Properties

Label 1170.2.bj.d.829.2
Level $1170$
Weight $2$
Character 1170.829
Analytic conductor $9.342$
Analytic rank $0$
Dimension $12$
CM no
Inner twists $2$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1170.bj (of order \(6\), degree \(2\), minimal)

Newform invariants

Self dual: no
Analytic conductor: \(9.34249703649\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
Defining polynomial: \( x^{12} - 2 x^{11} - 8 x^{10} + 34 x^{9} + 8 x^{8} - 134 x^{7} + 98 x^{6} + 154 x^{5} + 104 x^{4} + 190 x^{3} - 1196 x^{2} - 338 x + 2197 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{4} \)
Twist minimal: no (minimal twist has level 390)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 829.2
Root \(2.00607 - 1.30680i\) of defining polynomial
Character \(\chi\) \(=\) 1170.829
Dual form 1170.2.bj.d.199.2

$q$-expansion

\(f(q)\) \(=\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(-1.26873 + 1.84128i) q^{5} +(-2.17283 + 3.76344i) q^{7} -1.00000 q^{8} +O(q^{10})\) \(q+(0.500000 + 0.866025i) q^{2} +(-0.500000 + 0.866025i) q^{4} +(-1.26873 + 1.84128i) q^{5} +(-2.17283 + 3.76344i) q^{7} -1.00000 q^{8} +(-2.22896 - 0.178114i) q^{10} +(2.04055 - 1.17811i) q^{11} +(-3.18419 + 1.69144i) q^{13} -4.34565 q^{14} +(-0.500000 - 0.866025i) q^{16} +(-2.60564 - 1.50437i) q^{17} +(0.585872 + 0.338254i) q^{19} +(-0.960230 - 2.01940i) q^{20} +(2.04055 + 1.17811i) q^{22} +(5.58405 - 3.22396i) q^{23} +(-1.78064 - 4.67219i) q^{25} +(-3.05692 - 1.91187i) q^{26} +(-2.17283 - 3.76344i) q^{28} +(-4.82620 - 8.35922i) q^{29} +7.11493i q^{31} +(0.500000 - 0.866025i) q^{32} -3.00874i q^{34} +(-4.17283 - 8.77559i) q^{35} +(3.74165 + 6.48073i) q^{37} +0.676507i q^{38} +(1.26873 - 1.84128i) q^{40} +(2.60564 - 1.50437i) q^{41} +(-5.91710 - 3.41624i) q^{43} +2.35623i q^{44} +(5.58405 + 3.22396i) q^{46} -5.61529 q^{47} +(-5.94234 - 10.2924i) q^{49} +(3.15592 - 3.87817i) q^{50} +(0.127265 - 3.60330i) q^{52} +9.43400i q^{53} +(-0.419677 + 5.25194i) q^{55} +(2.17283 - 3.76344i) q^{56} +(4.82620 - 8.35922i) q^{58} +(4.56364 + 2.63482i) q^{59} +(2.15646 - 3.73509i) q^{61} +(-6.16171 + 3.55746i) q^{62} +1.00000 q^{64} +(0.925468 - 8.00896i) q^{65} +(-2.91329 - 5.04596i) q^{67} +(2.60564 - 1.50437i) q^{68} +(5.51347 - 8.00157i) q^{70} +(-2.52520 - 1.45793i) q^{71} -7.67804 q^{73} +(-3.74165 + 6.48073i) q^{74} +(-0.585872 + 0.338254i) q^{76} +10.2393i q^{77} -3.74519 q^{79} +(2.22896 + 0.178114i) q^{80} +(2.60564 + 1.50437i) q^{82} -10.3557 q^{83} +(6.07583 - 2.88908i) q^{85} -6.83247i q^{86} +(-2.04055 + 1.17811i) q^{88} +(-4.15208 + 2.39720i) q^{89} +(0.553049 - 15.6587i) q^{91} +6.44791i q^{92} +(-2.80764 - 4.86298i) q^{94} +(-1.36614 + 0.649603i) q^{95} +(-8.17066 + 14.1520i) q^{97} +(5.94234 - 10.2924i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{2} - 6 q^{4} + 2 q^{5} - 2 q^{7} - 12 q^{8}+O(q^{10}) \) Copy content Toggle raw display \( 12 q + 6 q^{2} - 6 q^{4} + 2 q^{5} - 2 q^{7} - 12 q^{8} - 2 q^{10} - 6 q^{11} - 8 q^{13} - 4 q^{14} - 6 q^{16} - 18 q^{17} - 6 q^{19} - 4 q^{20} - 6 q^{22} - 6 q^{23} - 10 q^{25} + 2 q^{26} - 2 q^{28} - 14 q^{29} + 6 q^{32} - 26 q^{35} - 12 q^{37} - 2 q^{40} + 18 q^{41} - 36 q^{43} - 6 q^{46} - 16 q^{47} + 8 q^{49} + 10 q^{50} + 10 q^{52} - 28 q^{55} + 2 q^{56} + 14 q^{58} + 36 q^{59} + 10 q^{61} - 6 q^{62} + 12 q^{64} - 6 q^{65} + 4 q^{67} + 18 q^{68} - 4 q^{70} + 12 q^{71} + 28 q^{73} + 12 q^{74} + 6 q^{76} + 4 q^{79} + 2 q^{80} + 18 q^{82} - 72 q^{83} + 18 q^{85} + 6 q^{88} - 18 q^{89} + 2 q^{91} - 8 q^{94} + 42 q^{95} - 48 q^{97} - 8 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/1170\mathbb{Z}\right)^\times\).

\(n\) \(911\) \(937\) \(1081\)
\(\chi(n)\) \(1\) \(-1\) \(e\left(\frac{5}{6}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).

Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.500000 + 0.866025i 0.353553 + 0.612372i
\(3\) 0 0
\(4\) −0.500000 + 0.866025i −0.250000 + 0.433013i
\(5\) −1.26873 + 1.84128i −0.567394 + 0.823446i
\(6\) 0 0
\(7\) −2.17283 + 3.76344i −0.821251 + 1.42245i 0.0835003 + 0.996508i \(0.473390\pi\)
−0.904751 + 0.425940i \(0.859943\pi\)
\(8\) −1.00000 −0.353553
\(9\) 0 0
\(10\) −2.22896 0.178114i −0.704860 0.0563246i
\(11\) 2.04055 1.17811i 0.615250 0.355215i −0.159767 0.987155i \(-0.551074\pi\)
0.775017 + 0.631940i \(0.217741\pi\)
\(12\) 0 0
\(13\) −3.18419 + 1.69144i −0.883134 + 0.469120i
\(14\) −4.34565 −1.16142
\(15\) 0 0
\(16\) −0.500000 0.866025i −0.125000 0.216506i
\(17\) −2.60564 1.50437i −0.631962 0.364863i 0.149550 0.988754i \(-0.452218\pi\)
−0.781511 + 0.623891i \(0.785551\pi\)
\(18\) 0 0
\(19\) 0.585872 + 0.338254i 0.134408 + 0.0776007i 0.565696 0.824614i \(-0.308607\pi\)
−0.431288 + 0.902214i \(0.641941\pi\)
\(20\) −0.960230 2.01940i −0.214714 0.451551i
\(21\) 0 0
\(22\) 2.04055 + 1.17811i 0.435047 + 0.251175i
\(23\) 5.58405 3.22396i 1.16436 0.672241i 0.212012 0.977267i \(-0.431998\pi\)
0.952344 + 0.305026i \(0.0986651\pi\)
\(24\) 0 0
\(25\) −1.78064 4.67219i −0.356127 0.934438i
\(26\) −3.05692 1.91187i −0.599511 0.374948i
\(27\) 0 0
\(28\) −2.17283 3.76344i −0.410625 0.711224i
\(29\) −4.82620 8.35922i −0.896202 1.55227i −0.832310 0.554311i \(-0.812982\pi\)
−0.0638921 0.997957i \(-0.520351\pi\)
\(30\) 0 0
\(31\) 7.11493i 1.27788i 0.769257 + 0.638939i \(0.220626\pi\)
−0.769257 + 0.638939i \(0.779374\pi\)
\(32\) 0.500000 0.866025i 0.0883883 0.153093i
\(33\) 0 0
\(34\) 3.00874i 0.515995i
\(35\) −4.17283 8.77559i −0.705336 1.48335i
\(36\) 0 0
\(37\) 3.74165 + 6.48073i 0.615123 + 1.06542i 0.990363 + 0.138497i \(0.0442271\pi\)
−0.375240 + 0.926928i \(0.622440\pi\)
\(38\) 0.676507i 0.109744i
\(39\) 0 0
\(40\) 1.26873 1.84128i 0.200604 0.291132i
\(41\) 2.60564 1.50437i 0.406933 0.234943i −0.282538 0.959256i \(-0.591176\pi\)
0.689471 + 0.724313i \(0.257843\pi\)
\(42\) 0 0
\(43\) −5.91710 3.41624i −0.902349 0.520971i −0.0243872 0.999703i \(-0.507763\pi\)
−0.877961 + 0.478731i \(0.841097\pi\)
\(44\) 2.35623i 0.355215i
\(45\) 0 0
\(46\) 5.58405 + 3.22396i 0.823324 + 0.475346i
\(47\) −5.61529 −0.819074 −0.409537 0.912294i \(-0.634310\pi\)
−0.409537 + 0.912294i \(0.634310\pi\)
\(48\) 0 0
\(49\) −5.94234 10.2924i −0.848906 1.47035i
\(50\) 3.15592 3.87817i 0.446314 0.548456i
\(51\) 0 0
\(52\) 0.127265 3.60330i 0.0176485 0.499688i
\(53\) 9.43400i 1.29586i 0.761700 + 0.647930i \(0.224365\pi\)
−0.761700 + 0.647930i \(0.775635\pi\)
\(54\) 0 0
\(55\) −0.419677 + 5.25194i −0.0565892 + 0.708172i
\(56\) 2.17283 3.76344i 0.290356 0.502911i
\(57\) 0 0
\(58\) 4.82620 8.35922i 0.633711 1.09762i
\(59\) 4.56364 + 2.63482i 0.594135 + 0.343024i 0.766731 0.641969i \(-0.221882\pi\)
−0.172596 + 0.984993i \(0.555215\pi\)
\(60\) 0 0
\(61\) 2.15646 3.73509i 0.276106 0.478230i −0.694307 0.719679i \(-0.744289\pi\)
0.970414 + 0.241449i \(0.0776225\pi\)
\(62\) −6.16171 + 3.55746i −0.782538 + 0.451798i
\(63\) 0 0
\(64\) 1.00000 0.125000
\(65\) 0.925468 8.00896i 0.114790 0.993390i
\(66\) 0 0
\(67\) −2.91329 5.04596i −0.355915 0.616463i 0.631359 0.775490i \(-0.282497\pi\)
−0.987274 + 0.159028i \(0.949164\pi\)
\(68\) 2.60564 1.50437i 0.315981 0.182432i
\(69\) 0 0
\(70\) 5.51347 8.00157i 0.658986 0.956370i
\(71\) −2.52520 1.45793i −0.299686 0.173024i 0.342616 0.939476i \(-0.388687\pi\)
−0.642302 + 0.766452i \(0.722020\pi\)
