Properties

 Label 1170.2.e.a Level $1170$ Weight $2$ Character orbit 1170.e Analytic conductor $9.342$ Analytic rank $0$ Dimension $2$ Inner twists $2$

Related objects

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [1170,2,Mod(469,1170)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(1170, base_ring=CyclotomicField(2))

chi = DirichletCharacter(H, H._module([0, 1, 0]))

N = Newforms(chi, 2, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("1170.469");

S:= CuspForms(chi, 2);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1170.e (of order $$2$$, degree $$1$$, minimal)

Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$9.34249703649$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-1})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} + 1$$ x^2 + 1 Coefficient ring: $$\Z[a_1, a_2]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 390) Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of $$i = \sqrt{-1}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q - i q^{2} - q^{4} + ( - i - 2) q^{5} + 2 i q^{7} + i q^{8} +O(q^{10})$$ q - i * q^2 - q^4 + (-i - 2) * q^5 + 2*i * q^7 + i * q^8 $$q - i q^{2} - q^{4} + ( - i - 2) q^{5} + 2 i q^{7} + i q^{8} + (2 i - 1) q^{10} - 2 q^{11} + i q^{13} + 2 q^{14} + q^{16} - 2 i q^{17} + 4 q^{19} + (i + 2) q^{20} + 2 i q^{22} + (4 i + 3) q^{25} + q^{26} - 2 i q^{28} + 4 q^{29} + 8 q^{31} - i q^{32} - 2 q^{34} + ( - 4 i + 2) q^{35} + 6 i q^{37} - 4 i q^{38} + ( - 2 i + 1) q^{40} + 6 q^{41} - 4 i q^{43} + 2 q^{44} + 8 i q^{47} + 3 q^{49} + ( - 3 i + 4) q^{50} - i q^{52} + 2 i q^{53} + (2 i + 4) q^{55} - 2 q^{56} - 4 i q^{58} + 10 q^{59} - 14 q^{61} - 8 i q^{62} - q^{64} + ( - 2 i + 1) q^{65} - 16 i q^{67} + 2 i q^{68} + ( - 2 i - 4) q^{70} + 4 q^{71} - 8 i q^{73} + 6 q^{74} - 4 q^{76} - 4 i q^{77} + 8 q^{79} + ( - i - 2) q^{80} - 6 i q^{82} + 12 i q^{83} + (4 i - 2) q^{85} - 4 q^{86} - 2 i q^{88} + 6 q^{89} - 2 q^{91} + 8 q^{94} + ( - 4 i - 8) q^{95} + 12 i q^{97} - 3 i q^{98} +O(q^{100})$$ q - i * q^2 - q^4 + (-i - 2) * q^5 + 2*i * q^7 + i * q^8 + (2*i - 1) * q^10 - 2 * q^11 + i * q^13 + 2 * q^14 + q^16 - 2*i * q^17 + 4 * q^19 + (i + 2) * q^20 + 2*i * q^22 + (4*i + 3) * q^25 + q^26 - 2*i * q^28 + 4 * q^29 + 8 * q^31 - i * q^32 - 2 * q^34 + (-4*i + 2) * q^35 + 6*i * q^37 - 4*i * q^38 + (-2*i + 1) * q^40 + 6 * q^41 - 4*i * q^43 + 2 * q^44 + 8*i * q^47 + 3 * q^49 + (-3*i + 4) * q^50 - i * q^52 + 2*i * q^53 + (2*i + 4) * q^55 - 2 * q^56 - 4*i * q^58 + 10 * q^59 - 14 * q^61 - 8*i * q^62 - q^64 + (-2*i + 1) * q^65 - 16*i * q^67 + 2*i * q^68 + (-2*i - 4) * q^70 + 4 * q^71 - 8*i * q^73 + 6 * q^74 - 4 * q^76 - 4*i * q^77 + 8 * q^79 + (-i - 2) * q^80 - 6*i * q^82 + 12*i * q^83 + (4*i - 2) * q^85 - 4 * q^86 - 2*i * q^88 + 6 * q^89 - 2 * q^91 + 8 * q^94 + (-4*i - 8) * q^95 + 12*i * q^97 - 3*i * q^98 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q - 2 q^{4} - 4 q^{5}+O(q^{10})$$ 2 * q - 2 * q^4 - 4 * q^5 $$2 q - 2 q^{4} - 4 q^{5} - 2 q^{10} - 4 q^{11} + 4 q^{14} + 2 q^{16} + 8 q^{19} + 4 q^{20} + 6 q^{25} + 2 q^{26} + 8 q^{29} + 16 q^{31} - 4 q^{34} + 4 q^{35} + 2 q^{40} + 12 q^{41} + 4 q^{44} + 6 q^{49} + 8 q^{50} + 8 q^{55} - 4 q^{56} + 20 q^{59} - 28 q^{61} - 2 q^{64} + 2 q^{65} - 8 q^{70} + 8 q^{71} + 12 q^{74} - 8 q^{76} + 16 q^{79} - 4 q^{80} - 4 q^{85} - 8 q^{86} + 12 q^{89} - 4 q^{91} + 16 q^{94} - 16 q^{95}+O(q^{100})$$ 2 * q - 2 * q^4 - 4 * q^5 - 2 * q^10 - 4 * q^11 + 4 * q^14 + 2 * q^16 + 8 * q^19 + 4 * q^20 + 6 * q^25 + 2 * q^26 + 8 * q^29 + 16 * q^31 - 4 * q^34 + 4 * q^35 + 2 * q^40 + 12 * q^41 + 4 * q^44 + 6 * q^49 + 8 * q^50 + 8 * q^55 - 4 * q^56 + 20 * q^59 - 28 * q^61 - 2 * q^64 + 2 * q^65 - 8 * q^70 + 8 * q^71 + 12 * q^74 - 8 * q^76 + 16 * q^79 - 4 * q^80 - 4 * q^85 - 8 * q^86 + 12 * q^89 - 4 * q^91 + 16 * q^94 - 16 * q^95

Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/1170\mathbb{Z}\right)^\times$$.

 $$n$$ $$911$$ $$937$$ $$1081$$ $$\chi(n)$$ $$1$$ $$-1$$ $$1$$

Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
469.1
 1.00000i − 1.00000i
1.00000i 0 −1.00000 −2.00000 1.00000i 0 2.00000i 1.00000i 0 −1.00000 + 2.00000i
469.2 1.00000i 0 −1.00000 −2.00000 + 1.00000i 0 2.00000i 1.00000i 0 −1.00000 2.00000i
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.b even 2 1 inner

Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1170.2.e.a 2
3.b odd 2 1 390.2.e.c 2
5.b even 2 1 inner 1170.2.e.a 2
5.c odd 4 1 5850.2.a.t 1
5.c odd 4 1 5850.2.a.bj 1
12.b even 2 1 3120.2.l.g 2
15.d odd 2 1 390.2.e.c 2
15.e even 4 1 1950.2.a.c 1
15.e even 4 1 1950.2.a.z 1
60.h even 2 1 3120.2.l.g 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
390.2.e.c 2 3.b odd 2 1
390.2.e.c 2 15.d odd 2 1
1170.2.e.a 2 1.a even 1 1 trivial
1170.2.e.a 2 5.b even 2 1 inner
1950.2.a.c 1 15.e even 4 1
1950.2.a.z 1 15.e even 4 1
3120.2.l.g 2 12.b even 2 1
3120.2.l.g 2 60.h even 2 1
5850.2.a.t 1 5.c odd 4 1
5850.2.a.bj 1 5.c odd 4 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(1170, [\chi])$$:

 $$T_{7}^{2} + 4$$ T7^2 + 4 $$T_{11} + 2$$ T11 + 2

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2} + 1$$
$3$ $$T^{2}$$
$5$ $$T^{2} + 4T + 5$$
$7$ $$T^{2} + 4$$
$11$ $$(T + 2)^{2}$$
$13$ $$T^{2} + 1$$
$17$ $$T^{2} + 4$$
$19$ $$(T - 4)^{2}$$
$23$ $$T^{2}$$
$29$ $$(T - 4)^{2}$$
$31$ $$(T - 8)^{2}$$
$37$ $$T^{2} + 36$$
$41$ $$(T - 6)^{2}$$
$43$ $$T^{2} + 16$$
$47$ $$T^{2} + 64$$
$53$ $$T^{2} + 4$$
$59$ $$(T - 10)^{2}$$
$61$ $$(T + 14)^{2}$$
$67$ $$T^{2} + 256$$
$71$ $$(T - 4)^{2}$$
$73$ $$T^{2} + 64$$
$79$ $$(T - 8)^{2}$$
$83$ $$T^{2} + 144$$
$89$ $$(T - 6)^{2}$$
$97$ $$T^{2} + 144$$