719216 0.694787i \(-0.244501\pi\)
0.719216 + 0.694787i \(0.244501\pi\)
\(522\) 0 0
\(523\) 8.00000i 0.349816i 0.984585 + 0.174908i \(0.0559627\pi\)
−0.984585 + 0.174908i \(0.944037\pi\)
\(524\) −3.70820 −0.161994
\(525\) 0 0
\(526\) 12.1803 0.531088
\(527\) − 11.0557i − 0.481595i
\(528\) 0 0
\(529\) −29.3607 −1.27655
\(530\) 18.9443i 0.822887i
\(531\) 0 0
\(532\) − 8.94427i − 0.387783i
\(533\) − 12.4721i − 0.540228i
\(534\) 0 0
\(535\) −23.4164 −1.01238
\(536\) 0 0
\(537\) 0 0
\(538\) − 11.2361i − 0.484421i
\(539\) 24.4721 1.05409
\(540\) 0 0
\(541\) −9.23607 −0.397090 −0.198545 0.980092i \(-0.563622\pi\)
−0.198545 + 0.980092i \(0.563622\pi\)
\(542\) − 15.4164i − 0.662191i
\(543\) 0 0
\(544\) 2.76393 0.118503
\(545\) − 35.1246i − 1.50457i
\(546\) 0 0
\(547\) − 12.0000i − 0.513083i −0.966533 0.256541i \(-0.917417\pi\)
0.966533 0.256541i \(-0.0825830\pi\)
\(548\) − 15.8885i − 0.678725i
\(549\) 0 0
\(550\) 22.3607i 0.953463i
\(551\) 70.2492 2.99272
\(552\) 0 0
\(553\) 4.94427i 0.210252i
\(554\) 32.8328 1.39493
\(555\) 0 0
\(556\) 2.47214 0.104842
\(557\) − 43.3050i − 1.83489i −0.397863 0.917445i \(-0.630248\pi\)
0.397863 0.917445i \(-0.369752\pi\)
\(558\) 0 0
\(559\) −6.47214 −0.273742
\(560\) 2.76393 0.116797
\(561\) 0 0
\(562\) 15.5279i 0.655003i
\(563\) − 7.41641i − 0.312564i −0.987712 0.156282i \(-0.950049\pi\)
0.987712 0.156282i \(-0.0499509\pi\)
\(564\) 0 0
\(565\) 28.2918 1.19024
\(566\) 15.4164 0.648000
\(567\) 0 0
\(568\) − 6.47214i − 0.271565i
\(569\) 17.0557 0.715013 0.357507 0.933911i \(-0.383627\pi\)
0.357507 + 0.933911i \(0.383627\pi\)
\(570\) 0 0
\(571\) −35.4164 −1.48213 −0.741065 0.671433i \(-0.765679\pi\)
−0.741065 + 0.671433i \(0.765679\pi\)
\(572\) − 4.47214i − 0.186989i
\(573\) 0 0
\(574\) −15.4164 −0.643468
\(575\) 36.1803i 1.50882i
\(576\) 0 0
\(577\) 2.87539i 0.119704i 0.998207 + 0.0598520i \(0.0190629\pi\)
−0.998207 + 0.0598520i \(0.980937\pi\)
\(578\) − 9.36068i − 0.389353i
\(579\) 0 0
\(580\) 21.7082i 0.901384i
\(581\) 16.0000 0.663792
\(582\) 0 0
\(583\) − 37.8885i − 1.56918i
\(584\) −8.76393 −0.362654
\(585\) 0 0
\(586\) 14.9443 0.617342
\(587\) − 37.8885i − 1.56383i −0.623387 0.781914i \(-0.714244\pi\)
0.623387 0.781914i \(-0.285756\pi\)
\(588\) 0 0
\(589\) −28.9443 −1.19263
\(590\) −1.05573 −0.0434636
\(591\) 0 0
\(592\) − 6.94427i − 0.285408i
\(593\) − 12.4721i − 0.512169i −0.966654 0.256085i \(-0.917567\pi\)
