Properties

Label 1170.2.bs.c
Level $1170$
Weight $2$
Character orbit 1170.bs
Analytic conductor $9.342$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1170.bs (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(9.34249703649\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Defining polynomial: \( x^{4} - x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 130)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{12}^{3} + \zeta_{12}) q^{2} + ( - \zeta_{12}^{2} + 1) q^{4} - \zeta_{12}^{3} q^{5} + 3 \zeta_{12} q^{7} - \zeta_{12}^{3} q^{8} +O(q^{10}) \) Copy content Toggle raw display \( q + ( - \zeta_{12}^{3} + \zeta_{12}) q^{2} + ( - \zeta_{12}^{2} + 1) q^{4} - \zeta_{12}^{3} q^{5} + 3 \zeta_{12} q^{7} - \zeta_{12}^{3} q^{8} - \zeta_{12}^{2} q^{10} + (3 \zeta_{12}^{3} - 3 \zeta_{12}) q^{11} + (\zeta_{12}^{2} + 3) q^{13} + 3 q^{14} - \zeta_{12}^{2} q^{16} + ( - 6 \zeta_{12}^{3} - 3 \zeta_{12}^{2} + 3 \zeta_{12} + 3) q^{17} + ( - 2 \zeta_{12}^{2} + 3 \zeta_{12} - 2) q^{19} - \zeta_{12} q^{20} + (3 \zeta_{12}^{2} - 3) q^{22} + (2 \zeta_{12}^{3} + 6 \zeta_{12}^{2} + 2 \zeta_{12}) q^{23} - q^{25} + ( - 3 \zeta_{12}^{3} + 4 \zeta_{12}) q^{26} + ( - 3 \zeta_{12}^{3} + 3 \zeta_{12}) q^{28} + (2 \zeta_{12}^{3} - 6 \zeta_{12}^{2} + 2 \zeta_{12}) q^{29} + ( - 3 \zeta_{12}^{3} - 2 \zeta_{12}^{2} + 1) q^{31} - \zeta_{12} q^{32} + ( - 3 \zeta_{12}^{3} - 6 \zeta_{12}^{2} + 3) q^{34} + ( - 3 \zeta_{12}^{2} + 3) q^{35} + (6 \zeta_{12}^{3} - 3 \zeta_{12}^{2} - 6 \zeta_{12} + 6) q^{37} + (2 \zeta_{12}^{3} - 4 \zeta_{12} + 3) q^{38} - q^{40} + ( - 6 \zeta_{12}^{2} + 12) q^{41} + (2 \zeta_{12}^{2} - 2) q^{43} + 3 \zeta_{12}^{3} q^{44} + (2 \zeta_{12}^{2} + 6 \zeta_{12} + 2) q^{46} + 3 \zeta_{12}^{3} q^{47} + 2 \zeta_{12}^{2} q^{49} + (\zeta_{12}^{3} - \zeta_{12}) q^{50} + ( - 3 \zeta_{12}^{2} + 4) q^{52} + (2 \zeta_{12}^{3} - 4 \zeta_{12} + 3) q^{53} + 3 \zeta_{12}^{2} q^{55} + ( - 3 \zeta_{12}^{2} + 3) q^{56} + (2 \zeta_{12}^{2} - 6 \zeta_{12} + 2) q^{58} + ( - 6 \zeta_{12}^{2} - 6) q^{59} + (6 \zeta_{12}^{3} + \zeta_{12}^{2} - 3 \zeta_{12} - 1) q^{61} + ( - \zeta_{12}^{3} - 3 \zeta_{12}^{2} - \zeta_{12}) q^{62} - q^{64} + ( - 4 \zeta_{12}^{3} + \zeta_{12}) q^{65} + ( - 3 \zeta_{12}^{3} - 3 \zeta_{12}^{2} - 3 \zeta_{12}) q^{68} - 3 \zeta_{12}^{3} q^{70} + 6 \zeta_{12} q^{71} + ( - 3 \zeta_{12}^{3} - 10 \zeta_{12}^{2} + 5) q^{73} + ( - 6 \zeta_{12}^{3} + 6 \zeta_{12}^{2} + 3 \zeta_{12} - 6) q^{74} + ( - 3 \zeta_{12}^{3} + 2 \zeta_{12}^{2} + 3 \zeta_{12} - 4) q^{76} - 9 q^{77} + (3 \zeta_{12}^{3} - 6 \zeta_{12} + 1) q^{79} + (\zeta_{12}^{3} - \zeta_{12}) q^{80} + ( - 