Properties

Label 1170.2.cu.c
Level $1170$
Weight $2$
Character orbit 1170.cu
Analytic conductor $9.342$
Analytic rank $0$
Dimension $8$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1170,2,Mod(71,1170)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1170, base_ring=CyclotomicField(12)) chi = DirichletCharacter(H, H._module([6, 0, 5])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1170.71"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: \( N \) \(=\) \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1170.cu (of order \(12\), degree \(4\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,0,0,0,0,0,0,0,0,0,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.34249703649\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{12})\)
Coefficient field: \(\Q(\zeta_{24})\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{4} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{12}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{24}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \zeta_{24}^{7} q^{2} - \zeta_{24}^{2} q^{4} + \zeta_{24}^{3} q^{5} + ( - \zeta_{24}^{6} + 2 \zeta_{24}^{4} + \cdots - 1) q^{7} + (\zeta_{24}^{5} - \zeta_{24}) q^{8} + ( - \zeta_{24}^{6} + \zeta_{24}^{2}) q^{10} + \cdots + (3 \zeta_{24}^{7} + \cdots + 3 \zeta_{24}^{3}) q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{16} - 12 q^{19} - 4 q^{22} + 24 q^{31} - 8 q^{37} - 8 q^{40} + 24 q^{43} + 20 q^{46} - 36 q^{49} + 28 q^{52} - 4 q^{55} - 8 q^{58} - 8 q^{61} + 40 q^{67} - 12 q^{70} + 48 q^{73} - 12 q^{76} + 16 q^{79}+ \cdots + 56 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1170\mathbb{Z}\right)^\times\).

\(n\) \(911\) \(937\) \(1081\)
\(\chi(n)\) \(-1\) \(1\) \(\zeta_{24}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
71.1
−0.258819 0.965926i
0.258819 + 0.965926i
−0.965926 0.258819i
0.965926 + 0.258819i
−0.258819 + 0.965926i
0.258819 0.965926i
−0.965926 + 0.258819i
0.965926 0.258819i
−0.965926 + 0.258819i 0 0.866025 0.500000i 0.707107 + 0.707107i 0 0.866025 3.23205i −0.707107 + 0.707107i 0 −0.866025 0.500000i
71.2 0.965926 0.258819i 0 0.866025 0.500000i −0.707107 0.707107i 0 0.866025 3.23205i 0.707107 0.707107i 0 −0.866025 0.500000i
431.1 −0.258819 + 0.965926i 0 −0.866025 0.500000i −0.707107 0.707107i 0 −0.866025 + 0.232051i 0.707107 0.707107i 0 0.866025 0.500000i
431.2 0.258819 0.965926i 0 −0.866025 0.500000i 0.707107 + 0.707107i 0 −0.866025 + 0.232051i −0.707107 + 0.707107i 0 0.866025 0.500000i
791.1 −0.965926 0.258819i 0 0.866025 + 0.500000i 0.707107 0.707107i 0 0.866025 + 3.23205i −0.707107 0.707107i 0 −0.866025 + 0.500000i
791.2 0.965926 + 0.258819i 0 0.866025 + 0.500000i −0.707107 + 0.707107i 0 0.866025 + 3.23205i 0.707107 + 0.707107i 0 −0.866025 + 0.500000i
1151.1 −0.258819 0.965926i 0 −0.866025 + 0.500000i −0.707107 + 0.707107i 0 −0.866025 0.232051i 0.707107 + 0.707107i 0 0.866025 + 0.500000i
1151.2 0.258819 + 0.965926i 0 −0.866025 + 0.500000i 0.707107 0.707107i 0 −0.866025 0.232051i −0.707107 0.707107i 0 0.866025 + 0.500000i
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 71.2
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
3.b odd 2 1 inner
13.f odd 12 1 inner
39.k even 12 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1170.2.cu.c 8
3.b odd 2 1 inner 1170.2.cu.c 8
13.f odd 12 1 inner 1170.2.cu.c 8
39.k even 12 1 inner 1170.2.cu.c 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
1170.2.cu.c 8 1.a even 1 1 trivial
1170.2.cu.c 8 3.b odd 2 1 inner
1170.2.cu.c 8 13.f odd 12 1 inner
1170.2.cu.c 8 39.k even 12 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1170, [\chi])\):

\( T_{7}^{4} + 9T_{7}^{2} + 18T_{7} + 9 \) Copy content Toggle raw display
\( T_{17}^{4} + 24T_{17}^{2} + 576 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} - T^{4} + 1 \) Copy content Toggle raw display
$3$ \( T^{8} \) Copy content Toggle raw display
$5$ \( (T^{4} + 1)^{2} \) Copy content Toggle raw display
$7$ \( (T^{4} + 9 T^{2} + 18 T + 9)^{2} \) Copy content Toggle raw display
$11$ \( T^{8} - T^{4} + 1 \) Copy content Toggle raw display
$13$ \( (T^{4} - T^{2} + 169)^{2} \) Copy content Toggle raw display
$17$ \( (T^{4} + 24 T^{2} + 576)^{2} \) Copy content Toggle raw display
$19$ \( (T^{4} + 6 T^{3} + 9 T^{2} + 9)^{2} \) Copy content Toggle raw display
$23$ \( T^{8} + 28 T^{6} + \cdots + 16 \) Copy content Toggle raw display
$29$ \( (T^{4} - 8 T^{2} + 64)^{2} \) Copy content Toggle raw display
$31$ \( (T^{4} - 12 T^{3} + \cdots + 144)^{2} \) Copy content Toggle raw display
$37$ \( (T^{4} + 4 T^{3} + \cdots + 529)^{2} \) Copy content Toggle raw display
$41$ \( T^{8} - 256 T^{4} + 65536 \) Copy content Toggle raw display
$43$ \( (T^{4} - 12 T^{3} + \cdots + 2704)^{2} \) Copy content Toggle raw display
$47$ \( T^{8} + 9954 T^{4} + 2313441 \) Copy content Toggle raw display
$53$ \( (T^{4} + 196 T^{2} + 5041)^{2} \) Copy content Toggle raw display
$59$ \( T^{8} - 256 T^{4} + 65536 \) Copy content Toggle raw display
$61$ \( (T^{4} + 4 T^{3} + \cdots + 1936)^{2} \) Copy content Toggle raw display
$67$ \( (T^{4} - 20 T^{3} + \cdots + 64)^{2} \) Copy content Toggle raw display
$71$ \( T^{8} - 16T^{4} + 256 \) Copy content Toggle raw display
$73$ \( (T^{4} - 24 T^{3} + \cdots + 2304)^{2} \) Copy content Toggle raw display
$79$ \( (T - 2)^{8} \) Copy content Toggle raw display
$83$ \( T^{8} + 34688 T^{4} + 59969536 \) Copy content Toggle raw display
$89$ \( T^{8} - 21609 T^{4} + 466948881 \) Copy content Toggle raw display
$97$ \( (T^{4} - 28 T^{3} + \cdots + 10816)^{2} \) Copy content Toggle raw display
show more
show less