0.966654 0.256085i \(-0.0824326\pi\)
\(594\) 0 0
\(595\) 7.63932i 0.313182i
\(596\) −22.4721 −0.920495
\(597\) 0 0
\(598\) − 7.23607i − 0.295905i
\(599\) −41.8885 −1.71152 −0.855760 0.517373i \(-0.826910\pi\)
−0.855760 + 0.517373i \(0.826910\pi\)
\(600\) 0 0
\(601\) −13.4164 −0.547267 −0.273633 0.961834i \(-0.588225\pi\)
−0.273633 + 0.961834i \(0.588225\pi\)
\(602\) 8.00000i 0.326056i
\(603\) 0 0
\(604\) −7.41641 −0.301769
\(605\) − 20.1246i − 0.818182i
\(606\) 0 0
\(607\) 25.4164i 1.03162i 0.856703 + 0.515810i \(0.172509\pi\)
−0.856703 + 0.515810i \(0.827491\pi\)
\(608\) − 7.23607i − 0.293461i
\(609\) 0 0
\(610\) −15.5279 −0.628705
\(611\) 4.94427 0.200024
\(612\) 0 0
\(613\) 18.0000i 0.727013i 0.931592 + 0.363507i \(0.118421\pi\)
−0.931592 + 0.363507i \(0.881579\pi\)
\(614\) −20.3607 −0.821690
\(615\) 0 0
\(616\) −5.52786 −0.222724
\(617\) 0.111456i 0.00448706i 0.999997 + 0.00224353i \(0.000714138\pi\)
−0.999997 + 0.00224353i \(0.999286\pi\)
\(618\) 0 0
\(619\) 20.7639 0.834573 0.417286 0.908775i \(-0.362981\pi\)
0.417286 + 0.908775i \(0.362981\pi\)
\(620\) − 8.94427i − 0.359211i
\(621\) 0 0
\(622\) − 13.5279i − 0.542418i
\(623\) − 10.4721i − 0.419557i
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 7.41641 0.296419
\(627\) 0 0
\(628\) − 1.05573i − 0.0421281i
\(629\) 19.1935 0.765295
\(630\) 0 0
\(631\) −39.4164 −1.56914 −0.784571 0.620039i \(-0.787117\pi\)
−0.784571 + 0.620039i \(0.787117\pi\)
\(632\) 4.00000i 0.159111i
\(633\) 0 0
\(634\) −13.4164 −0.532834
\(635\) 12.1115 0.480628
\(636\) 0 0
\(637\) 5.47214i 0.216814i
\(638\) − 43.4164i − 1.71887i
\(639\) 0 0
\(640\) 2.23607 0.0883883
\(641\) −39.3050 −1.55245 −0.776226 0.630455i \(-0.782869\pi\)
−0.776226 + 0.630455i \(0.782869\pi\)
\(642\) 0 0
\(643\) 36.9443i 1.45694i 0.685078 + 0.728470i \(0.259768\pi\)
−0.685078 + 0.728470i \(0.740232\pi\)
\(644\) −8.94427 −0.352454
\(645\) 0 0
\(646\) 20.0000 0.786889
\(647\) 9.70820i 0.381669i 0.981622 + 0.190834i \(0.0611194\pi\)
−0.981622 + 0.190834i \(0.938881\pi\)
\(648\) 0 0
\(649\) 2.11146 0.0828819
\(650\) −5.00000 −0.196116
\(651\) 0 0
\(652\) 4.94427i 0.193633i
\(653\) − 14.3607i − 0.561977i −0.959711 0.280988i \(-0.909338\pi\)
0.959711 0.280988i \(-0.0906623\pi\)
\(654\) 0 0
\(655\) − 8.29180i − 0.323987i
\(656\) −12.4721 −0.486955
\(657\) 0 0
\(658\) − 6.11146i − 0.238249i