\(72\) 0 0
\(73\) −7.67804 −0.898647 −0.449323 0.893369i \(-0.648335\pi\)
−0.449323 + 0.893369i \(0.648335\pi\)
\(74\) −3.74165 + 6.48073i −0.434958 + 0.753369i
\(75\) 0 0
\(76\) −0.585872 + 0.338254i −0.0672042 + 0.0388004i
\(77\) 10.2393i 1.16688i
\(78\) 0 0
\(79\) −3.74519 −0.421367 −0.210683 0.977554i \(-0.567569\pi\)
−0.210683 + 0.977554i \(0.567569\pi\)
\(80\) 2.22896 + 0.178114i 0.249206 + 0.0199137i
\(81\) 0 0
\(82\) 2.60564 + 1.50437i 0.287745 + 0.166130i
\(83\) −10.3557 −1.13668 −0.568341 0.822793i \(-0.692415\pi\)
−0.568341 + 0.822793i \(0.692415\pi\)
\(84\) 0 0
\(85\) 6.07583 2.88908i 0.659017 0.313365i
\(86\) 6.83247i 0.736765i
\(87\) 0 0
\(88\) −2.04055 + 1.17811i −0.217524 + 0.125587i
\(89\) −4.15208 + 2.39720i −0.440119 + 0.254103i −0.703648 0.710549i \(-0.748447\pi\)
0.263529 + 0.964651i \(0.415114\pi\)
\(90\) 0 0
\(91\) 0.553049 15.6587i 0.0579753 1.64148i
\(92\) 6.44791i 0.672241i
\(93\) 0 0
\(94\) −2.80764 4.86298i −0.289586 0.501578i
\(95\) −1.36614 + 0.649603i −0.140163 + 0.0666478i
\(96\) 0 0
\(97\) −8.17066 + 14.1520i −0.829605 + 1.43692i 0.0687436 + 0.997634i \(0.478101\pi\)
−0.898349 + 0.439283i \(0.855232\pi\)
\(98\) 5.94234 10.2924i 0.600267 1.03969i
\(99\) 0 0
\(100\) 4.93655 + 0.794019i 0.493655 + 0.0794019i
\(101\) 6.11911 + 10.5986i 0.608875 + 1.05460i 0.991426 + 0.130668i \(0.0417121\pi\)
−0.382552 + 0.923934i \(0.624955\pi\)
\(102\) 0 0
\(103\) 3.75144i 0.369640i −0.982772 0.184820i \(-0.940830\pi\)
0.982772 0.184820i \(-0.0591702\pi\)
\(104\) 3.18419 1.69144i 0.312235 0.165859i
\(105\) 0 0
\(106\) −8.17008 + 4.71700i −0.793549 + 0.458156i
\(107\) −14.3904 + 8.30831i −1.39117 + 0.803194i −0.993445 0.114309i \(-0.963535\pi\)
−0.397728 + 0.917503i \(0.630201\pi\)
\(108\) 0 0
\(109\) 11.1116i 1.06430i 0.846652 + 0.532148i \(0.178615\pi\)
−0.846652 + 0.532148i \(0.821385\pi\)
\(110\) −4.75816 + 2.26252i −0.453672 + 0.215723i
\(111\) 0 0
\(112\) 4.34565 0.410625
\(113\) 13.5620 + 7.83002i 1.27581 + 0.736587i 0.976074 0.217437i \(-0.0697697\pi\)
0.299731 + 0.954024i \(0.403103\pi\)
\(114\) 0 0
\(115\) −1.14846 + 14.3722i −0.107095 + 1.34021i
\(116\) 9.65239 0.896202
\(117\) 0 0
\(118\) 5.26964i 0.485109i
\(119\) 11.3232 6.53747i 1.03800 0.599288i
\(120\) 0 0
\(121\) −2.72410 + 4.71827i −0.247645 + 0.428934i
\(122\) 4.31292 0.390473
\(123\) 0 0
\(124\) −6.16171 3.55746i −0.553338 0.319470i
\(125\) 10.8620 + 2.64911i 0.971523 + 0.236943i
\(126\) 0 0
\(127\) 11.7820 6.80236i 1.04549 0.603611i 0.124103 0.992269i \(-0.460395\pi\)
0.921382 + 0.388658i \(0.127061\pi\)
\(128\) 0.500000 + 0.866025i 0.0441942 + 0.0765466i
\(129\) 0 0
\(130\) 7.39870 3.20300i 0.648909 0.280922i
\(131\) −10.2122 −0.892246 −0.446123 0.894972i \(-0.647196\pi\)
−0.446123 + 0.894972i \(0.647196\pi\)
\(132\) 0 0
\(133\) −2.54600 + 1.46993i −0.220766 + 0.127459i
\(134\) 2.91329 5.04596i 0.251670 0.435905i
\(135\) 0 0
\(136\) 2.60564 + 1.50437i 0.223432 + 0.128999i
\(137\) 6.20689 10.7506i 0.530290 0.918489i −0.469085 0.883153i \(-0.655416\pi\)
0.999375 0.0353365i \(-0.0112503\pi\)
\(138\) 0 0
\(139\) −7.80915 + 13.5258i −0.662363 + 1.14725i 0.317630 + 0.948215i \(0.397113\pi\)
−0.979993 + 0.199032i \(0.936220\pi\)
\(140\) 9.68629 + 0.774021i 0.818641 + 0.0654167i
\(141\) 0 0
\(142\) 2.91585i 0.244693i
\(143\) −4.50479 + 7.20280i −0.376710 + 0.602329i
\(144\) 0 0
\(145\) 21.5148 + 1.71923i 1.78671 + 0.142774i
\(146\) −3.83902 6.64938i −0.317720 0.550307i
