Properties

Label 1170.2.bs.g.361.1
Level $1170$
Weight $2$
Character 1170.361
Analytic conductor $9.342$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [1170,2,Mod(361,1170)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("1170.361"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(1170, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 0, 5])) N = Newforms(chi, 2, names="a")
 
Level: \( N \) \(=\) \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1170.bs (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0,0,4,0,0,0,0,0,4,6,0,-2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(13)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(9.34249703649\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{6})\)
Coefficient field: 8.0.22581504.2
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 4x^{7} + 5x^{6} + 2x^{5} - 11x^{4} + 4x^{3} + 20x^{2} - 32x + 16 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 361.1
Root \(-1.27597 + 0.609843i\) of defining polynomial
Character \(\chi\) \(=\) 1170.361
Dual form 1170.2.bs.g.901.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.866025 + 0.500000i) q^{2} +(0.500000 - 0.866025i) q^{4} -1.00000i q^{5} +(-1.24653 - 0.719687i) q^{7} +1.00000i q^{8} +(0.500000 + 0.866025i) q^{10} +(-3.49837 + 2.01978i) q^{11} +(3.13234 - 1.78561i) q^{13} +1.43937 q^{14} +(-0.500000 - 0.866025i) q^{16} +(-1.15376 + 1.99837i) q^{17} +(-0.346241 - 0.199902i) q^{19} +(-0.866025 - 0.500000i) q^{20} +(2.01978 - 3.49837i) q^{22} +(-0.780313 - 1.35154i) q^{23} -1.00000 q^{25} +(-1.81988 + 3.11256i) q^{26} +(-1.24653 + 0.719687i) q^{28} +(-3.93244 - 6.81119i) q^{29} +3.10713i q^{31} +(0.866025 + 0.500000i) q^{32} -2.30752i q^{34} +(-0.719687 + 1.24653i) q^{35} +(-5.40029 + 3.11786i) q^{37} +0.399804 q^{38} +1.00000 q^{40} +(0.659061 - 0.380509i) q^{41} +(-5.50367 + 9.53264i) q^{43} +4.03957i q^{44} +(1.35154 + 0.780313i) q^{46} +5.84016i q^{47} +(-2.46410 - 4.26795i) q^{49} +(0.866025 - 0.500000i) q^{50} +(0.0197847 - 3.60550i) q^{52} -10.6249 q^{53} +(2.01978 + 3.49837i) q^{55} +(0.719687 - 1.24653i) q^{56} +(6.81119 + 3.93244i) q^{58} +(3.00000 + 1.73205i) q^{59} +(2.84624 - 4.92983i) q^{61} +(-1.55356 - 2.69085i) q^{62} -1.00000 q^{64} +(-1.78561 - 3.13234i) q^{65} +(-9.00734 + 5.20039i) q^{67} +(1.15376 + 1.99837i) q^{68} -1.43937i q^{70} +(-5.19615 - 3.00000i) q^{71} +13.4608i q^{73} +(3.11786 - 5.40029i) q^{74} +(-0.346241 + 0.199902i) q^{76} +5.81445 q^{77} +0.931464 q^{79} +(-0.866025 + 0.500000i) q^{80} +(-0.380509 + 0.659061i) q^{82} +10.3867i q^{83} +(1.99837 + 1.15376i) q^{85} -11.0073i q^{86} +(-2.01978 - 3.49837i) q^{88} +(0.840939 - 0.485517i) q^{89} +(-5.18966 - 0.0284776i) q^{91} -1.56063 q^{92} +(-2.92008 - 5.05772i) q^{94} +(-0.199902 + 0.346241i) q^{95} +(-10.6680 - 6.15919i) q^{97} +(4.26795 + 2.46410i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 4 q^{4} + 4 q^{10} + 6 q^{11} - 2 q^{13} - 4 q^{16} - 6 q^{17} - 6 q^{19} + 6 q^{22} - 12 q^{23} - 8 q^{25} - 30 q^{37} + 12 q^{38} + 8 q^{40} - 12 q^{41} + 4 q^{43} + 8 q^{49} - 10 q^{52} - 60 q^{53}+ \cdots + 48 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1170\mathbb{Z}\right)^\times\).

\(n\) \(911\) \(937\) \(1081\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.866025 + 0.500000i −0.612372 + 0.353553i
\(3\) 0 0
\(4\) 0.500000 0.866025i 0.250000 0.433013i
\(5\) 1.00000i 0.447214i
\(6\) 0 0
\(7\) −1.24653 0.719687i −0.471146 0.272016i 0.245574 0.969378i \(-0.421024\pi\)
−0.716719 + 0.697362i \(0.754357\pi\)
\(8\) 1.00000i 0.353553i
\(9\) 0 0
\(10\) 0.500000 + 0.866025i 0.158114 + 0.273861i
\(11\) −3.49837 + 2.01978i −1.05480 + 0.608988i −0.923989 0.382420i \(-0.875091\pi\)
−0.130809 + 0.991408i \(0.541758\pi\)
\(12\) 0 0
\(13\) 3.13234 1.78561i 0.868756 0.495240i
\(14\) 1.43937 0.384689
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −1.15376 + 1.99837i −0.279828 + 0.484676i −0.971342 0.237687i \(-0.923611\pi\)
0.691514 + 0.722363i \(0.256944\pi\)
\(18\) 0 0
\(19\) −0.346241 0.199902i −0.0794331 0.0458607i 0.459757 0.888045i \(-0.347936\pi\)
−0.539190 + 0.842184i \(0.681270\pi\)
\(20\) −0.866025 0.500000i −0.193649 0.111803i
\(21\) 0 0
\(22\) 2.01978 3.49837i 0.430620 0.745855i
\(23\) −0.780313 1.35154i −0.162707 0.281816i 0.773132 0.634245i \(-0.218689\pi\)
−0.935838 + 0.352429i \(0.885356\pi\)
\(24\) 0 0
\(25\) −1.00000 −0.200000
\(26\) −1.81988 + 3.11256i −0.356908 + 0.610423i
\(27\) 0 0
\(28\) −1.24653 + 0.719687i −0.235573 + 0.136008i
\(29\) −3.93244 6.81119i −0.730236 1.26481i −0.956782 0.290806i \(-0.906077\pi\)
0.226546 0.974000i \(-0.427257\pi\)
\(30\) 0 0
\(31\) 3.10713i 0.558057i 0.960283 + 0.279028i \(0.0900123\pi\)
−0.960283 + 0.279028i \(0.909988\pi\)
\(32\) 0.866025 + 0.500000i 0.153093 + 0.0883883i
\(33\) 0 0
\(34\) 2.30752i 0.395736i
\(35\) −0.719687 + 1.24653i −0.121649 + 0.210703i
\(36\) 0 0
\(37\) −5.40029 + 3.11786i −0.887803 + 0.512573i −0.873223 0.487321i \(-0.837974\pi\)
−0.0145796 + 0.999894i \(0.504641\pi\)
\(38\) 0.399804 0.0648568
\(39\) 0 0
\(40\) 1.00000 0.158114
\(41\) 0.659061 0.380509i 0.102928 0.0594255i −0.447652 0.894208i \(-0.647740\pi\)
0.550580 + 0.834782i \(0.314406\pi\)
\(42\) 0 0
\(43\) −5.50367 + 9.53264i −0.839302 + 1.45371i 0.0511772 + 0.998690i \(0.483703\pi\)
−0.890479 + 0.455024i \(0.849631\pi\)
\(44\) 4.03957i 0.608988i
\(45\) 0 0
\(46\) 1.35154 + 0.780313i 0.199274 + 0.115051i
\(47\) 5.84016i 0.851874i 0.904753 + 0.425937i \(0.140056\pi\)
−0.904753 + 0.425937i \(0.859944\pi\)
\(48\) 0 0
\(49\) −2.46410 4.26795i −0.352015 0.609707i
\(50\) 0.866025 0.500000i 0.122474 0.0707107i
\(51\) 0 0
\(52\) 0.0197847 3.60550i 0.00274365 0.499992i
\(53\) −10.6249 −1.45945 −0.729723 0.683743i \(-0.760351\pi\)
−0.729723 + 0.683743i \(0.760351\pi\)
\(54\) 0 0
\(55\) 2.01978 + 3.49837i 0.272348 + 0.471720i
\(56\) 0.719687 1.24653i 0.0961722 0.166575i
\(57\) 0 0
\(58\) 6.81119 + 3.93244i 0.894353 + 0.516355i
\(59\) 3.00000 + 1.73205i 0.390567 + 0.225494i 0.682406 0.730974i \(-0.260934\pi\)
−0.291839 + 0.956467i \(0.594267\pi\)
\(60\) 0 0
\(61\) 2.84624 4.92983i 0.364424 0.631200i −0.624260 0.781217i \(-0.714599\pi\)