12 \zeta_{12}^{3} + 6 \zeta_{12}) q^{82} + ( - 3 \zeta_{12}^{3} - 6 \zeta_{12}^{2} + 3) q^{83} + ( - 3 \zeta_{12}^{2} - 3 \zeta_{12} - 3) q^{85} + 2 \zeta_{12}^{3} q^{86} + 3 \zeta_{12}^{2} q^{88} + (12 \zeta_{12}^{3} - 3 \zeta_{12}^{2} - 12 \zeta_{12} + 6) q^{89} + (3 \zeta_{12}^{3} + 9 \zeta_{12}) q^{91} + ( - 2 \zeta_{12}^{3} + 4 \zeta_{12} + 6) q^{92} + 3 \zeta_{12}^{2} q^{94} + (4 \zeta_{12}^{3} - 3 \zeta_{12}^{2} - 2 \zeta_{12} + 3) q^{95} + (7 \zeta_{12}^{2} - 3 \zeta_{12} + 7) q^{97} + 2 \zeta_{12} q^{98} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 2 q^{4} - 2 q^{10} + 14 q^{13} + 12 q^{14} - 2 q^{16} + 6 q^{17} - 12 q^{19} - 6 q^{22} + 12 q^{23} - 4 q^{25} - 12 q^{29} + 6 q^{35} + 18 q^{37} + 12 q^{38} - 4 q^{40} + 36 q^{41} - 4 q^{43} + 12 q^{46} + 4 q^{49} + 10 q^{52} + 12 q^{53} + 6 q^{55} + 6 q^{56} + 12 q^{58} - 36 q^{59} - 2 q^{61} - 6 q^{62} - 4 q^{64} - 6 q^{68} - 12 q^{74} - 12 q^{76} - 36 q^{77} + 4 q^{79} - 18 q^{85} + 6 q^{88} + 18 q^{89} + 24 q^{92} + 6 q^{94} + 6 q^{95} + 42 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1170\mathbb{Z}\right)^\times\).

\(n\) \(911\) \(937\) \(1081\)
\(\chi(n)\) \(1\) \(1\) \(1 - \zeta_{12}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
361.1
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i 0 0.500000 0.866025i 1.00000i 0 −2.59808 1.50000i 1.00000i 0 −0.500000 0.866025i
361.2 0.866025 0.500000i 0 0.500000 0.866025i 1.00000i 0 2.59808 + 1.50000i 1.00000i 0 −0.500000 0.866025i
901.1 −0.866025 0.500000i 0 0.500000 + 0.866025i 1.00000i 0 −2.59808 + 1.50000i 1.00000i 0 −0.500000 + 0.866025i
901.2 0.866025 + 0.500000i 0 0.500000 + 0.866025i 1.00000i 0 2.59808 1.50000i 1.00000i 0 −0.500000 + 0.866025i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.e even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1170.2.bs.c 4
3.b odd 2 1 130.2.l.a 4
12.b even 2 1 1040.2.da.a 4
13.e even 6 1 inner 1170.2.bs.c 4
15.d odd 2 1 650.2.m.a 4
15.e even 4 1 650.2.n.a 4
15.e even 4 1 650.2.n.b 4
39.d odd 2 1 1690.2.l.g 4
39.f even 4 1 1690.2.e.l 4
39.f even 4 1 1690.2.e.n 4
39.h odd 6 1 130.2.l.a 4
39.h odd 6 1 1690.2.d.f 4
39.i odd 6 1 1690.2.d.f 4
39.i odd 6 1 1690.2.l.g 4
39.k even 12 1 1690.2.a.j 2
39.k even 12 1 1690.2.a.m 2
39.k even 12 1 1690.2.e.l 4
39.k even 12 1 1690.2.e.n 4
156.r even 6 1 1040.2.da.a 4
195.y odd 6 1 650.2.m.a 4
195.bf even 12 1 650.2.n.a 4
195.bf even 12 1 650.2.n.b 4
195.bh even 12 1 8450.2.a.bf 2
195.bh even 12 1 8450.2.a.bm 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
130.2.l.a 4 3.b odd 2 1
130.2.l.a 4 39.h odd 6 1