\(659\) 48.0689 1.87250 0.936249 0.351337i \(-0.114273\pi\)
0.936249 + 0.351337i \(0.114273\pi\)
\(660\) 0 0
\(661\) −28.2918 −1.10042 −0.550212 0.835025i \(-0.685453\pi\)
−0.550212 + 0.835025i \(0.685453\pi\)
\(662\) 7.23607i 0.281238i
\(663\) 0 0
\(664\) 12.9443 0.502335
\(665\) 20.0000 0.775567
\(666\) 0 0
\(667\) − 70.2492i − 2.72006i
\(668\) − 7.41641i − 0.286949i
\(669\) 0 0
\(670\) 0 0
\(671\) 31.0557 1.19889
\(672\) 0 0
\(673\) 44.0000i 1.69608i 0.529936 + 0.848038i \(0.322216\pi\)
−0.529936 + 0.848038i \(0.677784\pi\)
\(674\) −2.47214 −0.0952231
\(675\) 0 0
\(676\) 1.00000 0.0384615
\(677\) 36.4721i 1.40174i 0.713290 + 0.700869i \(0.247204\pi\)
−0.713290 + 0.700869i \(0.752796\pi\)
\(678\) 0 0
\(679\) 12.0000 0.460518
\(680\) 6.18034i 0.237005i
\(681\) 0 0
\(682\) 17.8885i 0.684988i
\(683\) 6.11146i 0.233848i 0.993141 + 0.116924i \(0.0373035\pi\)
−0.993141 + 0.116924i \(0.962697\pi\)
\(684\) 0 0
\(685\) 35.5279 1.35745
\(686\) 15.4164 0.588601
\(687\) 0 0
\(688\) 6.47214i 0.246748i
\(689\) 8.47214 0.322763
\(690\) 0 0
\(691\) 13.7082 0.521485 0.260742 0.965408i \(-0.416033\pi\)
0.260742 + 0.965408i \(0.416033\pi\)
\(692\) − 5.05573i − 0.192190i
\(693\) 0 0
\(694\) 10.4721 0.397517
\(695\) 5.52786i 0.209684i
\(696\) 0 0
\(697\) − 34.4721i − 1.30573i
\(698\) − 10.7639i − 0.407421i
\(699\) 0 0
\(700\) 6.18034i 0.233595i
\(701\) −34.0689 −1.28676 −0.643382 0.765545i \(-0.722469\pi\)
−0.643382 + 0.765545i \(0.722469\pi\)
\(702\) 0 0
\(703\) − 50.2492i − 1.89519i
\(704\) −4.47214 −0.168550
\(705\) 0 0
\(706\) 9.05573 0.340817
\(707\) 5.88854i 0.221461i
\(708\) 0 0
\(709\) 34.5410 1.29722 0.648608 0.761123i \(-0.275352\pi\)
0.648608 + 0.761123i \(0.275352\pi\)
\(710\) 14.4721 0.543130
\(711\) 0 0
\(712\) − 8.47214i − 0.317507i
\(713\) 28.9443i 1.08397i
\(714\) 0 0
\(715\) 10.0000 0.373979
\(716\) 14.1803 0.529944
\(717\) 0 0
\(718\) 2.47214i 0.0922593i
\(719\) 3.05573 0.113959 0.0569797 0.998375i \(-0.481853\pi\)
0.0569797 + 0.998375i \(0.481853\pi\)
\(720\) 0 0
\(721\) 0.583592 0.0217341
\(722\) − 33.3607i − 1.24156i
\(723\) 0 0
\(724\) 9.41641 0.349958
\(725\) −48.5410 −1.80277
\(726\) 0 0
\(727\) − 18.0000i − 0.667583i −0.942647 0.333792i \(-0.891672\pi\)
0.942647 0.333792i \(-0.108328\pi\)
\(728\) − 1.23607i − 0.0458117i
\(729\) 0 0
\(730\) − 19.5967i − 0.725308i
\(731\) −17.8885 −0.661632
\(732\) 0 0