0.988684 + 0.150016i \(0.0479326\pi\)
\(62\) −1.55356 2.69085i −0.197303 0.341738i
\(63\) 0 0
\(64\) −1.00000 −0.125000
\(65\) −1.78561 3.13234i −0.221478 0.388519i
\(66\) 0 0
\(67\) −9.00734 + 5.20039i −1.10042 + 0.635329i −0.936332 0.351116i \(-0.885802\pi\)
−0.164090 + 0.986445i \(0.552469\pi\)
\(68\) 1.15376 + 1.99837i 0.139914 + 0.242338i
\(69\) 0 0
\(70\) 1.43937i 0.172038i
\(71\) −5.19615 3.00000i −0.616670 0.356034i 0.158901 0.987294i \(-0.449205\pi\)
−0.775571 + 0.631260i \(0.782538\pi\)
\(72\) 0 0
\(73\) 13.4608i 1.57547i 0.616013 + 0.787736i \(0.288747\pi\)
−0.616013 + 0.787736i \(0.711253\pi\)
\(74\) 3.11786 5.40029i 0.362444 0.627771i
\(75\) 0 0
\(76\) −0.346241 + 0.199902i −0.0397165 + 0.0229303i
\(77\) 5.81445 0.662618
\(78\) 0 0
\(79\) 0.931464 0.104798 0.0523989 0.998626i \(-0.483313\pi\)
0.0523989 + 0.998626i \(0.483313\pi\)
\(80\) −0.866025 + 0.500000i −0.0968246 + 0.0559017i
\(81\) 0 0
\(82\) −0.380509 + 0.659061i −0.0420202 + 0.0727811i
\(83\) 10.3867i 1.14008i 0.821616 + 0.570042i \(0.193073\pi\)
−0.821616 + 0.570042i \(0.806927\pi\)
\(84\) 0 0
\(85\) 1.99837 + 1.15376i 0.216754 + 0.125143i
\(86\) 11.0073i 1.18695i
\(87\) 0 0
\(88\) −2.01978 3.49837i −0.215310 0.372927i
\(89\) 0.840939 0.485517i 0.0891394 0.0514647i −0.454768 0.890610i \(-0.650278\pi\)
0.543907 + 0.839145i \(0.316944\pi\)
\(90\) 0 0
\(91\) −5.18966 0.0284776i −0.544024 0.00298526i
\(92\) −1.56063 −0.162707
\(93\) 0 0
\(94\) −2.92008 5.05772i −0.301183 0.521664i
\(95\) −0.199902 + 0.346241i −0.0205095 + 0.0355235i
\(96\) 0 0
\(97\) −10.6680 6.15919i −1.08317 0.625371i −0.151424 0.988469i \(-0.548386\pi\)
−0.931751 + 0.363098i \(0.881719\pi\)
\(98\) 4.26795 + 2.46410i 0.431128 + 0.248912i
\(99\) 0 0
\(100\) −0.500000 + 0.866025i −0.0500000 + 0.0866025i
\(101\) −2.41747 4.18718i −0.240547 0.416640i 0.720323 0.693639i \(-0.243994\pi\)
−0.960870 + 0.276999i \(0.910660\pi\)
\(102\) 0 0
\(103\) −5.73205 −0.564796 −0.282398 0.959297i \(-0.591130\pi\)
−0.282398 + 0.959297i \(0.591130\pi\)
\(104\) 1.78561 + 3.13234i 0.175094 + 0.307152i
\(105\) 0 0
\(106\) 9.20145 5.31246i 0.893724 0.515992i
\(107\) −6.43774 11.1505i −0.622360 1.07796i −0.989045 0.147614i \(-0.952841\pi\)
0.366685 0.930345i \(-0.380493\pi\)
\(108\) 0 0
\(109\) 0.214254i 0.0205219i 0.999947 + 0.0102609i \(0.00326621\pi\)
−0.999947 + 0.0102609i \(0.996734\pi\)
\(110\) −3.49837 2.01978i −0.333556 0.192579i
\(111\) 0 0
\(112\) 1.43937i 0.136008i
\(113\) −0.0642973 + 0.111366i −0.00604858 + 0.0104765i −0.869034 0.494753i \(-0.835259\pi\)
0.862985 + 0.505229i \(0.168592\pi\)
\(114\) 0 0
\(115\) −1.35154 + 0.780313i −0.126032 + 0.0727646i
\(116\) −7.86488 −0.730236
\(117\) 0 0
\(118\) −3.46410 −0.318896
\(119\) 2.87640 1.66069i 0.263679 0.152235i
\(120\) 0 0
\(121\) 2.65906 4.60563i 0.241733 0.418693i
\(122\) 5.69248i 0.515373i
\(123\) 0 0
\(124\) 2.69085 + 1.55356i 0.241646 + 0.139514i
\(125\) 1.00000i 0.0894427i
\(126\) 0 0
\(127\) −8.06218 13.9641i −0.715403 1.23911i −0.962804 0.270201i \(-0.912910\pi\)
0.247401 0.968913i \(-0.420423\pi\)
\(128\) 0.866025 0.500000i 0.0765466 0.0441942i
\(129\) 0 0
\(130\) 3.11256 + 1.81988i 0.272990 + 0.159614i
\(131\) −2.78010 −0.242898 −0.121449 0.992598i \(-0.538754\pi\)
−0.121449 + 0.992598i \(0.538754\pi\)
\(132\) 0 0
\(133\) 0.287734 + 0.498370i 0.0249497 + 0.0432141i
\(134\) 5.20039 9.00734i 0.449245 0.778116i
\(135\) 0 0
\(136\) −1.99837 1.15376i −0.171359 0.0989340i
\(137\) 4.73487 + 2.73368i 0.404528 + 0.233554i 0.688436 0.725297i \(-0.258298\pi\)
−0.283908 + 0.958851i \(0.591631\pi\)
\(138\) 0 0
\(139\) 0.107258 0.185777i 0.00909753 0.0157574i −0.861441 0.507858i \(-0.830437\pi\)
0.870538 + 0.492101i \(0.163771\pi\)
\(140\) 0.719687 + 1.24653i 0.0608246 + 0.105351i
\(141\) 0 0
\(142\) 6.00000 0.503509
\(143\) −7.35154 + 12.5734i −0.614767 + 1.05144i
\(144\) 0 0
\(145\) −6.81119 + 3.93244i −0.565639 + 0.326572i
\(146\) −6.73042 11.6574i −0.557014 0.964776i
\(147\) 0 0
\(148\) 6.23572i 0.512573i
\(149\) −14.3149 8.26469i −1.17272 0.677070i −0.218400 0.975859i \(-0.570084\pi\)
−0.954319 + 0.298790i \(0.903417\pi\)
\(150\) 0 0
\(151\) 6.70830i 0.545914i −0.962026 0.272957i \(-0.911998\pi\)
0.962026 0.272957i \(-0.0880016\pi\)
\(152\) 0.199902 0.346241i 0.0162142 0.0280838i
\(153\) 0 0
\(154\) −5.03546 + 2.90723i −0.405769 + 0.234271i
\(155\) 3.10713 0.249570
\(156\) 0 0
\(157\) 5.81684 0.464234 0.232117 0.972688i \(-0.425435\pi\)
0.232117 + 0.972688i \(0.425435\pi\)
\(158\) −0.806671 + 0.465732i −0.0641753 + 0.0370516i
\(159\) 0 0
\(160\) 0.500000 0.866025i 0.0395285 0.0684653i
\(161\) 2.24632i 0.177035i
\(162\) 0 0
\(163\) 3.61341 + 2.08620i 0.283024 + 0.163404i 0.634792 0.772683i \(-0.281086\pi\)
−0.351768 + 0.936087i \(0.614419\pi\)
\(164\) 0.761018i 0.0594255i
\(165\) 0 0
\(166\) −5.19333 8.99511i −0.403080 0.698156i
\(167\) 13.5174 7.80426i 1.04601 0.603912i 0.124477 0.992222i \(-0.460275\pi\)
0.921528 + 0.388311i \(0.126941\pi\)
\(168\) 0 0
\(169\) 6.62316 11.1863i 0.509474 0.860486i
\(170\) −2.30752 −0.176979
\(171\) 0 0
\(172\) 5.50367 + 9.53264i 0.419651 + 0.726857i
\(173\) −2.90723 + 5.03546i −0.221032 + 0.382839i −0.955122 0.296214i \(-0.904276\pi\)
0.734089 + 0.679053i \(0.237609\pi\)
\(174\) 0 0
\(175\) 1.24653 + 0.719687i 0.0942291 + 0.0544032i
\(176\) 3.49837 + 2.01978i 0.263700 + 0.152247i
\(177\) 0 0
\(178\) −0.485517 + 0.840939i −0.0363910 + 0.0630311i
\(179\) 8.43611 + 14.6118i 0.630545 + 1.09214i 0.987441 + 0.157991i \(0.0505018\pi\)
−0.356896 + 0.934144i \(0.616165\pi\)
\(180\) 0 0
\(181\) 12.6207 0.938088 0.469044 0.883175i \(-0.344599\pi\)
0.469044 + 0.883175i \(0.344599\pi\)
\(182\) 4.50861 2.57017i 0.334201 0.190513i
\(183\) 0 0
\(184\) 1.35154 0.780313i 0.0996370 0.0575254i
\(185\) 3.11786 + 5.40029i 0.229230 + 0.397037i
\(186\) 0 0
\(187\) 9.32138i 0.681647i
\(188\) 5.05772 + 2.92008i 0.368872 + 0.212969i
\(189\) 0 0
\(190\) 0.399804i 0.0290049i
\(191\) 0.670362 1.16110i 0.0485057 0.0840143i −0.840753 0.541419i \(-0.817887\pi\)
0.889259 + 0.457404i \(0.151221\pi\)
\(192\) 0 0