650.2.m.a 4 15.d odd 2 1
650.2.m.a 4 195.y odd 6 1
650.2.n.a 4 15.e even 4 1
650.2.n.a 4 195.bf even 12 1
650.2.n.b 4 15.e even 4 1
650.2.n.b 4 195.bf even 12 1
1040.2.da.a 4 12.b even 2 1
1040.2.da.a 4 156.r even 6 1
1170.2.bs.c 4 1.a even 1 1 trivial
1170.2.bs.c 4 13.e even 6 1 inner
1690.2.a.j 2 39.k even 12 1
1690.2.a.m 2 39.k even 12 1
1690.2.d.f 4 39.h odd 6 1
1690.2.d.f 4 39.i odd 6 1
1690.2.e.l 4 39.f even 4 1
1690.2.e.l 4 39.k even 12 1
1690.2.e.n 4 39.f even 4 1
1690.2.e.n 4 39.k even 12 1
1690.2.l.g 4 39.d odd 2 1
1690.2.l.g 4 39.i odd 6 1
8450.2.a.bf 2 195.bh even 12 1
8450.2.a.bm 2 195.bh even 12 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(1170, [\chi])\):

\( T_{7}^{4} - 9T_{7}^{2} + 81 \) Copy content Toggle raw display
\( T_{11}^{4} - 9T_{11}^{2} + 81 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - T^{2} + 1 \) Copy content Toggle raw display
$3$ \( T^{4} \) Copy content Toggle raw display
$5$ \( (T^{2} + 1)^{2} \) Copy content Toggle raw display
$7$ \( T^{4} - 9T^{2} + 81 \) Copy content Toggle raw display
$11$ \( T^{4} - 9T^{2} + 81 \) Copy content Toggle raw display
$13$ \( (T^{2} - 7 T + 13)^{2} \) Copy content Toggle raw display
$17$ \( T^{4} - 6 T^{3} + 54 T^{2} + 108 T + 324 \) Copy content Toggle raw display
$19$ \( T^{4} + 12 T^{3} + 51 T^{2} + 36 T + 9 \) Copy content Toggle raw display
$23$ \( T^{4} - 12 T^{3} + 120 T^{2} + \cdots + 576 \) Copy content Toggle raw display
$29$ \( T^{4} + 12 T^{3} + 120 T^{2} + \cdots + 576 \) Copy content Toggle raw display
$31$ \( T^{4} + 24T^{2} + 36 \) Copy content Toggle raw display
$37$ \( T^{4} - 18 T^{3} + 99 T^{2} + 162 T + 81 \) Copy content Toggle raw display
$41$ \( (T^{2} - 18 T + 108)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 2 T + 4)^{2} \) Copy content Toggle raw display
$47$ \( (T^{2} + 9)^{2} \) Copy content Toggle raw display
$53$ \( (T^{2} - 6 T - 3)^{2} \) Copy content Toggle raw display
$59$ \( (T^{2} + 18 T + 108)^{2} \) Copy content Toggle raw display
$61$ \( T^{4} + 2 T^{3} + 30 T^{2} - 52 T + 676 \) Copy content Toggle raw display
$67$ \( T^{4} \) Copy content Toggle raw display
$71$ \( T^{4} - 36T^{2} + 1296 \) Copy content Toggle raw display
$73$ \( T^{4} + 168T^{2} + 4356 \) Copy content Toggle raw display
$79$ \( (T^{2} - 2 T - 26)^{2} \) Copy content Toggle raw display
$83$ \( T^{4} + 72T^{2} + 324 \) Copy content Toggle raw display
$89$ \( T^{4} - 18 T^{3} - 9 T^{2} + \cdots + 13689 \) Copy content Toggle raw display
$97$ \( T^{4} - 42 T^{3} + 726 T^{2} + \cdots + 19044 \) Copy content Toggle raw display
show more
show less