Properties

Label 1170.2.bp.d
Level $1170$
Weight $2$
Character orbit 1170.bp
Analytic conductor $9.342$
Analytic rank $0$
Dimension $4$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1170.bp (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(9.34249703649\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\zeta_{12})\)
Defining polynomial: \(x^{4} - x^{2} + 1\)
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 390)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{12}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( \zeta_{12} - \zeta_{12}^{3} ) q^{2} + ( 1 - \zeta_{12}^{2} ) q^{4} + ( -2 \zeta_{12} + \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{5} + ( -1 + \zeta_{12} - \zeta_{12}^{2} ) q^{7} -\zeta_{12}^{3} q^{8} +O(q^{10})\) \( q + ( \zeta_{12} - \zeta_{12}^{3} ) q^{2} + ( 1 - \zeta_{12}^{2} ) q^{4} + ( -2 \zeta_{12} + \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{5} + ( -1 + \zeta_{12} - \zeta_{12}^{2} ) q^{7} -\zeta_{12}^{3} q^{8} + ( -2 + \zeta_{12} + 2 \zeta_{12}^{2} ) q^{10} + ( -\zeta_{12} - \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{11} + ( 3 \zeta_{12} - 2 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{13} + ( 1 - 2 \zeta_{12} + \zeta_{12}^{3} ) q^{14} -\zeta_{12}^{2} q^{16} + ( 2 - \zeta_{12} + 2 \zeta_{12}^{2} ) q^{17} + ( 3 + \zeta_{12} - 3 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{19} + ( 1 + 2 \zeta_{12}^{3} ) q^{20} + ( -1 - \zeta_{12} - \zeta_{12}^{2} ) q^{22} + ( 6 - \zeta_{12} - 3 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{23} + ( 3 - 4 \zeta_{12} - 3 \zeta_{12}^{2} ) q^{25} + ( 3 - 2 \zeta_{12} - 3 \zeta_{12}^{2} ) q^{26} + ( -2 + \zeta_{12} + \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{28} + ( -2 \zeta_{12} + 3 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{29} + 4 q^{31} -\zeta_{12} q^{32} + ( -1 + 4 \zeta_{12} - 2 \zeta_{12}^{3} ) q^{34} + ( -1 + 4 \zeta_{12} - 2 \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{35} + ( 8 - \zeta_{12} - 4 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{37} + ( 1 - 2 \zeta_{12}^{2} - 3 \zeta_{12}^{3} ) q^{38} + ( \zeta_{12} + 2 \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{40} + ( 3 \zeta_{12} - 4 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{41} + ( 1 + 5 \zeta_{12} + \zeta_{12}^{2} ) q^{43} + ( -1 - 2 \zeta_{12} + \zeta_{12}^{3} ) q^{44} + ( -1 + 3 \zeta_{12} + \zeta_{12}^{2} - 6 \zeta_{12}^{3} ) q^{46} + ( 5 - 10 \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{47} + ( -2 \zeta_{12} - 3 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{49} + ( -4 - 3 \zeta_{12}^{3} ) q^{50} + ( -2 - 3 \zeta_{12}^{3} ) q^{52} + ( -1 + 2 \zeta_{12}^{2} - 6 \zeta_{12}^{3} ) q^{53} + ( 3 + 3 \zeta_{12} + \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{55} + ( 1 - \zeta_{12} - \zeta_{12}^{2} + 2 \zeta_{12}^{3} ) q^{56} + ( -2 + 3 \zeta_{12} - 2 \zeta_{12}^{2} ) q^{58} + ( 2 - 6 \zeta_{12} - 2 \zeta_{12}^{2} + 12 \zeta_{12}^{3} ) q^{59} + ( -2 - 7 \zeta_{12} + 2 \zeta_{12}^{2} + 14 \zeta_{12}^{3} ) q^{61} + ( 4 \zeta_{12} - 4 \zeta_{12}^{3} ) q^{62} - q^{64} + ( -4 + 7 \zeta_{12} + 4 \zeta_{12}^{2} ) q^{65} + ( 10 + \zeta_{12} - 5 \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{67} + ( 4 - \zeta_{12} - 2 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{68} + ( 4 - 3 \zeta_{12} - \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{70} + ( 3 + \zeta_{12} - 3 \zeta_{12}^{2} - 2 \zeta_{12}^{3} ) q^{71} + ( -5 + 10 \zeta_{12}^{2} + 4 \zeta_{12}^{3} ) q^{73} + ( -1 + 4 \zeta_{12} + \zeta_{12}^{2} - 8 \zeta_{12}^{3} ) q^{74} + ( -\zeta_{12} - 3 \zeta_{12}^{2} - \zeta_{12}^{3} ) q^{76} + 2 \zeta_{12}^{3} q^{77} -12 q^{79} + ( 1 + 2 \zeta_{12} - \zeta_{12}^{2} ) q^{80} + ( 3 - 4 \zeta_{12} + 3 \zeta_{12}^{2} ) q^{82} + ( 1 - 2 \zeta_{12}^{2} - 7 \zeta_{12}^{3} ) q^{83} + ( -8 \zeta_{12} + 4 \zeta_{12}^{2} + 3 \zeta_{12}^{3} ) q^{85} + ( 5 + 2 \zeta_{12} - \zeta_{12}^{3} ) q^{86} + ( -2 - \zeta_{12} + \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{88} + ( -4 \zeta_{12} - 2 \zeta_{12}^{2} - 4 \zeta_{12}^{3} ) q^{89} + ( 1 - 6 \zeta_{12} + 4 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{91} + ( 3 - 6 \zeta_{12}^{2} + \zeta_{12}^{3} ) q^{92} + ( -5 \zeta_{12} - \zeta_{12}^{2} - 5 \zeta_{12}^{3} ) q^{94} + ( 1 + 2 \zeta_{12} + 4 \zeta_{12}^{2} + 5 \zeta_{12}^{3} ) q^{95} -10 \zeta_{12} q^{97} + ( -2 - 3 \zeta_{12} - 2 \zeta_{12}^{2} ) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 2 q^{4} + 2 q^{5} - 6 q^{7} + O(q^{10}) \) \( 4 q + 2 q^{4} + 2 q^{5} - 6 q^{7} - 4 q^{10} - 2 q^{11} - 4 q^{13} + 4 q^{14} - 2 q^{16} + 12 q^{17} + 6 q^{19} + 4 q^{20} - 6 q^{22} + 18 q^{23} + 6 q^{25} + 6 q^{26} - 6 q^{28} + 6 q^{29} + 16 q^{31} - 4 q^{34} - 8 q^{35} + 24 q^{37} + 4 q^{40} - 8 q^{41} + 6 q^{43} - 4 q^{44} - 2 q^{46} - 6 q^{49} - 16 q^{50} - 8 q^{52} + 14 q^{55} + 2 q^{56} - 12 q^{58} + 4 q^{59} - 4 q^{61} - 4 q^{64} - 8 q^{65} + 30 q^{67} + 12 q^{68} + 14 q^{70} + 6 q^{71} - 2 q^{74} - 6 q^{76} - 48 q^{79} + 2 q^{80} + 18 q^{82} + 8 q^{85} + 20 q^{86} - 6 q^{88} - 4 q^{89} + 12 q^{91} - 2 q^{94} + 12 q^{95} - 12 q^{98} + O(q^{100}) \)

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1170\mathbb{Z}\right)^\times\).