\(193\) −14.5004 + 8.37182i −1.04376 + 0.602616i −0.920897 0.389807i \(-0.872542\pi\)
−0.122866 + 0.992423i \(0.539208\pi\)
\(194\) 12.3184 0.884408
\(195\) 0 0
\(196\) −4.92820 −0.352015
\(197\) −0.863202 + 0.498370i −0.0615006 + 0.0355074i −0.530435 0.847726i \(-0.677971\pi\)
0.468934 + 0.883233i \(0.344638\pi\)
\(198\) 0 0
\(199\) −1.30752 + 2.26469i −0.0926875 + 0.160540i −0.908641 0.417578i \(-0.862879\pi\)
0.815954 + 0.578117i \(0.196212\pi\)
\(200\) 1.00000i 0.0707107i
\(201\) 0 0
\(202\) 4.18718 + 2.41747i 0.294609 + 0.170093i
\(203\) 11.3205i 0.794544i
\(204\) 0 0
\(205\) −0.380509 0.659061i −0.0265759 0.0460308i
\(206\) 4.96410 2.86603i 0.345865 0.199685i
\(207\) 0 0
\(208\) −3.11256 1.81988i −0.215817 0.126186i
\(209\) 1.61504 0.111714
\(210\) 0 0
\(211\) 4.56691 + 7.91011i 0.314399 + 0.544555i 0.979310 0.202368i \(-0.0648638\pi\)
−0.664911 + 0.746923i \(0.731530\pi\)
\(212\) −5.31246 + 9.20145i −0.364861 + 0.631958i
\(213\) 0 0
\(214\) 11.1505 + 6.43774i 0.762232 + 0.440075i
\(215\) 9.53264 + 5.50367i 0.650121 + 0.375347i
\(216\) 0 0
\(217\) 2.23616 3.87314i 0.151800 0.262926i
\(218\) −0.107127 0.185550i −0.00725557 0.0125670i
\(219\) 0 0
\(220\) 4.03957 0.272348
\(221\) −0.0456536 + 8.31975i −0.00307099 + 0.559647i
\(222\) 0 0
\(223\) 5.03326 2.90595i 0.337052 0.194597i −0.321916 0.946768i \(-0.604327\pi\)
0.658968 + 0.752171i \(0.270993\pi\)
\(224\) −0.719687 1.24653i −0.0480861 0.0832876i
\(225\) 0 0
\(226\) 0.128595i 0.00855399i
\(227\) 9.99674 + 5.77162i 0.663507 + 0.383076i 0.793612 0.608424i \(-0.208198\pi\)
−0.130105 + 0.991500i \(0.541531\pi\)
\(228\) 0 0
\(229\) 12.8755i 0.850836i −0.904997 0.425418i \(-0.860127\pi\)
0.904997 0.425418i \(-0.139873\pi\)
\(230\) 0.780313 1.35154i 0.0514523 0.0891180i
\(231\) 0 0
\(232\) 6.81119 3.93244i 0.447177 0.258177i
\(233\) 10.4149 0.682303 0.341152 0.940008i \(-0.389183\pi\)
0.341152 + 0.940008i \(0.389183\pi\)
\(234\) 0 0
\(235\) 5.84016 0.380970
\(236\) 3.00000 1.73205i 0.195283 0.112747i
\(237\) 0 0
\(238\) −1.66069 + 2.87640i −0.107647 + 0.186449i
\(239\) 18.3801i 1.18891i −0.804128 0.594456i \(-0.797367\pi\)
0.804128 0.594456i \(-0.202633\pi\)
\(240\) 0 0
\(241\) 0.536681 + 0.309853i 0.0345707 + 0.0199594i 0.517186 0.855873i \(-0.326980\pi\)
−0.482615 + 0.875833i \(0.660313\pi\)
\(242\) 5.31812i 0.341862i
\(243\) 0 0
\(244\) −2.84624 4.92983i −0.182212 0.315600i
\(245\) −4.26795 + 2.46410i −0.272669 + 0.157426i
\(246\) 0 0
\(247\) −1.44149 0.00791002i −0.0917200 0.000503302i
\(248\) −3.10713 −0.197303
\(249\) 0 0
\(250\) −0.500000 0.866025i −0.0316228 0.0547723i
\(251\) 2.65376 4.59645i 0.167504 0.290125i −0.770038 0.637998i \(-0.779763\pi\)
0.937542 + 0.347873i \(0.113096\pi\)
\(252\) 0 0
\(253\) 5.45965 + 3.15213i 0.343245 + 0.198173i
\(254\) 13.9641 + 8.06218i 0.876186 + 0.505866i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −12.3686 21.4230i −0.771529 1.33633i −0.936725 0.350067i \(-0.886159\pi\)
0.165195 0.986261i \(-0.447175\pi\)
\(258\) 0 0
\(259\) 8.97553 0.557713
\(260\) −3.60550 0.0197847i −0.223603 0.00122700i
\(261\) 0 0
\(262\) 2.40764 1.39005i 0.148744 0.0858775i
\(263\) 2.56466 + 4.44211i 0.158143 + 0.273912i 0.934199 0.356752i \(-0.116116\pi\)
−0.776056 + 0.630664i \(0.782782\pi\)
\(264\) 0 0
\(265\) 10.6249i 0.652684i
\(266\) −0.498370 0.287734i −0.0305570 0.0176421i
\(267\) 0 0
\(268\) 10.4008i 0.635329i
\(269\) 3.40687 5.90087i 0.207720 0.359782i −0.743276 0.668985i \(-0.766729\pi\)
0.950996 + 0.309203i \(0.100062\pi\)
\(270\) 0 0
\(271\) −19.0709 + 11.0106i −1.15848 + 0.668846i −0.950938 0.309381i \(-0.899878\pi\)
−0.207538 + 0.978227i \(0.566545\pi\)
\(272\) 2.30752 0.139914
\(273\) 0 0
\(274\) −5.46736 −0.330295
\(275\) 3.49837 2.01978i 0.210960 0.121798i
\(276\) 0 0
\(277\) 12.7152 22.0233i 0.763980 1.32325i −0.176805 0.984246i \(-0.556576\pi\)
0.940784 0.339006i \(-0.110091\pi\)
\(278\) 0.214517i 0.0128659i
\(279\) 0 0
\(280\) −1.24653 0.719687i −0.0744947 0.0430095i
\(281\) 25.0954i 1.49707i 0.663098 + 0.748533i \(0.269241\pi\)
−0.663098 + 0.748533i \(0.730759\pi\)
\(282\) 0 0
\(283\) 0.882986 + 1.52938i 0.0524881 + 0.0909120i 0.891076 0.453855i \(-0.149952\pi\)
−0.838588 + 0.544767i \(0.816618\pi\)
\(284\) −5.19615 + 3.00000i −0.308335 + 0.178017i
\(285\) 0 0
\(286\) 0.0799217 14.5647i 0.00472587 0.861226i
\(287\) −1.09539 −0.0646588
\(288\) 0 0
\(289\) 5.83768 + 10.1112i 0.343393 + 0.594774i
\(290\) 3.93244 6.81119i 0.230921 0.399967i
\(291\) 0 0
\(292\) 11.6574 + 6.73042i 0.682200 + 0.393868i
\(293\) 15.9374 + 9.20145i 0.931072 + 0.537555i 0.887150 0.461480i \(-0.152682\pi\)
0.0439215 + 0.999035i \(0.486015\pi\)
\(294\) 0 0
\(295\) 1.73205 3.00000i 0.100844 0.174667i
\(296\) −3.11786 5.40029i −0.181222 0.313886i
\(297\) 0 0
\(298\) 16.5294 0.957521
\(299\) −4.85754 2.84016i −0.280919 0.164250i
\(300\) 0 0
\(301\) 13.7210 7.92184i 0.790867 0.456607i
\(302\) 3.35415 + 5.80956i 0.193010 + 0.334303i
\(303\) 0 0
\(304\) 0.399804i 0.0229303i
\(305\) −4.92983 2.84624i −0.282281 0.162975i
\(306\) 0 0
\(307\) 8.40730i 0.479830i 0.970794 + 0.239915i \(0.0771196\pi\)
−0.970794 + 0.239915i \(0.922880\pi\)
\(308\) 2.90723 5.03546i 0.165655 0.286922i
\(309\) 0 0
\(310\) −2.69085 + 1.55356i −0.152830 + 0.0882365i
\(311\) 33.6601 1.90869 0.954344 0.298708i \(-0.0965557\pi\)
0.954344 + 0.298708i \(0.0965557\pi\)
\(312\) 0 0
\(313\) 27.0008 1.52618 0.763088 0.646294i \(-0.223682\pi\)
0.763088 + 0.646294i \(0.223682\pi\)
\(314\) −5.03753 + 2.90842i −0.284284 + 0.164132i
\(315\) 0 0
\(316\) 0.465732 0.806671i 0.0261995 0.0453788i
\(317\) 10.2569i 0.576086i −0.957617 0.288043i \(-0.906995\pi\)
0.957617 0.288043i \(-0.0930047\pi\)
\(318\) 0 0
\(319\) 27.5143 + 15.8854i 1.54050 + 0.889410i
\(320\) 1.00000i 0.0559017i
\(321\) 0 0
\(322\) −1.12316 1.94537i −0.0625914 0.108411i
\(323\) 0.798957 0.461278i 0.0444551 0.0256662i
\(324\) 0 0
\(325\) −3.13234 + 1.78561i −0.173751 + 0.0990481i
\(326\) −4.17240 −0.231088
\(327\) 0 0
\(328\) 0.380509 + 0.659061i 0.0210101 + 0.0363905i
\(329\) 4.20308 7.27995i 0.231724 0.401357i
\(330\) 0 0
\(331\) −3.92256 2.26469i −0.215603 0.124479i 0.388310 0.921529i \(-0.373059\pi\)