\(147\) 0 0
\(148\) −7.48330 −0.615123
\(149\) −16.9104 9.76324i −1.38536 0.799836i −0.392569 0.919722i \(-0.628414\pi\)
−0.992788 + 0.119886i \(0.961747\pi\)
\(150\) 0 0
\(151\) 11.5027i 0.936079i −0.883707 0.468040i \(-0.844960\pi\)
0.883707 0.468040i \(-0.155040\pi\)
\(152\) −0.585872 0.338254i −0.0475205 0.0274360i
\(153\) 0 0
\(154\) −8.86753 + 5.11967i −0.714566 + 0.412555i
\(155\) −13.1006 9.02694i −1.05226 0.725061i
\(156\) 0 0
\(157\) 4.47595i 0.357220i −0.983920 0.178610i \(-0.942840\pi\)
0.983920 0.178610i \(-0.0571600\pi\)
\(158\) −1.87260 3.24343i −0.148976 0.258033i
\(159\) 0 0
\(160\) 0.960230 + 2.01940i 0.0759129 + 0.159647i
\(161\) 28.0204i 2.20831i
\(162\) 0 0
\(163\) 3.87774 6.71645i 0.303728 0.526073i −0.673249 0.739416i \(-0.735102\pi\)
0.976977 + 0.213343i \(0.0684352\pi\)
\(164\) 3.00874i 0.234943i
\(165\) 0 0
\(166\) −5.17783 8.96827i −0.401878 0.696073i
\(167\) −0.339021 0.587202i −0.0262342 0.0454390i 0.852610 0.522547i \(-0.175018\pi\)
−0.878844 + 0.477108i \(0.841685\pi\)
\(168\) 0 0
\(169\) 7.27808 10.7717i 0.559852 0.828593i
\(170\) 5.53994 + 3.81729i 0.424894 + 0.292772i
\(171\) 0 0
\(172\) 5.91710 3.41624i 0.451174 0.260486i
\(173\) −0.625226 0.360974i −0.0475350 0.0274444i 0.476044 0.879421i \(-0.342070\pi\)
−0.523579 + 0.851977i \(0.675404\pi\)
\(174\) 0 0
\(175\) 21.4525 + 3.45053i 1.62166 + 0.260835i
\(176\) −2.04055 1.17811i −0.153812 0.0888037i
\(177\) 0 0
\(178\) −4.15208 2.39720i −0.311211 0.179678i
\(179\) −3.18673 5.51958i −0.238187 0.412553i 0.722007 0.691886i \(-0.243220\pi\)
−0.960194 + 0.279333i \(0.909887\pi\)
\(180\) 0 0
\(181\) 22.0214 1.63683 0.818417 0.574624i \(-0.194852\pi\)
0.818417 + 0.574624i \(0.194852\pi\)
\(182\) 13.8374 7.35040i 1.02569 0.544848i
\(183\) 0 0
\(184\) −5.58405 + 3.22396i −0.411662 + 0.237673i
\(185\) −16.6800 1.33288i −1.22634 0.0979953i
\(186\) 0 0
\(187\) −7.08928 −0.518419
\(188\) 2.80764 4.86298i 0.204768 0.354669i
\(189\) 0 0
\(190\) −1.24564 0.858307i −0.0903682 0.0622681i
\(191\) 0.293441 0.508255i 0.0212326 0.0367760i −0.855214 0.518275i \(-0.826574\pi\)
0.876446 + 0.481499i \(0.159908\pi\)
\(192\) 0 0
\(193\) 11.3135 + 19.5955i 0.814363 + 1.41052i 0.909784 + 0.415081i \(0.136247\pi\)
−0.0954215 + 0.995437i \(0.530420\pi\)
\(194\) −16.3413 −1.17324
\(195\) 0 0
\(196\) 11.8847 0.848906
\(197\) 0.823770 + 1.42681i 0.0586912 + 0.101656i 0.893878 0.448310i \(-0.147974\pi\)
−0.835187 + 0.549966i \(0.814641\pi\)
\(198\) 0 0
\(199\) −5.13665 + 8.89694i −0.364127 + 0.630687i −0.988636 0.150331i \(-0.951966\pi\)
0.624508 + 0.781018i \(0.285299\pi\)
\(200\) 1.78064 + 4.67219i 0.125910 + 0.330374i
\(201\) 0 0
\(202\) −6.11911 + 10.5986i −0.430539 + 0.745716i
\(203\) 41.9459 2.94403
\(204\) 0 0
\(205\) −0.535898 + 6.70637i −0.0374288 + 0.468393i
\(206\) 3.24884 1.87572i 0.226357 0.130688i
\(207\) 0 0
\(208\) 3.05692 + 1.91187i 0.211959 + 0.132564i
\(209\) 1.59401 0.110260
\(210\) 0 0
\(211\) 12.1905 + 21.1145i 0.839226 + 1.45358i 0.890543 + 0.454900i \(0.150325\pi\)
−0.0513166 + 0.998682i \(0.516342\pi\)
\(212\) −8.17008 4.71700i −0.561124 0.323965i
\(213\) 0 0
\(214\) −14.3904 8.30831i −0.983708 0.567944i
\(215\) 13.7975 6.56075i 0.940979 0.447439i
\(216\) 0 0
\(217\) −26.7766 15.4595i −1.81772 1.04946i
\(218\) −9.62290 + 5.55578i −0.651745 + 0.376285i
\(219\) 0 0
\(220\) −4.33848 2.98942i −0.292500 0.201547i
\(221\) 10.8414 + 0.382907i 0.729272 + 0.0257571i
\(222\) 0 0