\(n\) \(911\) \(937\) \(1081\)
\(\chi(n)\) \(1\) \(-1\) \(-1 + \zeta_{12}^{2}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
289.1
−0.866025 0.500000i
0.866025 + 0.500000i
−0.866025 + 0.500000i
0.866025 0.500000i
−0.866025 + 0.500000i 0 0.500000 0.866025i 2.23205 0.133975i 0 −2.36603 1.36603i 1.00000i 0 −1.86603 + 1.23205i
289.2 0.866025 0.500000i 0 0.500000 0.866025i −1.23205 + 1.86603i 0 −0.633975 0.366025i 1.00000i 0 −0.133975 + 2.23205i
919.1 −0.866025 0.500000i 0 0.500000 + 0.866025i 2.23205 + 0.133975i 0 −2.36603 + 1.36603i 1.00000i 0 −1.86603 1.23205i
919.2 0.866025 + 0.500000i 0 0.500000 + 0.866025i −1.23205 1.86603i 0 −0.633975 + 0.366025i 1.00000i 0 −0.133975 2.23205i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
65.n even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1170.2.bp.d 4
3.b odd 2 1 390.2.y.b 4
5.b even 2 1 1170.2.bp.e 4
13.c even 3 1 1170.2.bp.e 4
15.d odd 2 1 390.2.y.c yes 4
15.e even 4 1 1950.2.i.y 4
15.e even 4 1 1950.2.i.bh 4
39.i odd 6 1 390.2.y.c yes 4
65.n even 6 1 inner 1170.2.bp.d 4
195.x odd 6 1 390.2.y.b 4
195.bl even 12 1 1950.2.i.y 4
195.bl even 12 1 1950.2.i.bh 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
390.2.y.b 4 3.b odd 2 1
390.2.y.b 4 195.x odd 6 1
390.2.y.c yes 4 15.d odd 2 1
390.2.y.c yes 4 39.i odd 6 1
1170.2.bp.d 4 1.a even 1 1 trivial
1170.2.bp.d 4 65.n even 6 1 inner
1170.2.bp.e 4 5.b even 2 1
1170.2.bp.e 4 13.c even 3 1
1950.2.i.y 4 15.e even 4 1
1950.2.i.y 4 195.bl even 12 1
1950.2.i.bh 4 15.e even 4 1
1950.2.i.bh 4 195.bl even 12 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{7}^{4} + 6 T_{7}^{3} + 14 T_{7}^{2} + 12 T_{7} + 4 \) acting on \(S_{2}^{\mathrm{new}}(1170, [\chi])\).

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( 1 - T^{2} + T^{4} \)
$3$ \( T^{4} \)
$5$ \( 25 - 10 T - T^{2} - 2 T^{3} + T^{4} \)
$7$ \( 4 + 12 T + 14 T^{2} + 6 T^{3} + T^{4} \)
$11$ \( 4 - 4 T + 6 T^{2} + 2 T^{3} + T^{4} \)
$13$ \( 169 + 52 T + 3 T^{2} + 4 T^{3} + T^{4} \)
$17$ \( 121 - 132 T + 59 T^{2} - 12 T^{3} + T^{4} \)
$19$ \( 36 - 36 T + 30 T^{2} - 6 T^{3} + T^{4} \)
$23$ \( 676 - 468 T + 134 T^{2} - 18 T^{3} + T^{4} \)
$29$ \( 9 + 18 T + 39 T^{2} - 6 T^{3} + T^{4} \)
$31$ \( ( -4 + T )^{4} \)
$37$ \( 2209 - 1128 T + 239 T^{2} - 24 T^{3} + T^{4} \)
$41$ \( 121 - 88 T + 75 T^{2} + 8 T^{3} + T^{4} \)
$43$ \( 484 + 132 T - 10 T^{2} - 6 T^{3} + T^{4} \)
$47$ \( 5476 + 152 T^{2} + T^{4} \)
$53$ \( 1089 + 78 T^{2} + T^{4} \)
$59$ \( 10816 + 416 T + 120 T^{2} - 4 T^{3} + T^{4} \)
$61$ \( 20449 - 572 T + 159 T^{2} + 4 T^{3} + T^{4} \)
$67$ \( 5476 - 2220 T + 374 T^{2} - 30 T^{3} + T^{4} \)
$71$ \( 36 - 36 T + 30 T^{2} - 6 T^{3} + T^{4} \)
$73$ \( 3481 + 182 T^{2} + T^{4} \)
$79$ \( ( 12 + T )^{4} \)
$83$ \( 2116 + 104 T^{2} + T^{4} \)
$89$ \( 1936 - 176 T + 60 T^{2} + 4 T^{3} + T^{4} \)
$97$ \( 10000 - 100 T^{2} + T^{4} \)
show more
show less