−0.603913 + 0.797050i \(0.706392\pi\)
\(332\) 8.99511 + 5.19333i 0.493671 + 0.285021i
\(333\) 0 0
\(334\) −7.80426 + 13.5174i −0.427030 + 0.739638i
\(335\) 5.20039 + 9.00734i 0.284128 + 0.492124i
\(336\) 0 0
\(337\) 6.72755 0.366473 0.183236 0.983069i \(-0.441343\pi\)
0.183236 + 0.983069i \(0.441343\pi\)
\(338\) −0.142667 + 12.9992i −0.00776009 + 0.707064i
\(339\) 0 0
\(340\) 1.99837 1.15376i 0.108377 0.0625714i
\(341\) −6.27573 10.8699i −0.339850 0.588637i
\(342\) 0 0
\(343\) 17.1691i 0.927047i
\(344\) −9.53264 5.50367i −0.513965 0.296738i
\(345\) 0 0
\(346\) 5.81445i 0.312587i
\(347\) 1.57286 2.72427i 0.0844355 0.146247i −0.820715 0.571338i \(-0.806425\pi\)
0.905151 + 0.425091i \(0.139758\pi\)
\(348\) 0 0
\(349\) −9.09752 + 5.25246i −0.486979 + 0.281158i −0.723320 0.690513i \(-0.757385\pi\)
0.236341 + 0.971670i \(0.424052\pi\)
\(350\) −1.43937 −0.0769378
\(351\) 0 0
\(352\) −4.03957 −0.215310
\(353\) 28.5767 16.4988i 1.52099 0.878141i 0.521292 0.853378i \(-0.325450\pi\)
0.999693 0.0247633i \(-0.00788320\pi\)
\(354\) 0 0
\(355\) −3.00000 + 5.19615i −0.159223 + 0.275783i
\(356\) 0.971033i 0.0514647i
\(357\) 0 0
\(358\) −14.6118 8.43611i −0.772256 0.445862i
\(359\) 24.2487i 1.27980i 0.768459 + 0.639899i \(0.221024\pi\)
−0.768459 + 0.639899i \(0.778976\pi\)
\(360\) 0 0
\(361\) −9.42008 16.3161i −0.495794 0.858740i
\(362\) −10.9298 + 6.31034i −0.574459 + 0.331664i
\(363\) 0 0
\(364\) −2.61949 + 4.48014i −0.137299 + 0.234823i
\(365\) 13.4608 0.704573
\(366\) 0 0
\(367\) 9.89924 + 17.1460i 0.516736 + 0.895013i 0.999811 + 0.0194340i \(0.00618643\pi\)
−0.483075 + 0.875579i \(0.660480\pi\)
\(368\) −0.780313 + 1.35154i −0.0406766 + 0.0704540i
\(369\) 0 0
\(370\) −5.40029 3.11786i −0.280748 0.162090i
\(371\) 13.2443 + 7.64662i 0.687611 + 0.396993i
\(372\) 0 0
\(373\) −2.39557 + 4.14924i −0.124038 + 0.214840i −0.921356 0.388719i \(-0.872918\pi\)
0.797319 + 0.603559i \(0.206251\pi\)
\(374\) 4.66069 + 8.07255i 0.240999 + 0.417422i
\(375\) 0 0
\(376\) −5.84016 −0.301183
\(377\) −24.4799 14.3132i −1.26078 0.737166i
\(378\) 0 0
\(379\) −16.8833 + 9.74760i −0.867239 + 0.500700i −0.866430 0.499299i \(-0.833591\pi\)
−0.000808945 1.00000i \(0.500257\pi\)
\(380\) 0.199902 + 0.346241i 0.0102548 + 0.0177618i
\(381\) 0 0
\(382\) 1.34072i 0.0685974i
\(383\) −11.1383 6.43068i −0.569139 0.328592i 0.187667 0.982233i \(-0.439908\pi\)
−0.756805 + 0.653640i \(0.773241\pi\)
\(384\) 0 0
\(385\) 5.81445i 0.296332i
\(386\) 8.37182 14.5004i 0.426114 0.738051i
\(387\) 0 0
\(388\) −10.6680 + 6.15919i −0.541587 + 0.312686i
\(389\) −6.94233 −0.351990 −0.175995 0.984391i \(-0.556314\pi\)
−0.175995 + 0.984391i \(0.556314\pi\)
\(390\) 0 0
\(391\) 3.60117 0.182119
\(392\) 4.26795 2.46410i 0.215564 0.124456i
\(393\) 0 0
\(394\) 0.498370 0.863202i 0.0251075 0.0434875i
\(395\) 0.931464i 0.0468670i
\(396\) 0 0
\(397\) −3.75184 2.16612i −0.188299 0.108715i 0.402887 0.915250i \(-0.368007\pi\)
−0.591186 + 0.806535i \(0.701340\pi\)
\(398\) 2.61504i 0.131080i
\(399\) 0 0
\(400\) 0.500000 + 0.866025i 0.0250000 + 0.0433013i
\(401\) 20.5448 11.8616i 1.02596 0.592339i 0.110136 0.993917i \(-0.464871\pi\)
0.915825 + 0.401578i \(0.131538\pi\)
\(402\) 0 0
\(403\) 5.54813 + 9.73259i 0.276372 + 0.484815i
\(404\) −4.83494 −0.240547
\(405\) 0 0
\(406\) −5.66025 9.80385i −0.280914 0.486557i
\(407\) 12.5948 21.8149i 0.624302 1.08132i
\(408\) 0 0
\(409\) −33.2373 19.1896i −1.64348 0.948864i −0.979583 0.201039i \(-0.935568\pi\)
−0.663897 0.747824i \(-0.731099\pi\)
\(410\) 0.659061 + 0.380509i 0.0325487 + 0.0187920i
\(411\) 0 0
\(412\) −2.86603 + 4.96410i −0.141199 + 0.244564i
\(413\) −2.49307 4.31812i −0.122676 0.212481i
\(414\) 0 0
\(415\) 10.3867 0.509861
\(416\) 3.60550 + 0.0197847i 0.176774 + 0.000970026i
\(417\) 0 0
\(418\) −1.39866 + 0.807519i −0.0684109 + 0.0394970i
\(419\) −19.2946 33.4192i −0.942602 1.63263i −0.760482 0.649359i \(-0.775037\pi\)
−0.182120 0.983276i \(-0.558296\pi\)
\(420\) 0 0
\(421\) 40.6199i 1.97969i −0.142134 0.989847i \(-0.545397\pi\)
0.142134 0.989847i \(-0.454603\pi\)
\(422\) −7.91011 4.56691i −0.385058 0.222314i
\(423\) 0 0
\(424\) 10.6249i 0.515992i
\(425\) 1.15376 1.99837i 0.0559655 0.0969352i
\(426\) 0 0
\(427\) −7.09587 + 4.09680i −0.343393 + 0.198258i
\(428\) −12.8755 −0.622360
\(429\) 0 0
\(430\) −11.0073 −0.530821
\(431\) −10.1945 + 5.88581i −0.491053 + 0.283509i −0.725011 0.688737i \(-0.758165\pi\)
0.233958 + 0.972247i \(0.424832\pi\)
\(432\) 0 0
\(433\) −16.5004 + 28.5795i −0.792959 + 1.37345i 0.131168 + 0.991360i \(0.458127\pi\)
−0.924127 + 0.382085i \(0.875206\pi\)
\(434\) 4.47232i 0.214678i
\(435\) 0 0
\(436\) 0.185550 + 0.107127i 0.00888622 + 0.00513046i
\(437\) 0.623945i 0.0298473i
\(438\) 0 0
\(439\) 0.348718 + 0.603998i 0.0166434 + 0.0288272i 0.874227 0.485517i \(-0.161369\pi\)
−0.857584 + 0.514344i \(0.828035\pi\)
\(440\) −3.49837 + 2.01978i −0.166778 + 0.0962895i
\(441\) 0 0
\(442\) −4.12034 7.22794i −0.195985 0.343798i
\(443\) −28.6297 −1.36024 −0.680120 0.733101i \(-0.738072\pi\)
−0.680120 + 0.733101i \(0.738072\pi\)
\(444\) 0 0
\(445\) −0.485517 0.840939i −0.0230157 0.0398644i
\(446\) −2.90595 + 5.03326i −0.137601 + 0.238332i
\(447\) 0 0
\(448\) 1.24653 + 0.719687i 0.0588932 + 0.0340020i
\(449\) 5.87601 + 3.39251i 0.277306 + 0.160103i 0.632203 0.774803i \(-0.282151\pi\)
−0.354897 + 0.934905i \(0.615484\pi\)
\(450\) 0 0
\(451\) −1.53709 + 2.66232i −0.0723788 + 0.125364i
\(452\) 0.0642973 + 0.111366i 0.00302429 + 0.00523823i
\(453\) 0 0
\(454\) −11.5432 −0.541751
\(455\) −0.0284776 + 5.18966i −0.00133505 + 0.243295i
\(456\) 0 0
\(457\) 15.5355 8.96940i 0.726718 0.419571i −0.0905021 0.995896i \(-0.528847\pi\)
0.817220 + 0.576325i \(0.195514\pi\)
\(458\) 6.43774 + 11.1505i 0.300816 + 0.521029i
\(459\) 0 0
\(460\) 1.56063i 0.0727646i
\(461\) 23.2937 + 13.4486i 1.08489 + 0.626364i 0.932213 0.361911i \(-0.117876\pi\)
0.152682 + 0.988275i \(0.451209\pi\)
\(462\) 0 0
\(463\) 26.8402i 1.24737i 0.781677 + 0.623684i \(0.214365\pi\)
−0.781677 + 0.623684i \(0.785635\pi\)
\(464\) −3.93244 + 6.81119i −0.182559 + 0.316202i
\(465\) 0 0
\(466\) −9.01957 + 5.20745i −0.417824 + 0.241231i