\(223\) 2.31792 + 4.01476i 0.155220 + 0.268848i 0.933139 0.359516i \(-0.117058\pi\)
−0.777919 + 0.628364i \(0.783725\pi\)
\(224\) 2.17283 + 3.76344i 0.145178 + 0.251456i
\(225\) 0 0
\(226\) 15.6600i 1.04169i
\(227\) 8.89213 15.4016i 0.590192 1.02224i −0.404015 0.914753i \(-0.632385\pi\)
0.994206 0.107489i \(-0.0342812\pi\)
\(228\) 0 0
\(229\) 15.3361i 1.01344i 0.862111 + 0.506720i \(0.169142\pi\)
−0.862111 + 0.506720i \(0.830858\pi\)
\(230\) −13.0209 + 6.19148i −0.858572 + 0.408254i
\(231\) 0 0
\(232\) 4.82620 + 8.35922i 0.316855 + 0.548809i
\(233\) 7.75548i 0.508079i −0.967194 0.254039i \(-0.918241\pi\)
0.967194 0.254039i \(-0.0817593\pi\)
\(234\) 0 0
\(235\) 7.12430 10.3393i 0.464738 0.674463i
\(236\) −4.56364 + 2.63482i −0.297068 + 0.171512i
\(237\) 0 0
\(238\) 11.3232 + 6.53747i 0.733975 + 0.423761i
\(239\) 18.6409i 1.20578i 0.797824 + 0.602890i \(0.205984\pi\)
−0.797824 + 0.602890i \(0.794016\pi\)
\(240\) 0 0
\(241\) −2.65884 1.53508i −0.171271 0.0988833i 0.411914 0.911223i \(-0.364860\pi\)
−0.583185 + 0.812339i \(0.698194\pi\)
\(242\) −5.44819 −0.350223
\(243\) 0 0
\(244\) 2.15646 + 3.73509i 0.138053 + 0.239115i
\(245\) 26.4905 + 2.11683i 1.69242 + 0.135239i
\(246\) 0 0
\(247\) −2.43766 0.0860957i −0.155105 0.00547814i
\(248\) 7.11493i 0.451798i
\(249\) 0 0
\(250\) 3.13679 + 10.7313i 0.198388 + 0.678706i
\(251\) 3.56404 6.17309i 0.224960 0.389642i −0.731347 0.682005i \(-0.761108\pi\)
0.956307 + 0.292363i \(0.0944415\pi\)
\(252\) 0 0
\(253\) 7.59637 13.1573i 0.477580 0.827193i
\(254\) 11.7820 + 6.80236i 0.739270 + 0.426818i
\(255\) 0 0
\(256\) −0.500000 + 0.866025i −0.0312500 + 0.0541266i
\(257\) −12.3353 + 7.12178i −0.769454 + 0.444244i −0.832680 0.553755i \(-0.813194\pi\)
0.0632261 + 0.997999i \(0.479861\pi\)
\(258\) 0 0
\(259\) −32.5198 −2.02068
\(260\) 6.47323 + 4.80596i 0.401453 + 0.298053i
\(261\) 0 0
\(262\) −5.10611 8.84404i −0.315457 0.546387i
\(263\) −13.3385 + 7.70101i −0.822490 + 0.474865i −0.851274 0.524721i \(-0.824170\pi\)
0.0287845 + 0.999586i \(0.490836\pi\)
\(264\) 0 0
\(265\) −17.3707 11.9692i −1.06707 0.735264i
\(266\) −2.54600 1.46993i −0.156105 0.0901273i
\(267\) 0 0
\(268\) 5.82658 0.355915
\(269\) −13.3134 + 23.0595i −0.811732 + 1.40596i 0.0999185 + 0.994996i \(0.468142\pi\)
−0.911651 + 0.410966i \(0.865192\pi\)
\(270\) 0 0
\(271\) −6.66899 + 3.85034i −0.405112 + 0.233892i −0.688687 0.725058i \(-0.741813\pi\)
0.283575 + 0.958950i \(0.408479\pi\)
\(272\) 3.00874i 0.182432i
\(273\) 0 0
\(274\) 12.4138 0.749943
\(275\) −9.13785 7.43606i −0.551033 0.448411i
\(276\) 0 0
\(277\) 12.3861 + 7.15114i 0.744211 + 0.429671i 0.823599 0.567173i \(-0.191963\pi\)
−0.0793871 + 0.996844i \(0.525296\pi\)
\(278\) −15.6183 −0.936723
\(279\) 0 0
\(280\) 4.17283 + 8.77559i 0.249374 + 0.524442i
\(281\) 7.96746i 0.475299i 0.971351 + 0.237649i \(0.0763769\pi\)
−0.971351 + 0.237649i \(0.923623\pi\)
\(282\) 0 0
\(283\) −12.7095 + 7.33785i −0.755503 + 0.436190i −0.827679 0.561202i \(-0.810339\pi\)
0.0721756 + 0.997392i \(0.477006\pi\)
\(284\) 2.52520 1.45793i 0.149843 0.0865120i
\(285\) 0 0
\(286\) −8.49021 0.299865i −0.502036 0.0177314i
\(287\) 13.0749i 0.771789i
\(288\) 0 0
\(289\) −3.97374 6.88273i −0.233750 0.404866i
\(290\) 9.26852 + 19.4920i 0.544266 + 1.14461i
\(291\) 0 0
\(292\) 3.83902 6.64938i 0.224662 0.389125i
\(293\) 3.43198 5.94436i 0.200498 0.347273i −0.748191 0.663484i \(-0.769077\pi\)
0.948689 + 0.316210i \(0.102411\pi\)
\(294\) 0 0
\(295\) −10.6415 + 5.06006i −0.619571 + 0.294608i