\(733\) 6.58359i 0.243171i 0.992581 + 0.121585i \(0.0387978\pi\)
−0.992581 + 0.121585i \(0.961202\pi\)
\(734\) 8.47214 0.312712
\(735\) 0 0
\(736\) −7.23607 −0.266725
\(737\) 0 0
\(738\) 0 0
\(739\) 13.7082 0.504264 0.252132 0.967693i \(-0.418868\pi\)
0.252132 + 0.967693i \(0.418868\pi\)
\(740\) 15.5279 0.570816
\(741\) 0 0
\(742\) − 10.4721i − 0.384444i
\(743\) 16.3607i 0.600215i 0.953905 + 0.300108i \(0.0970226\pi\)
−0.953905 + 0.300108i \(0.902977\pi\)
\(744\) 0 0
\(745\) − 50.2492i − 1.84099i
\(746\) 2.00000 0.0732252
\(747\) 0 0
\(748\) − 12.3607i − 0.451951i
\(749\) 12.9443 0.472973
\(750\) 0 0
\(751\) 6.83282 0.249333 0.124666 0.992199i \(-0.460214\pi\)
0.124666 + 0.992199i \(0.460214\pi\)
\(752\) − 4.94427i − 0.180299i
\(753\) 0 0
\(754\) 9.70820 0.353552
\(755\) − 16.5836i − 0.603539i
\(756\) 0 0
\(757\) 38.0000i 1.38113i 0.723269 + 0.690567i \(0.242639\pi\)
−0.723269 + 0.690567i \(0.757361\pi\)
\(758\) 5.12461i 0.186134i
\(759\) 0 0
\(760\) 16.1803 0.586923
\(761\) −16.4721 −0.597114 −0.298557 0.954392i \(-0.596505\pi\)
−0.298557 + 0.954392i \(0.596505\pi\)
\(762\) 0 0
\(763\) 19.4164i 0.702921i
\(764\) 13.5279 0.489421
\(765\) 0 0
\(766\) −14.4721 −0.522900
\(767\) 0.472136i 0.0170478i
\(768\) 0 0
\(769\) −48.8328 −1.76096 −0.880478 0.474087i \(-0.842778\pi\)
−0.880478 + 0.474087i \(0.842778\pi\)
\(770\) − 12.3607i − 0.445448i
\(771\) 0 0
\(772\) 21.7082i 0.781295i
\(773\) − 14.9443i − 0.537508i −0.963209 0.268754i \(-0.913388\pi\)
0.963209 0.268754i \(-0.0866119\pi\)
\(774\) 0 0
\(775\) 20.0000 0.718421
\(776\) 9.70820 0.348504
\(777\) 0 0
\(778\) 18.6525i 0.668724i
\(779\) −90.2492 −3.23351
\(780\) 0 0
\(781\) −28.9443 −1.03571
\(782\) − 20.0000i − 0.715199i
\(783\) 0 0
\(784\) 5.47214 0.195433
\(785\) 2.36068 0.0842563
\(786\) 0 0
\(787\) − 11.0557i − 0.394094i −0.980394 0.197047i \(-0.936865\pi\)
0.980394 0.197047i \(-0.0631352\pi\)
\(788\) − 2.94427i − 0.104885i
\(789\) 0 0
\(790\) −8.94427 −0.318223
\(791\) −15.6393 −0.556070
\(792\) 0 0
\(793\) 6.94427i 0.246598i
\(794\) 9.41641 0.334176
\(795\) 0 0
\(796\) 16.9443 0.600574
\(797\) 26.9443i 0.954415i 0.878791 + 0.477208i \(0.158351\pi\)
−0.878791 + 0.477208i \(0.841649\pi\)
\(798\) 0 0
\(799\) 13.6656 0.483455
\(800\) 5.00000i 0.176777i
\(801\) 0 0
\(802\) − 15.5279i − 0.548308i
\(803\) 39.1935i 1.38311i
\(804\) 0 0
\(805\) − 20.0000i − 0.704907i