\(467\) −9.48726 −0.439018 −0.219509 0.975610i \(-0.570446\pi\)
−0.219509 + 0.975610i \(0.570446\pi\)
\(468\) 0 0
\(469\) 14.9706 0.691279
\(470\) −5.05772 + 2.92008i −0.233295 + 0.134693i
\(471\) 0 0
\(472\) −1.73205 + 3.00000i −0.0797241 + 0.138086i
\(473\) 44.4649i 2.04450i
\(474\) 0 0
\(475\) 0.346241 + 0.199902i 0.0158866 + 0.00917214i
\(476\) 3.32138i 0.152235i
\(477\) 0 0
\(478\) 9.19007 + 15.9177i 0.420344 + 0.728057i
\(479\) −9.71206 + 5.60726i −0.443755 + 0.256202i −0.705189 0.709019i \(-0.749138\pi\)
0.261434 + 0.965221i \(0.415805\pi\)
\(480\) 0 0
\(481\) −11.3483 + 19.4091i −0.517437 + 0.884977i
\(482\) −0.619706 −0.0282268
\(483\) 0 0
\(484\) −2.65906 4.60563i −0.120866 0.209347i
\(485\) −6.15919 + 10.6680i −0.279674 + 0.484410i
\(486\) 0 0
\(487\) 24.0137 + 13.8643i 1.08816 + 0.628252i 0.933087 0.359650i \(-0.117104\pi\)
0.155077 + 0.987902i \(0.450437\pi\)
\(488\) 4.92983 + 2.84624i 0.223163 + 0.128843i
\(489\) 0 0
\(490\) 2.46410 4.26795i 0.111317 0.192806i
\(491\) −13.9377 24.1409i −0.629002 1.08946i −0.987752 0.156029i \(-0.950131\pi\)
0.358751 0.933433i \(-0.383203\pi\)
\(492\) 0 0
\(493\) 18.1484 0.817361
\(494\) 1.25232 0.713896i 0.0563448 0.0321197i
\(495\) 0 0
\(496\) 2.69085 1.55356i 0.120823 0.0697571i
\(497\) 4.31812 + 7.47921i 0.193694 + 0.335488i
\(498\) 0 0
\(499\) 36.8040i 1.64757i −0.566901 0.823786i \(-0.691858\pi\)
0.566901 0.823786i \(-0.308142\pi\)
\(500\) 0.866025 + 0.500000i 0.0387298 + 0.0223607i
\(501\) 0 0
\(502\) 5.30752i 0.236886i
\(503\) −19.2848 + 33.4022i −0.859865 + 1.48933i 0.0121928 + 0.999926i \(0.496119\pi\)
−0.872057 + 0.489404i \(0.837215\pi\)
\(504\) 0 0
\(505\) −4.18718 + 2.41747i −0.186327 + 0.107576i
\(506\) −6.30426 −0.280258
\(507\) 0 0
\(508\) −16.1244 −0.715403
\(509\) −24.9870 + 14.4262i −1.10753 + 0.639431i −0.938188 0.346126i \(-0.887497\pi\)
−0.169340 + 0.985558i \(0.554163\pi\)
\(510\) 0 0
\(511\) 9.68759 16.7794i 0.428554 0.742277i
\(512\) 1.00000i 0.0441942i
\(513\) 0 0
\(514\) 21.4230 + 12.3686i 0.944927 + 0.545554i
\(515\) 5.73205i 0.252584i
\(516\) 0 0
\(517\) −11.7959 20.4310i −0.518781 0.898556i
\(518\) −7.77304 + 4.48777i −0.341528 + 0.197181i
\(519\) 0 0
\(520\) 3.13234 1.78561i 0.137362 0.0783044i
\(521\) 10.6422 0.466241 0.233121 0.972448i \(-0.425106\pi\)
0.233121 + 0.972448i \(0.425106\pi\)
\(522\) 0 0
\(523\) −19.0759 33.0404i −0.834130 1.44476i −0.894737 0.446594i \(-0.852637\pi\)
0.0606070 0.998162i \(-0.480696\pi\)
\(524\) −1.39005 + 2.40764i −0.0607246 + 0.105178i
\(525\) 0 0
\(526\) −4.44211 2.56466i −0.193685 0.111824i
\(527\) −6.20919 3.58488i −0.270477 0.156160i
\(528\) 0 0
\(529\) 10.2822 17.8093i 0.447053 0.774319i
\(530\) −5.31246 9.20145i −0.230759 0.399686i
\(531\) 0 0
\(532\) 0.575468 0.0249497
\(533\) 1.38496 2.36871i 0.0599894 0.102600i
\(534\) 0 0
\(535\) −11.1505 + 6.43774i −0.482078 + 0.278328i
\(536\) −5.20039 9.00734i −0.224623 0.389058i
\(537\) 0 0
\(538\) 6.81373i 0.293761i
\(539\) 17.2407 + 9.95391i 0.742609 + 0.428745i
\(540\) 0 0
\(541\) 1.46593i 0.0630252i −0.999503 0.0315126i \(-0.989968\pi\)
0.999503 0.0315126i \(-0.0100324\pi\)
\(542\) 11.0106 19.0709i 0.472946 0.819166i
\(543\) 0 0
\(544\) −1.99837 + 1.15376i −0.0856794 + 0.0494670i
\(545\) 0.214254 0.00917765
\(546\) 0 0
\(547\) −16.2374 −0.694262 −0.347131 0.937817i \(-0.612844\pi\)
−0.347131 + 0.937817i \(0.612844\pi\)
\(548\) 4.73487 2.73368i 0.202264 0.116777i
\(549\) 0 0
\(550\) −2.01978 + 3.49837i −0.0861239 + 0.149171i
\(551\) 3.14441i 0.133957i
\(552\) 0 0
\(553\) −1.16110 0.670362i −0.0493751 0.0285067i
\(554\) 25.4303i 1.08043i
\(555\) 0 0
\(556\) −0.107258 0.185777i −0.00454877 0.00787869i
\(557\) −28.8599 + 16.6623i −1.22283 + 0.706004i −0.965521 0.260324i \(-0.916171\pi\)
−0.257314 + 0.966328i \(0.582837\pi\)
\(558\) 0 0
\(559\) −0.217777 + 39.6869i −0.00921099 + 1.67858i
\(560\) 1.43937 0.0608246
\(561\) 0 0
\(562\) −12.5477 21.7332i −0.529293 0.916762i
\(563\) −3.75678 + 6.50693i −0.158329 + 0.274234i −0.934266 0.356576i \(-0.883944\pi\)
0.775937 + 0.630810i \(0.217277\pi\)
\(564\) 0 0
\(565\) 0.111366 + 0.0642973i 0.00468521 + 0.00270501i
\(566\) −1.52938 0.882986i −0.0642845 0.0371147i
\(567\) 0 0
\(568\) 3.00000 5.19615i 0.125877 0.218026i
\(569\) −6.45619 11.1825i −0.270658 0.468793i 0.698373 0.715734i \(-0.253908\pi\)
−0.969030 + 0.246941i \(0.920574\pi\)
\(570\) 0 0
\(571\) 3.47470 0.145412 0.0727059 0.997353i \(-0.476837\pi\)
0.0727059 + 0.997353i \(0.476837\pi\)
\(572\) 7.21311 + 12.6533i 0.301595 + 0.529062i
\(573\) 0 0
\(574\) 0.948635 0.547694i 0.0395952 0.0228603i
\(575\) 0.780313 + 1.35154i 0.0325413 + 0.0563632i
\(576\) 0 0
\(577\) 8.80287i 0.366468i −0.983069 0.183234i \(-0.941343\pi\)
0.983069 0.183234i \(-0.0586566\pi\)
\(578\) −10.1112 5.83768i −0.420569 0.242815i
\(579\) 0 0
\(580\) 7.86488i 0.326572i
\(581\) 7.47514 12.9473i 0.310121 0.537146i
\(582\) 0 0
\(583\) 37.1699 21.4601i 1.53942 0.888785i
\(584\) −13.4608 −0.557014
\(585\) 0 0
\(586\) −18.4029 −0.760217
\(587\) −30.9967 + 17.8960i −1.27937 + 0.738646i −0.976733 0.214459i \(-0.931201\pi\)
−0.302639 + 0.953105i \(0.597868\pi\)
\(588\) 0 0
\(589\) 0.621121 1.07581i 0.0255929 0.0443281i
\(590\) 3.46410i 0.142615i
\(591\) 0 0
\(592\) 5.40029 + 3.11786i 0.221951 + 0.128143i
\(593\) 3.93555i 0.161613i −0.996730 0.0808067i \(-0.974250\pi\)
0.996730 0.0808067i \(-0.0257497\pi\)
\(594\) 0 0
\(595\) −1.66069 2.87640i −0.0680817 0.117921i
\(596\) −14.3149 + 8.26469i −0.586360 + 0.338535i
\(597\) 0 0
\(598\) 5.62683 + 0.0308766i 0.230098 + 0.00126264i
\(599\) 9.50704 0.388447 0.194223 0.980957i \(-0.437781\pi\)
0.194223 + 0.980957i \(0.437781\pi\)
\(600\) 0 0
\(601\) −17.4935 30.2996i −0.713574 1.23595i −0.963507 0.267683i \(-0.913742\pi\)
0.249933 0.968263i \(-0.419591\pi\)
\(602\) −7.92184 + 13.7210i −0.322870 + 0.559227i
\(603\) 0 0
\(604\) −5.80956 3.35415i −0.236388 0.136478i
\(605\) −4.60563 2.65906i −0.187245 0.108106i
\(606\) 0 0
\(607\) 8.08054 13.9959i 0.327979 0.568076i −0.654132 0.756381i \(-0.726966\pi\)
0.982111 + 0.188304i \(0.0602991\pi\)
\(608\) −0.199902 0.346241i −0.00810710 0.0140419i