\(296\) −3.74165 6.48073i −0.217479 0.376685i
\(297\) 0 0
\(298\) 19.5265i 1.13114i
\(299\) −12.3275 + 19.7108i −0.712921 + 1.13990i
\(300\) 0 0
\(301\) 25.7136 14.8458i 1.48211 0.855696i
\(302\) 9.96166 5.75137i 0.573229 0.330954i
\(303\) 0 0
\(304\) 0.676507i 0.0388004i
\(305\) 4.14139 + 8.70948i 0.237135 + 0.498704i
\(306\) 0 0
\(307\) 10.9917 0.627328 0.313664 0.949534i \(-0.398443\pi\)
0.313664 + 0.949534i \(0.398443\pi\)
\(308\) −8.86753 5.11967i −0.505275 0.291720i
\(309\) 0 0
\(310\) 1.26727 15.8589i 0.0719760 0.900725i
\(311\) 13.9044 0.788446 0.394223 0.919015i \(-0.371014\pi\)
0.394223 + 0.919015i \(0.371014\pi\)
\(312\) 0 0
\(313\) 14.1734i 0.801130i 0.916268 + 0.400565i \(0.131186\pi\)
−0.916268 + 0.400565i \(0.868814\pi\)
\(314\) 3.87629 2.23798i 0.218752 0.126296i
\(315\) 0 0
\(316\) 1.87260 3.24343i 0.105342 0.182457i
\(317\) 3.20808 0.180184 0.0900920 0.995933i \(-0.471284\pi\)
0.0900920 + 0.995933i \(0.471284\pi\)
\(318\) 0 0
\(319\) −19.6962 11.3716i −1.10278 0.636688i
\(320\) −1.26873 + 1.84128i −0.0709243 + 0.102931i
\(321\) 0 0
\(322\) −24.2664 + 14.0102i −1.35231 + 0.780757i
\(323\) −1.01772 1.76274i −0.0566273 0.0980813i
\(324\) 0 0
\(325\) 13.5726 + 11.8653i 0.752872 + 0.658167i
\(326\) 7.75548 0.429537
\(327\) 0 0
\(328\) −2.60564 + 1.50437i −0.143873 + 0.0830649i
\(329\) 12.2010 21.1328i 0.672665 1.16509i
\(330\) 0 0
\(331\) −22.3066 12.8787i −1.22608 0.707878i −0.259873 0.965643i \(-0.583681\pi\)
−0.966208 + 0.257765i \(0.917014\pi\)
\(332\) 5.17783 8.96827i 0.284170 0.492198i
\(333\) 0 0
\(334\) 0.339021 0.587202i 0.0185504 0.0321302i
\(335\) 12.9872 + 1.03779i 0.709568 + 0.0567008i
\(336\) 0 0
\(337\) 0.772078i 0.0420578i 0.999779 + 0.0210289i \(0.00669420\pi\)
−0.999779 + 0.0210289i \(0.993306\pi\)
\(338\) 12.9676 + 0.917149i 0.705345 + 0.0498863i
\(339\) 0 0
\(340\) −0.535898 + 6.70637i −0.0290632 + 0.363704i
\(341\) 8.38219 + 14.5184i 0.453921 + 0.786215i
\(342\) 0 0
\(343\) 21.2271 1.14616
\(344\) 5.91710 + 3.41624i 0.319028 + 0.184191i
\(345\) 0 0
\(346\) 0.721948i 0.0388122i
\(347\) −21.7856 12.5779i −1.16951 0.675218i −0.215946 0.976405i \(-0.569284\pi\)
−0.953565 + 0.301188i \(0.902617\pi\)
\(348\) 0 0
\(349\) −23.6602 + 13.6602i −1.26650 + 0.731214i −0.974324 0.225151i \(-0.927713\pi\)
−0.292176 + 0.956365i \(0.594379\pi\)
\(350\) 7.73802 + 20.3037i 0.413614 + 1.08528i
\(351\) 0 0
\(352\) 2.35623i 0.125587i
\(353\) −3.75948 6.51161i −0.200097 0.346578i 0.748462 0.663177i \(-0.230792\pi\)
−0.948559 + 0.316599i \(0.897459\pi\)
\(354\) 0 0
\(355\) 5.88826 2.79989i 0.312516 0.148603i
\(356\) 4.79440i 0.254103i
\(357\) 0 0
\(358\) 3.18673 5.51958i 0.168424 0.291719i
\(359\) 10.8402i 0.572124i −0.958211 0.286062i \(-0.907654\pi\)
0.958211 0.286062i \(-0.0923463\pi\)
\(360\) 0 0
\(361\) −9.27117 16.0581i −0.487956 0.845165i
\(362\) 11.0107 + 19.0711i 0.578708 + 1.00235i
\(363\) 0 0
\(364\) 13.2843 + 8.30831i 0.696287 + 0.435474i
\(365\) 9.74138 14.1374i 0.509887 0.739987i
\(366\) 0 0
\(367\) 6.50838 3.75761i 0.339735 0.196146i −0.320420 0.947276i \(-0.603824\pi\)
0.660155 + 0.751130i \(0.270491\pi\)
\(368\) −5.58405 3.22396i −0.291089 0.168060i
\(369\) 0 0
\(370\) −7.18569 15.1117i −0.373566 0.785622i
\(371\) −35.5043 20.4984i −1.84329 1.06423i
\(372\) 0 0
\(373\) 19.8135 + 11.4393i 1.02590 + 0.592305i 0.915808 0.401616i \(-0.131551\pi\)
0.110095 + 0.993921i \(0.464885\pi\)
\(374\) −3.54464 6.13949i −0.183289 0.317466i
\(375\) 0 0