\(806\) −4.00000 −0.140894
\(807\) 0 0
\(808\) 4.76393i 0.167595i
\(809\) 40.4721 1.42292 0.711462 0.702724i \(-0.248033\pi\)
0.711462 + 0.702724i \(0.248033\pi\)
\(810\) 0 0
\(811\) 17.7082 0.621819 0.310910 0.950439i \(-0.399366\pi\)
0.310910 + 0.950439i \(0.399366\pi\)
\(812\) − 12.0000i − 0.421117i
\(813\) 0 0
\(814\) −31.0557 −1.08850
\(815\) −11.0557 −0.387265
\(816\) 0 0
\(817\) 46.8328i 1.63847i
\(818\) 6.00000i 0.209785i
\(819\) 0 0
\(820\) − 27.8885i − 0.973910i
\(821\) 21.5279 0.751328 0.375664 0.926756i \(-0.377415\pi\)
0.375664 + 0.926756i \(0.377415\pi\)
\(822\) 0 0
\(823\) − 32.2492i − 1.12414i −0.827091 0.562069i \(-0.810006\pi\)
0.827091 0.562069i \(-0.189994\pi\)
\(824\) 0.472136 0.0164476
\(825\) 0 0
\(826\) 0.583592 0.0203058
\(827\) − 6.11146i − 0.212516i −0.994339 0.106258i \(-0.966113\pi\)
0.994339 0.106258i \(-0.0338870\pi\)
\(828\) 0 0
\(829\) 46.7214 1.62270 0.811350 0.584561i \(-0.198733\pi\)
0.811350 + 0.584561i \(0.198733\pi\)
\(830\) 28.9443i 1.00467i
\(831\) 0 0
\(832\) − 1.00000i − 0.0346688i
\(833\) 15.1246i 0.524037i
\(834\) 0 0
\(835\) 16.5836 0.573899
\(836\) −32.3607 −1.11922
\(837\) 0 0
\(838\) 21.5967i 0.746047i
\(839\) 19.7771 0.682781 0.341390 0.939922i \(-0.389102\pi\)
0.341390 + 0.939922i \(0.389102\pi\)
\(840\) 0 0
\(841\) 65.2492 2.24997
\(842\) 0.291796i 0.0100560i
\(843\) 0 0
\(844\) 21.8885 0.753435
\(845\) 2.23607i 0.0769231i
\(846\) 0 0
\(847\) 11.1246i 0.382246i
\(848\) − 8.47214i − 0.290934i
\(849\) 0 0
\(850\) −13.8197 −0.474010
\(851\) −50.2492 −1.72252
\(852\) 0 0
\(853\) 14.5836i 0.499333i 0.968332 + 0.249666i \(0.0803209\pi\)
−0.968332 + 0.249666i \(0.919679\pi\)
\(854\) 8.58359 0.293724
\(855\) 0 0
\(856\) 10.4721 0.357930
\(857\) 22.1803i 0.757666i 0.925465 + 0.378833i \(0.123675\pi\)
−0.925465 + 0.378833i \(0.876325\pi\)
\(858\) 0 0
\(859\) −36.0000 −1.22830 −0.614152 0.789188i \(-0.710502\pi\)
−0.614152 + 0.789188i \(0.710502\pi\)
\(860\) −14.4721 −0.493496
\(861\) 0 0
\(862\) 38.8328i 1.32265i
\(863\) − 13.5279i − 0.460494i −0.973132 0.230247i \(-0.926047\pi\)
0.973132 0.230247i \(-0.0739534\pi\)
\(864\) 0 0
\(865\) 11.3050 0.384380
\(866\) −18.4721 −0.627709
\(867\) 0 0
\(868\) 4.94427i 0.167820i
\(869\) 17.8885 0.606827
\(870\) 0 0
\(871\) 0 0
\(872\) 15.7082i 0.531947i
\(873\) 0 0
\(874\) −52.3607 −1.77113
\(875\) −13.8197 −0.467190
\(876\) 0 0