\(609\) 0 0
\(610\) 5.69248 0.230482
\(611\) 10.4283 + 18.2934i 0.421883 + 0.740071i
\(612\) 0 0
\(613\) −7.68335 + 4.43598i −0.310327 + 0.179168i −0.647073 0.762428i \(-0.724007\pi\)
0.336746 + 0.941596i \(0.390674\pi\)
\(614\) −4.20365 7.28094i −0.169646 0.293835i
\(615\) 0 0
\(616\) 5.81445i 0.234271i
\(617\) 9.39557 + 5.42453i 0.378251 + 0.218383i 0.677057 0.735930i \(-0.263255\pi\)
−0.298806 + 0.954314i \(0.596588\pi\)
\(618\) 0 0
\(619\) 5.82727i 0.234218i −0.993119 0.117109i \(-0.962637\pi\)
0.993119 0.117109i \(-0.0373627\pi\)
\(620\) 1.55356 2.69085i 0.0623926 0.108067i
\(621\) 0 0
\(622\) −29.1505 + 16.8300i −1.16883 + 0.674823i
\(623\) −1.39768 −0.0559969
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) −23.3834 + 13.5004i −0.934589 + 0.539585i
\(627\) 0 0
\(628\) 2.90842 5.03753i 0.116059 0.201019i
\(629\) 14.3890i 0.573729i
\(630\) 0 0
\(631\) −8.17169 4.71793i −0.325310 0.187818i 0.328447 0.944522i \(-0.393475\pi\)
−0.653757 + 0.756705i \(0.726808\pi\)
\(632\) 0.931464i 0.0370516i
\(633\) 0 0
\(634\) 5.12846 + 8.88276i 0.203677 + 0.352779i
\(635\) −13.9641 + 8.06218i −0.554148 + 0.319938i
\(636\) 0 0
\(637\) −15.3393 8.96875i −0.607766 0.355355i
\(638\) −31.7707 −1.25782
\(639\) 0 0
\(640\) −0.500000 0.866025i −0.0197642 0.0342327i
\(641\) −20.2877 + 35.1392i −0.801314 + 1.38792i 0.117437 + 0.993080i \(0.462532\pi\)
−0.918751 + 0.394837i \(0.870801\pi\)
\(642\) 0 0
\(643\) −5.08527 2.93598i −0.200543 0.115784i 0.396365 0.918093i \(-0.370271\pi\)
−0.596909 + 0.802309i \(0.703605\pi\)
\(644\) 1.94537 + 1.12316i 0.0766585 + 0.0442588i
\(645\) 0 0
\(646\) −0.461278 + 0.798957i −0.0181487 + 0.0314345i
\(647\) −19.3652 33.5416i −0.761326 1.31866i −0.942167 0.335143i \(-0.891215\pi\)
0.180841 0.983512i \(-0.442118\pi\)
\(648\) 0 0
\(649\) −13.9935 −0.549292
\(650\) 1.81988 3.11256i 0.0713817 0.122085i
\(651\) 0 0
\(652\) 3.61341 2.08620i 0.141512 0.0817020i
\(653\) −6.45492 11.1802i −0.252601 0.437517i 0.711641 0.702544i \(-0.247953\pi\)
−0.964241 + 0.265027i \(0.914619\pi\)
\(654\) 0 0
\(655\) 2.78010i 0.108627i
\(656\) −0.659061 0.380509i −0.0257320 0.0148564i
\(657\) 0 0
\(658\) 8.40617i 0.327707i
\(659\) −3.20654 + 5.55389i −0.124909 + 0.216349i −0.921697 0.387910i \(-0.873197\pi\)
0.796788 + 0.604259i \(0.206531\pi\)
\(660\) 0 0
\(661\) −6.05300 + 3.49470i −0.235434 + 0.135928i −0.613076 0.790024i \(-0.710068\pi\)
0.377642 + 0.925952i \(0.376735\pi\)
\(662\) 4.52938 0.176039
\(663\) 0 0
\(664\) −10.3867 −0.403080
\(665\) 0.498370 0.287734i 0.0193260 0.0111578i
\(666\) 0 0
\(667\) −6.13707 + 10.6297i −0.237628 + 0.411584i
\(668\) 15.6085i 0.603912i
\(669\) 0 0
\(670\) −9.00734 5.20039i −0.347984 0.200909i
\(671\) 22.9952i 0.887719i
\(672\) 0 0
\(673\) −23.3083 40.3712i −0.898470 1.55620i −0.829450 0.558581i \(-0.811346\pi\)
−0.0690207 0.997615i \(-0.521987\pi\)
\(674\) −5.82623 + 3.36377i −0.224418 + 0.129568i
\(675\) 0 0
\(676\) −6.37605 11.3290i −0.245233 0.435730i
\(677\) −6.85102 −0.263306 −0.131653 0.991296i \(-0.542028\pi\)
−0.131653 + 0.991296i \(0.542028\pi\)
\(678\) 0 0
\(679\) 8.86538 + 15.3553i 0.340222 + 0.589282i
\(680\) −1.15376 + 1.99837i −0.0442446 + 0.0766340i
\(681\) 0 0
\(682\) 10.8699 + 6.27573i 0.416229 + 0.240310i
\(683\) 21.2374 + 12.2614i 0.812627 + 0.469171i 0.847867 0.530208i \(-0.177886\pi\)
−0.0352402 + 0.999379i \(0.511220\pi\)
\(684\) 0 0
\(685\) 2.73368 4.73487i 0.104449 0.180910i
\(686\) −8.58457 14.8689i −0.327760 0.567698i
\(687\) 0 0
\(688\) 11.0073 0.419651
\(689\) −33.2809 + 18.9720i −1.26790 + 0.722776i
\(690\) 0 0
\(691\) 8.72060 5.03484i 0.331747 0.191534i −0.324869 0.945759i \(-0.605320\pi\)
0.656617 + 0.754225i \(0.271987\pi\)
\(692\) 2.90723 + 5.03546i 0.110516 + 0.191420i
\(693\) 0 0
\(694\) 3.14572i 0.119410i
\(695\) −0.185777 0.107258i −0.00704692 0.00406854i
\(696\) 0 0
\(697\) 1.75606i 0.0665156i
\(698\) 5.25246 9.09752i 0.198808 0.344346i
\(699\) 0 0
\(700\) 1.24653 0.719687i 0.0471146 0.0272016i
\(701\) 10.4149 0.393366 0.196683 0.980467i \(-0.436983\pi\)
0.196683 + 0.980467i \(0.436983\pi\)
\(702\) 0 0
\(703\) 2.49307 0.0940279
\(704\) 3.49837 2.01978i 0.131850 0.0761235i
\(705\) 0 0
\(706\) −16.4988 + 28.5767i −0.620940 + 1.07550i
\(707\) 6.95928i 0.261731i
\(708\) 0 0
\(709\) −0.325446 0.187896i −0.0122224 0.00705660i 0.493876 0.869532i \(-0.335580\pi\)
−0.506099 + 0.862476i \(0.668913\pi\)
\(710\) 6.00000i 0.225176i
\(711\) 0 0
\(712\) 0.485517 + 0.840939i 0.0181955 + 0.0315155i
\(713\) 4.19941 2.42453i 0.157269 0.0907994i
\(714\) 0 0
\(715\) 12.5734 + 7.35154i 0.470219 + 0.274932i
\(716\) 16.8722 0.630545
\(717\) 0 0
\(718\) −12.1244 21.0000i −0.452477 0.783713i
\(719\) 9.66547 16.7411i 0.360461 0.624337i −0.627576 0.778556i \(-0.715953\pi\)
0.988037 + 0.154218i \(0.0492860\pi\)
\(720\) 0 0
\(721\) 7.14520 + 4.12528i 0.266101 + 0.153634i
\(722\) 16.3161 + 9.42008i 0.607221 + 0.350579i
\(723\) 0 0
\(724\) 6.31034 10.9298i 0.234522 0.406204i
\(725\) 3.93244 + 6.81119i 0.146047 + 0.252961i
\(726\) 0 0
\(727\) 31.3390 1.16230 0.581150 0.813797i \(-0.302603\pi\)
0.581150 + 0.813797i \(0.302603\pi\)
\(728\) 0.0284776 5.18966i 0.00105545 0.192342i
\(729\) 0 0
\(730\) −11.6574 + 6.73042i −0.431461 + 0.249104i
\(731\) −12.6998 21.9967i −0.469720 0.813579i
\(732\) 0 0
\(733\) 19.6207i 0.724707i −0.932041 0.362353i \(-0.881973\pi\)
0.932041 0.362353i \(-0.118027\pi\)
\(734\) −17.1460 9.89924i −0.632870 0.365387i
\(735\) 0 0
\(736\) 1.56063i 0.0575254i
\(737\) 21.0073 36.3858i 0.773815 1.34029i
\(738\) 0 0
\(739\) −10.3601 + 5.98141i −0.381103 + 0.220030i −0.678298 0.734787i \(-0.737282\pi\)
0.297195 + 0.954817i \(0.403949\pi\)
\(740\) 6.23572 0.229230
\(741\) 0 0
\(742\) −15.2932 −0.561432
\(743\) 17.2540 9.96162i 0.632989 0.365457i −0.148920 0.988849i \(-0.547580\pi\)
0.781909 + 0.623393i \(0.214246\pi\)
\(744\) 0 0
\(745\) −8.26469 + 14.3149i −0.302795 + 0.524456i
\(746\) 4.79113i 0.175416i
\(747\) 0 0
\(748\) −8.07255 4.66069i −0.295162 0.170412i
\(749\) 18.5326i 0.677168i
\(750\) 0 0
\(751\) 21.4608 + 37.1713i 0.783117 + 1.35640i 0.930117 + 0.367262i \(0.119705\pi\)