\(376\) 5.61529 0.289586
\(377\) 29.5066 + 18.4541i 1.51967 + 0.950434i
\(378\) 0 0
\(379\) −22.6152 + 13.0569i −1.16166 + 0.670687i −0.951702 0.307022i \(-0.900667\pi\)
−0.209962 + 0.977710i \(0.567334\pi\)
\(380\) 0.120495 1.50791i 0.00618128 0.0773541i
\(381\) 0 0
\(382\) 0.586882 0.0300275
\(383\) −6.84652 + 11.8585i −0.349841 + 0.605942i −0.986221 0.165434i \(-0.947098\pi\)
0.636380 + 0.771376i \(0.280431\pi\)
\(384\) 0 0
\(385\) −18.8535 12.9910i −0.960864 0.662082i
\(386\) −11.3135 + 19.5955i −0.575842 + 0.997387i
\(387\) 0 0
\(388\) −8.17066 14.1520i −0.414802 0.718459i
\(389\) −24.9403 −1.26452 −0.632261 0.774755i \(-0.717873\pi\)
−0.632261 + 0.774755i \(0.717873\pi\)
\(390\) 0 0
\(391\) −19.4001 −0.981104
\(392\) 5.94234 + 10.2924i 0.300134 + 0.519847i
\(393\) 0 0
\(394\) −0.823770 + 1.42681i −0.0415009 + 0.0718817i
\(395\) 4.75165 6.89595i 0.239081 0.346973i
\(396\) 0 0
\(397\) 14.5517 25.2043i 0.730328 1.26497i −0.226415 0.974031i \(-0.572700\pi\)
0.956743 0.290934i \(-0.0939662\pi\)
\(398\) −10.2733 −0.514954
\(399\) 0 0
\(400\) −3.15592 + 3.87817i −0.157796 + 0.193908i
\(401\) 14.4596 8.34823i 0.722076 0.416891i −0.0934404 0.995625i \(-0.529786\pi\)
0.815516 + 0.578734i \(0.196453\pi\)
\(402\) 0 0
\(403\) −12.0345 22.6552i −0.599479 1.12854i
\(404\) −12.2382 −0.608875
\(405\) 0 0
\(406\) 20.9730 + 36.3262i 1.04087 + 1.80284i
\(407\) 15.2701 + 8.81618i 0.756909 + 0.437002i
\(408\) 0 0
\(409\) 21.3140 + 12.3056i 1.05391 + 0.608475i 0.923741 0.383017i \(-0.125115\pi\)
0.130168 + 0.991492i \(0.458448\pi\)
\(410\) −6.07583 + 2.88908i −0.300064 + 0.142682i
\(411\) 0 0
\(412\) 3.24884 + 1.87572i 0.160059 + 0.0924100i
\(413\) −19.8320 + 11.4500i −0.975868 + 0.563418i
\(414\) 0 0
\(415\) 13.1386 19.0677i 0.644947 0.935996i
\(416\) −0.127265 + 3.60330i −0.00623968 + 0.176667i
\(417\) 0 0
\(418\) 0.797003 + 1.38045i 0.0389827 + 0.0675200i
\(419\) 13.5527 + 23.4739i 0.662091 + 1.14678i 0.980065 + 0.198676i \(0.0636643\pi\)
−0.317974 + 0.948099i \(0.603002\pi\)
\(420\) 0 0
\(421\) 32.9996i 1.60830i 0.594425 + 0.804151i \(0.297380\pi\)
−0.594425 + 0.804151i \(0.702620\pi\)
\(422\) −12.1905 + 21.1145i −0.593422 + 1.02784i
\(423\) 0 0
\(424\) 9.43400i 0.458156i
\(425\) −2.38900 + 14.8528i −0.115883 + 0.720466i
\(426\) 0 0
\(427\) 9.37121 + 16.2314i 0.453505 + 0.785493i
\(428\) 16.6166i 0.803194i
\(429\) 0 0
\(430\) 12.5805 + 8.66858i 0.606686 + 0.418036i
\(431\) −7.45678 + 4.30517i −0.359180 + 0.207373i −0.668721 0.743513i \(-0.733158\pi\)
0.309541 + 0.950886i \(0.399825\pi\)
\(432\) 0 0
\(433\) −2.99201 1.72744i −0.143787 0.0830155i 0.426381 0.904544i \(-0.359788\pi\)
−0.570168 + 0.821528i \(0.693122\pi\)
\(434\) 30.9190i 1.48416i
\(435\) 0 0
\(436\) −9.62290 5.55578i −0.460853 0.266074i
\(437\) 4.36206 0.208666
\(438\) 0 0
\(439\) −12.1229 20.9974i −0.578593 1.00215i −0.995641 0.0932675i \(-0.970269\pi\)
0.417049 0.908884i \(-0.363064\pi\)
\(440\) 0.419677 5.25194i 0.0200073 0.250377i
\(441\) 0 0
\(442\) 5.08909 + 9.58038i 0.242064 + 0.455692i
\(443\) 13.1629i 0.625390i −0.949854 0.312695i \(-0.898768\pi\)
0.949854 0.312695i \(-0.101232\pi\)
\(444\) 0 0
\(445\) 0.853950 10.6865i 0.0404811 0.506591i
\(446\) −2.31792 + 4.01476i −0.109757 + 0.190104i
\(447\) 0 0
\(448\) −2.17283 + 3.76344i −0.102656 + 0.177806i
\(449\) −2.17774 1.25732i −0.102774 0.0593365i 0.447732 0.894168i \(-0.352232\pi\)
−0.550506 + 0.834831i \(0.685565\pi\)
\(450\) 0 0
\(451\) 3.54464 6.13949i 0.166910 0.289097i