\(877\) − 15.5279i − 0.524339i −0.965022 0.262169i \(-0.915562\pi\)
0.965022 0.262169i \(-0.0844379\pi\)
\(878\) 12.9443i 0.436848i
\(879\) 0 0
\(880\) − 10.0000i − 0.337100i
\(881\) 10.3607 0.349060 0.174530 0.984652i \(-0.444159\pi\)
0.174530 + 0.984652i \(0.444159\pi\)
\(882\) 0 0
\(883\) − 9.88854i − 0.332776i −0.986060 0.166388i \(-0.946790\pi\)
0.986060 0.166388i \(-0.0532104\pi\)
\(884\) 2.76393 0.0929611
\(885\) 0 0
\(886\) 13.5279 0.454477
\(887\) 12.1803i 0.408976i 0.978869 + 0.204488i \(0.0655529\pi\)
−0.978869 + 0.204488i \(0.934447\pi\)
\(888\) 0 0
\(889\) −6.69505 −0.224545
\(890\) 18.9443 0.635013
\(891\) 0 0
\(892\) − 21.2361i − 0.711036i
\(893\) − 35.7771i − 1.19723i
\(894\) 0 0
\(895\) 31.7082i 1.05989i
\(896\) −1.23607 −0.0412941
\(897\) 0 0
\(898\) 8.47214i 0.282719i
\(899\) −38.8328 −1.29515
\(900\) 0 0
\(901\) 23.4164 0.780114
\(902\) 55.7771i 1.85717i
\(903\) 0 0
\(904\) −12.6525 −0.420815
\(905\) 21.0557i 0.699916i
\(906\) 0 0
\(907\) − 54.4721i − 1.80872i −0.426773 0.904359i \(-0.640350\pi\)
0.426773 0.904359i \(-0.359650\pi\)
\(908\) − 24.9443i − 0.827805i
\(909\) 0 0
\(910\) 2.76393 0.0916235
\(911\) 28.9443 0.958967 0.479483 0.877551i \(-0.340824\pi\)
0.479483 + 0.877551i \(0.340824\pi\)
\(912\) 0 0
\(913\) − 57.8885i − 1.91583i
\(914\) −9.70820 −0.321119
\(915\) 0 0
\(916\) −3.70820 −0.122523
\(917\) 4.58359i 0.151364i
\(918\) 0 0
\(919\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(920\) − 16.1803i − 0.533450i
\(921\) 0 0
\(922\) 6.11146i 0.201270i
\(923\) − 6.47214i − 0.213033i
\(924\) 0 0
\(925\) 34.7214i 1.14163i
\(926\) −35.7082 −1.17344
\(927\) 0 0
\(928\) − 9.70820i − 0.318687i
\(929\) 23.5279 0.771924 0.385962 0.922515i \(-0.373870\pi\)
0.385962 + 0.922515i \(0.373870\pi\)
\(930\) 0 0
\(931\) 39.5967 1.29773
\(932\) − 2.18034i − 0.0714194i
\(933\) 0 0
\(934\) −2.47214 −0.0808908
\(935\) 27.6393 0.903902
\(936\) 0 0
\(937\) 51.7771i 1.69148i 0.533592 + 0.845742i \(0.320842\pi\)
−0.533592 + 0.845742i \(0.679158\pi\)
\(938\) 0 0
\(939\) 0 0
\(940\) 11.0557 0.360598
\(941\) 46.4721 1.51495 0.757474 0.652865i \(-0.226433\pi\)
0.757474 + 0.652865i \(0.226433\pi\)
\(942\) 0 0
\(943\) 90.2492i 2.93892i
\(944\) 0.472136 0.0153667
\(945\) 0 0
\(946\) 28.9443 0.941059
\(947\) − 12.9443i − 0.420632i −0.977633 0.210316i \(-0.932551\pi\)
0.977633 0.210316i \(-0.0674493\pi\)
\(948\) 0 0