−0.147000 + 0.989136i \(0.546962\pi\)
\(752\) 5.05772 2.92008i 0.184436 0.106484i
\(753\) 0 0
\(754\) 28.3568 + 0.155605i 1.03269 + 0.00566678i
\(755\) −6.70830 −0.244140
\(756\) 0 0
\(757\) 17.8750 + 30.9604i 0.649678 + 1.12528i 0.983200 + 0.182533i \(0.0584295\pi\)
−0.333522 + 0.942742i \(0.608237\pi\)
\(758\) 9.74760 16.8833i 0.354049 0.613230i
\(759\) 0 0
\(760\) −0.346241 0.199902i −0.0125595 0.00725121i
\(761\) −26.1232 15.0822i −0.946965 0.546731i −0.0548284 0.998496i \(-0.517461\pi\)
−0.892137 + 0.451765i \(0.850795\pi\)
\(762\) 0 0
\(763\) 0.154196 0.267076i 0.00558227 0.00966878i
\(764\) −0.670362 1.16110i −0.0242529 0.0420072i
\(765\) 0 0
\(766\) 12.8614 0.464700
\(767\) 12.4898 + 0.0685363i 0.450981 + 0.00247470i
\(768\) 0 0
\(769\) −21.0236 + 12.1380i −0.758132 + 0.437708i −0.828625 0.559805i \(-0.810876\pi\)
0.0704928 + 0.997512i \(0.477543\pi\)
\(770\) 2.90723 + 5.03546i 0.104769 + 0.181465i
\(771\) 0 0
\(772\) 16.7436i 0.602616i
\(773\) 38.5671 + 22.2667i 1.38716 + 0.800879i 0.992995 0.118160i \(-0.0376995\pi\)
0.394168 + 0.919038i \(0.371033\pi\)
\(774\) 0 0
\(775\) 3.10713i 0.111611i
\(776\) 6.15919 10.6680i 0.221102 0.382960i
\(777\) 0 0
\(778\) 6.01223 3.47116i 0.215549 0.124447i
\(779\) −0.304258 −0.0109012
\(780\) 0 0
\(781\) 24.2374 0.867283
\(782\) −3.11871 + 1.80059i −0.111525 + 0.0643889i
\(783\) 0 0
\(784\) −2.46410 + 4.26795i −0.0880036 + 0.152427i
\(785\) 5.81684i 0.207612i
\(786\) 0 0
\(787\) −15.0864 8.71015i −0.537773 0.310483i 0.206403 0.978467i \(-0.433824\pi\)
−0.744176 + 0.667984i \(0.767158\pi\)
\(788\) 0.996740i 0.0355074i
\(789\) 0 0
\(790\) 0.465732 + 0.806671i 0.0165700 + 0.0287001i
\(791\) 0.160298 0.0925479i 0.00569953 0.00329062i
\(792\) 0 0
\(793\) 0.112624 20.5242i 0.00399940 0.728837i
\(794\) 4.33225 0.153746
\(795\) 0 0
\(796\) 1.30752 + 2.26469i 0.0463438 + 0.0802698i
\(797\) −16.4801 + 28.5444i −0.583756 + 1.01110i 0.411273 + 0.911512i \(0.365084\pi\)
−0.995029 + 0.0995834i \(0.968249\pi\)
\(798\) 0 0
\(799\) −11.6708 6.73813i −0.412883 0.238378i
\(800\) −0.866025 0.500000i −0.0306186 0.0176777i
\(801\) 0 0
\(802\) −11.8616 + 20.5448i −0.418847 + 0.725464i
\(803\) −27.1880 47.0910i −0.959444 1.66181i
\(804\) 0 0
\(805\) 2.24632 0.0791725
\(806\) −9.67112 5.65461i −0.340651 0.199175i
\(807\) 0 0
\(808\) 4.18718 2.41747i 0.147304 0.0850463i
\(809\) 12.6664 + 21.9389i 0.445327 + 0.771329i 0.998075 0.0620195i \(-0.0197541\pi\)
−0.552748 + 0.833348i \(0.686421\pi\)
\(810\) 0 0
\(811\) 42.4806i 1.49170i 0.666117 + 0.745848i \(0.267955\pi\)
−0.666117 + 0.745848i \(0.732045\pi\)
\(812\) 9.80385 + 5.66025i 0.344048 + 0.198636i
\(813\) 0 0
\(814\) 25.1896i 0.882896i
\(815\) 2.08620 3.61341i 0.0730765 0.126572i
\(816\) 0 0
\(817\) 3.81119 2.20039i 0.133337 0.0769820i
\(818\) 38.3792 1.34190
\(819\) 0 0
\(820\) −0.761018 −0.0265759
\(821\) −15.3744 + 8.87640i −0.536569 + 0.309789i −0.743687 0.668527i \(-0.766925\pi\)
0.207118 + 0.978316i \(0.433592\pi\)
\(822\) 0 0
\(823\) 16.2840 28.2048i 0.567626 0.983157i −0.429174 0.903222i \(-0.641195\pi\)
0.996800 0.0799351i \(-0.0254713\pi\)
\(824\) 5.73205i 0.199685i
\(825\) 0 0
\(826\) 4.31812 + 2.49307i 0.150247 + 0.0867449i
\(827\) 26.6419i 0.926429i −0.886246 0.463215i \(-0.846696\pi\)
0.886246 0.463215i \(-0.153304\pi\)
\(828\) 0 0
\(829\) −8.58281 14.8659i −0.298093 0.516313i 0.677606 0.735425i \(-0.263017\pi\)
−0.975700 + 0.219112i \(0.929684\pi\)
\(830\) −8.99511 + 5.19333i −0.312225 + 0.180263i
\(831\) 0 0
\(832\) −3.13234 + 1.78561i −0.108595 + 0.0619050i
\(833\) 11.3719 0.394014
\(834\) 0 0
\(835\) −7.80426 13.5174i −0.270077 0.467788i
\(836\) 0.807519 1.39866i 0.0279286 0.0483738i
\(837\) 0 0
\(838\) 33.4192 + 19.2946i 1.15445 + 0.666520i
\(839\) 38.9951 + 22.5138i 1.34626 + 0.777264i 0.987718 0.156249i \(-0.0499403\pi\)
0.358543 + 0.933513i \(0.383274\pi\)
\(840\) 0 0
\(841\) −16.4282 + 28.4545i −0.566490 + 0.981189i
\(842\) 20.3100 + 35.1779i 0.699928 + 1.21231i
\(843\) 0 0
\(844\) 9.13381 0.314399
\(845\) −11.1863 6.62316i −0.384821 0.227844i
\(846\) 0 0
\(847\) −6.62922 + 3.82738i −0.227783 + 0.131510i
\(848\) 5.31246 + 9.20145i 0.182431 + 0.315979i
\(849\) 0 0
\(850\) 2.30752i 0.0791472i
\(851\) 8.42784 + 4.86582i 0.288903 + 0.166798i
\(852\) 0 0
\(853\) 31.0013i 1.06146i 0.847540 + 0.530731i \(0.178083\pi\)
−0.847540 + 0.530731i \(0.821917\pi\)
\(854\) 4.09680 7.09587i 0.140190 0.242816i
\(855\) 0 0
\(856\) 11.1505 6.43774i 0.381116 0.220038i
\(857\) 27.3813 0.935326 0.467663 0.883907i \(-0.345096\pi\)
0.467663 + 0.883907i \(0.345096\pi\)
\(858\) 0 0
\(859\) 8.36050 0.285256 0.142628 0.989776i \(-0.454445\pi\)
0.142628 + 0.989776i \(0.454445\pi\)
\(860\) 9.53264 5.50367i 0.325060 0.187674i
\(861\) 0 0
\(862\) 5.88581 10.1945i 0.200471 0.347227i
\(863\) 40.2398i 1.36978i −0.728647 0.684889i \(-0.759850\pi\)
0.728647 0.684889i \(-0.240150\pi\)
\(864\) 0 0
\(865\) 5.03546 + 2.90723i 0.171211 + 0.0988486i
\(866\) 33.0008i 1.12141i
\(867\) 0 0
\(868\) −2.23616 3.87314i −0.0759002 0.131463i
\(869\) −3.25860 + 1.88136i −0.110541 + 0.0638206i
\(870\) 0 0
\(871\) −18.9282 + 32.3731i −0.641358 + 1.09692i
\(872\) −0.214254 −0.00725557
\(873\) 0 0
\(874\) −0.311973 0.540352i −0.0105526 0.0182777i
\(875\) 0.719687 1.24653i 0.0243299 0.0421405i
\(876\) 0 0
\(877\) −45.0918 26.0338i −1.52264 0.879098i −0.999642 0.0267652i \(-0.991479\pi\)
−0.523000 0.852333i \(-0.675187\pi\)
\(878\) −0.603998 0.348718i −0.0203839 0.0117687i
\(879\) 0 0
\(880\) 2.01978 3.49837i 0.0680869 0.117930i
\(881\) 17.2542 + 29.8852i 0.581310 + 1.00686i 0.995324 + 0.0965881i \(0.0307929\pi\)
−0.414015 + 0.910270i \(0.635874\pi\)
\(882\) 0 0
\(883\) −28.2064 −0.949222 −0.474611 0.880196i \(-0.657411\pi\)
−0.474611 + 0.880196i \(0.657411\pi\)
\(884\) 7.18229 + 4.19941i 0.241567 + 0.141242i
\(885\) 0 0
\(886\) 24.7941 14.3149i 0.832973 0.480917i
\(887\) 1.06098 + 1.83768i 0.0356244 + 0.0617032i 0.883288 0.468831i \(-0.155325\pi\)
−0.847664 + 0.530534i \(0.821991\pi\)
\(888\) 0 0
\(889\) 23.2090i 0.778404i
\(890\) 0.840939 + 0.485517i 0.0281884 + 0.0162746i
\(891\) 0 0
\(892\) 5.81191i 0.194597i