\(949\) −8.76393 −0.284489
\(950\) 36.1803i 1.17385i
\(951\) 0 0
\(952\) − 3.41641i − 0.110726i
\(953\) 11.1246i 0.360362i 0.983634 + 0.180181i \(0.0576683\pi\)
−0.983634 + 0.180181i \(0.942332\pi\)
\(954\) 0 0
\(955\) 30.2492i 0.978842i
\(956\) −13.8885 −0.449188
\(957\) 0 0
\(958\) 36.0000i 1.16311i
\(959\) −19.6393 −0.634187
\(960\) 0 0
\(961\) −15.0000 −0.483871
\(962\) − 6.94427i − 0.223892i
\(963\) 0 0
\(964\) −12.4721 −0.401700
\(965\) −48.5410 −1.56259
\(966\) 0 0
\(967\) − 10.5410i − 0.338976i −0.985532 0.169488i \(-0.945789\pi\)
0.985532 0.169488i \(-0.0542115\pi\)
\(968\) 9.00000i 0.289271i
\(969\) 0 0
\(970\) 21.7082i 0.697008i
\(971\) −18.7639 −0.602163 −0.301082 0.953598i \(-0.597348\pi\)
−0.301082 + 0.953598i \(0.597348\pi\)
\(972\) 0 0
\(973\) − 3.05573i − 0.0979621i
\(974\) −25.5967 −0.820173
\(975\) 0 0
\(976\) 6.94427 0.222281
\(977\) 34.3607i 1.09930i 0.835397 + 0.549648i \(0.185238\pi\)
−0.835397 + 0.549648i \(0.814762\pi\)
\(978\) 0 0
\(979\) −37.8885 −1.21092
\(980\) 12.2361i 0.390867i
\(981\) 0 0
\(982\) 6.18034i 0.197223i
\(983\) − 19.4164i − 0.619287i −0.950853 0.309644i \(-0.899790\pi\)
0.950853 0.309644i \(-0.100210\pi\)
\(984\) 0 0
\(985\) 6.58359 0.209771
\(986\) 26.8328 0.854531
\(987\) 0 0
\(988\) − 7.23607i − 0.230210i
\(989\) 46.8328 1.48920
\(990\) 0 0
\(991\) 7.05573 0.224133 0.112066 0.993701i \(-0.464253\pi\)
0.112066 + 0.993701i \(0.464253\pi\)
\(992\) 4.00000i 0.127000i
\(993\) 0 0
\(994\) −8.00000 −0.253745
\(995\) 37.8885i 1.20115i
\(996\) 0 0
\(997\) − 8.11146i − 0.256892i −0.991716 0.128446i \(-0.959001\pi\)
0.991716 0.128446i \(-0.0409990\pi\)
\(998\) 1.12461i 0.0355990i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1170.2.e.e.469.1 4
3.2 odd 2 390.2.e.e.79.4 yes 4
5.2 odd 4 5850.2.a.cm.1.1 2
5.3 odd 4 5850.2.a.cf.1.2 2
5.4 even 2 inner 1170.2.e.e.469.4 4
12.11 even 2 3120.2.l.k.1249.2 4
15.2 even 4 1950.2.a.be.1.1 2
15.8 even 4 1950.2.a.bf.1.2 2
15.14 odd 2 390.2.e.e.79.1 4
60.59 even 2 3120.2.l.k.1249.3 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
390.2.e.e.79.1 4 15.14 odd 2
390.2.e.e.79.4 yes 4 3.2 odd 2
1170.2.e.e.469.1 4 1.1 even 1 trivial
1170.2.e.e.469.4 4 5.4 even 2 inner
1950.2.a.be.1.1 2 15.2 even 4
1950.2.a.bf.1.2 2 15.8 even 4
3120.2.l.k.1249.2 4 12.11 even 2
3120.2.l.k.1249.3 4 60.59 even 2
5850.2.a.cf.1.2 2 5.3 odd 4
5850.2.a.cm.1.1 2 5.2 odd 4