\(893\) 1.16746 2.02210i 0.0390676 0.0676670i
\(894\) 0 0
\(895\) 14.6118 8.43611i 0.488418 0.281988i
\(896\) −1.43937 −0.0480861
\(897\) 0 0
\(898\) −6.78503 −0.226419
\(899\) 21.1632 12.2186i 0.705833 0.407513i
\(900\) 0 0
\(901\) 12.2586 21.2325i 0.408393 0.707358i
\(902\) 3.07418i 0.102359i
\(903\) 0 0
\(904\) −0.111366 0.0642973i −0.00370398 0.00213850i
\(905\) 12.6207i 0.419526i
\(906\) 0 0
\(907\) 14.7272 + 25.5082i 0.489007 + 0.846986i 0.999920 0.0126471i \(-0.00402580\pi\)
−0.510913 + 0.859633i \(0.670692\pi\)
\(908\) 9.99674 5.77162i 0.331753 0.191538i
\(909\) 0 0
\(910\) −2.57017 4.50861i −0.0852002 0.149459i
\(911\) −19.9986 −0.662582 −0.331291 0.943529i \(-0.607484\pi\)
−0.331291 + 0.943529i \(0.607484\pi\)
\(912\) 0 0
\(913\) −20.9788 36.3364i −0.694297 1.20256i
\(914\) −8.96940 + 15.5355i −0.296681 + 0.513867i
\(915\) 0 0
\(916\) −11.1505 6.43774i −0.368423 0.212709i
\(917\) 3.46549 + 2.00080i 0.114440 + 0.0660722i
\(918\) 0 0
\(919\) 14.8564 25.7321i 0.490068 0.848822i −0.509867 0.860253i \(-0.670305\pi\)
0.999935 + 0.0114312i \(0.00363874\pi\)
\(920\) −0.780313 1.35154i −0.0257262 0.0445590i
\(921\) 0 0
\(922\) −26.8972 −0.885813
\(923\) −21.6330 0.118708i −0.712058 0.00390733i
\(924\) 0 0
\(925\) 5.40029 3.11786i 0.177561 0.102515i
\(926\) −13.4201 23.2443i −0.441011 0.763854i
\(927\) 0 0
\(928\) 7.86488i 0.258177i
\(929\) 7.99348 + 4.61504i 0.262258 + 0.151414i 0.625364 0.780333i \(-0.284951\pi\)
−0.363106 + 0.931748i \(0.618284\pi\)
\(930\) 0 0
\(931\) 1.97032i 0.0645745i
\(932\) 5.20745 9.01957i 0.170576 0.295446i
\(933\) 0 0
\(934\) 8.21621 4.74363i 0.268843 0.155216i
\(935\) −9.32138 −0.304842
\(936\) 0 0
\(937\) −4.58731 −0.149861 −0.0749305 0.997189i \(-0.523873\pi\)
−0.0749305 + 0.997189i \(0.523873\pi\)
\(938\) −12.9649 + 7.48531i −0.423320 + 0.244404i
\(939\) 0 0
\(940\) 2.92008 5.05772i 0.0952425 0.164965i
\(941\) 9.00734i 0.293631i −0.989164 0.146815i \(-0.953098\pi\)
0.989164 0.146815i \(-0.0469024\pi\)
\(942\) 0 0
\(943\) −1.02855 0.593832i −0.0334941 0.0193378i
\(944\) 3.46410i 0.112747i
\(945\) 0 0
\(946\) 22.2325 + 38.5078i 0.722840 + 1.25200i
\(947\) −47.3100 + 27.3144i −1.53737 + 0.887600i −0.538376 + 0.842705i \(0.680962\pi\)
−0.998992 + 0.0448946i \(0.985705\pi\)
\(948\) 0 0
\(949\) 24.0359 + 42.1640i 0.780237 + 1.36870i
\(950\) −0.399804 −0.0129714
\(951\) 0 0
\(952\) 1.66069 + 2.87640i 0.0538233 + 0.0932247i
\(953\) 9.46862 16.4001i 0.306719 0.531252i −0.670924 0.741526i \(-0.734102\pi\)
0.977643 + 0.210274i \(0.0674356\pi\)
\(954\) 0 0
\(955\) −1.16110 0.670362i −0.0375724 0.0216924i
\(956\) −15.9177 9.19007i −0.514814 0.297228i
\(957\) 0 0
\(958\) 5.60726 9.71206i 0.181162 0.313782i
\(959\) −3.93479 6.81525i −0.127061 0.220076i
\(960\) 0 0
\(961\) 21.3458 0.688573
\(962\) 0.123372 22.4829i 0.00397767 0.724877i
\(963\) 0 0
\(964\) 0.536681 0.309853i 0.0172853 0.00997970i
\(965\) 8.37182 + 14.5004i 0.269498 + 0.466785i
\(966\) 0 0
\(967\) 19.1583i 0.616089i −0.951372 0.308044i \(-0.900325\pi\)
0.951372 0.308044i \(-0.0996745\pi\)
\(968\) 4.60563 + 2.65906i 0.148030 + 0.0854654i
\(969\) 0 0
\(970\) 12.3184i 0.395519i
\(971\) 11.1876 19.3775i 0.359027 0.621853i −0.628772 0.777590i \(-0.716442\pi\)
0.987799 + 0.155737i \(0.0497753\pi\)
\(972\) 0 0
\(973\) −0.267402 + 0.154385i −0.00857253 + 0.00494935i
\(974\) −27.7286 −0.888483
\(975\) 0 0
\(976\) −5.69248 −0.182212
\(977\) −3.91962 + 2.26299i −0.125400 + 0.0723996i −0.561388 0.827553i \(-0.689732\pi\)
0.435988 + 0.899952i \(0.356399\pi\)
\(978\) 0 0
\(979\) −1.96128 + 3.39703i −0.0626827 + 0.108570i
\(980\) 4.92820i 0.157426i
\(981\) 0 0
\(982\) 24.1409 + 13.9377i 0.770366 + 0.444771i
\(983\) 12.1598i 0.387839i 0.981017 + 0.193919i \(0.0621200\pi\)
−0.981017 + 0.193919i \(0.937880\pi\)
\(984\) 0 0
\(985\) 0.498370 + 0.863202i 0.0158794 + 0.0275039i
\(986\) −15.7169 + 9.07418i −0.500530 + 0.288981i
\(987\) 0 0
\(988\) −0.727597 + 1.24441i −0.0231479 + 0.0395901i
\(989\) 17.1783 0.546240
\(990\) 0 0
\(991\) 28.1367 + 48.7341i 0.893790 + 1.54809i 0.835295 + 0.549802i \(0.185297\pi\)
0.0584955 + 0.998288i \(0.481370\pi\)
\(992\) −1.55356 + 2.69085i −0.0493257 + 0.0854346i
\(993\) 0 0
\(994\) −7.47921 4.31812i −0.237226 0.136962i
\(995\) 2.26469 + 1.30752i 0.0717955 + 0.0414511i
\(996\) 0 0
\(997\) 2.33056 4.03665i 0.0738097 0.127842i −0.826758 0.562557i \(-0.809818\pi\)
0.900568 + 0.434715i \(0.143151\pi\)
\(998\) 18.4020 + 31.8732i 0.582504 + 1.00893i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 1170.2.bs.g.361.1 8
3.2 odd 2 130.2.l.b.101.3 8
12.11 even 2 1040.2.da.d.881.4 8
13.4 even 6 inner 1170.2.bs.g.901.1 8
15.2 even 4 650.2.n.e.49.1 8
15.8 even 4 650.2.n.d.49.4 8
15.14 odd 2 650.2.m.c.101.2 8
39.2 even 12 1690.2.a.u.1.4 4
39.5 even 4 1690.2.e.s.991.1 8
39.8 even 4 1690.2.e.t.991.1 8
39.11 even 12 1690.2.a.t.1.4 4
39.17 odd 6 130.2.l.b.121.3 yes 8
39.20 even 12 1690.2.e.t.191.1 8
39.23 odd 6 1690.2.d.k.1351.4 8
39.29 odd 6 1690.2.d.k.1351.8 8
39.32 even 12 1690.2.e.s.191.1 8
39.35 odd 6 1690.2.l.j.1161.1 8
39.38 odd 2 1690.2.l.j.361.1 8
156.95 even 6 1040.2.da.d.641.4 8
195.17 even 12 650.2.n.d.199.4 8
195.89 even 12 8450.2.a.cm.1.1 4
195.119 even 12 8450.2.a.ci.1.1 4
195.134 odd 6 650.2.m.c.251.2 8
195.173 even 12 650.2.n.e.199.1 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
130.2.l.b.101.3 8 3.2 odd 2
130.2.l.b.121.3 yes 8 39.17 odd 6
650.2.m.c.101.2 8 15.14 odd 2
650.2.m.c.251.2 8 195.134 odd 6
650.2.n.d.49.4 8 15.8 even 4
650.2.n.d.199.4 8 195.17 even 12
650.2.n.e.49.1 8 15.2 even 4
650.2.n.e.199.1 8 195.173 even 12
1040.2.da.d.641.4 8 156.95 even 6
1040.2.da.d.881.4 8 12.11 even 2
1170.2.bs.g.361.1 8 1.1 even 1 trivial
1170.2.bs.g.901.1 8 13.4 even 6 inner
1690.2.a.t.1.4 4 39.11 even 12
1690.2.a.u.1.4 4 39.2 even 12
1690.2.d.k.1351.4 8 39.23 odd 6
1690.2.d.k.1351.8 8 39.29 odd 6
1690.2.e.s.191.1 8 39.32 even 12
1690.2.e.s.991.1 8 39.5 even 4
1690.2.e.t.191.1 8 39.20 even 12
1690.2.e.t.991.1 8 39.8 even 4
1690.2.l.j.361.1 8 39.38 odd 2
1690.2.l.j.1161.1 8 39.35 odd 6
8450.2.a.ci.1.1 4 195.119 even 12
8450.2.a.cm.1.1 4 195.89 even 12