\(452\) −13.5620 + 7.83002i −0.637903 + 0.368293i
\(453\) 0 0
\(454\) 17.7843 0.834657
\(455\) 28.1304 + 20.8850i 1.31877 + 0.979105i
\(456\) 0 0
\(457\) 5.38493 + 9.32698i 0.251897 + 0.436298i 0.964048 0.265728i \(-0.0856124\pi\)
−0.712151 + 0.702026i \(0.752279\pi\)
\(458\) −13.2815 + 7.66806i −0.620602 + 0.358305i
\(459\) 0 0
\(460\) −11.8724 8.18068i −0.553554 0.381426i
\(461\) −10.2984 5.94576i −0.479642 0.276922i 0.240625 0.970618i \(-0.422648\pi\)
−0.720267 + 0.693697i \(0.755981\pi\)
\(462\) 0 0
\(463\) 29.9462 1.39172 0.695860 0.718178i \(-0.255024\pi\)
0.695860 + 0.718178i \(0.255024\pi\)
\(464\) −4.82620 + 8.35922i −0.224051 + 0.388067i
\(465\) 0 0
\(466\) 6.71645 3.87774i 0.311133 0.179633i
\(467\) 21.8940i 1.01313i −0.862201 0.506566i \(-0.830915\pi\)
0.862201 0.506566i \(-0.169085\pi\)
\(468\) 0 0
\(469\) 25.3203 1.16918
\(470\) 12.5163 + 1.00016i 0.577332 + 0.0461340i
\(471\) 0 0
\(472\) −4.56364 2.63482i −0.210059 0.121277i
\(473\) −16.0989 −0.740227
\(474\) 0 0
\(475\) 0.537159 3.33961i 0.0246466 0.153232i
\(476\) 13.0749i 0.599288i
\(477\) 0 0
\(478\) −16.1435 + 9.32045i −0.738386 + 0.426307i
\(479\) 7.90106 4.56168i 0.361009 0.208429i −0.308514 0.951220i \(-0.599832\pi\)
0.669523 + 0.742791i \(0.266498\pi\)
\(480\) 0 0
\(481\) −22.8758 14.3071i −1.04305 0.652346i
\(482\) 3.07016i 0.139842i
\(483\) 0 0
\(484\) −2.72410 4.71827i −0.123823 0.214467i
\(485\) −15.6914 32.9996i −0.712511 1.49843i
\(486\) 0 0
\(487\) −10.8587 + 18.8079i −0.492056 + 0.852265i −0.999958 0.00914916i \(-0.997088\pi\)
0.507902 + 0.861415i \(0.330421\pi\)
\(488\) −2.15646 + 3.73509i −0.0976183 + 0.169080i
\(489\) 0 0
\(490\) 11.4120 + 23.9999i 0.515543 + 1.08420i
\(491\) −16.5438 28.6548i −0.746613 1.29317i −0.949437 0.313957i \(-0.898345\pi\)
0.202824 0.979215i \(-0.434988\pi\)
\(492\) 0 0
\(493\) 29.0415i 1.30796i
\(494\) −1.14427 2.15412i −0.0514831 0.0969187i
\(495\) 0 0
\(496\) 6.16171 3.55746i 0.276669 0.159735i
\(497\) 10.9736 6.33564i 0.492235 0.284192i
\(498\) 0 0
\(499\) 10.4889i 0.469546i −0.972050 0.234773i \(-0.924565\pi\)
0.972050 0.234773i \(-0.0754347\pi\)
\(500\) −7.72518 + 8.08218i −0.345480 + 0.361446i
\(501\) 0 0
\(502\) 7.12807 0.318142
\(503\) −7.14818 4.12700i −0.318722 0.184014i 0.332101 0.943244i \(-0.392243\pi\)
−0.650823 + 0.759230i \(0.725576\pi\)
\(504\) 0 0
\(505\) −27.2786 2.17980i −1.21388 0.0969998i
\(506\) 15.1927 0.675400
\(507\) 0 0
\(508\) 13.6047i 0.603611i
\(509\) −5.84526 + 3.37476i −0.259087 + 0.149584i −0.623918 0.781490i \(-0.714460\pi\)
0.364831 + 0.931074i \(0.381127\pi\)
\(510\) 0 0
\(511\) 16.6830 28.8959i 0.738014 1.27828i
\(512\) −1.00000 −0.0441942
\(513\) 0 0
\(514\) −12.3353 7.12178i −0.544086 0.314128i
\(515\) 6.90745 + 4.75957i 0.304379 + 0.209732i
\(516\) 0 0
\(517\) −11.4583 + 6.61545i −0.503935 + 0.290947i
\(518\) −16.2599 28.1630i −0.714419 1.23741i
\(519\) 0 0
\(520\) −0.925468 + 8.00896i −0.0405844 + 0.351216i
\(521\) 30.4048 1.33206 0.666029 0.745926i \(-0.267993\pi\)
0.666029 + 0.745926i \(0.267993\pi\)
\(522\) 0 0
\(523\) 2.72235 1.57175i 0.119040 0.0687279i −0.439298 0.898342i \(-0.644773\pi\)
0.558338 + 0.829614i \(0.311439\pi\)
\(524\) 5.10611 8.84404i 0.223062 0.386354i
\(525\) 0 0
\(526\) −13.3385 7.70101i −0.581588 0.335780i
\(527\) 10.7035 18.5390i 0.466251 0.807570i
\(528\) 0 0
\(529\) 9.28778 16.0869i 0.403816 0.699431i
\(530\) 1.68033 21.0280i 0.0729887 0.913400i
\(531\) 0 0
\(532\) 2.93986i 0.127459i
\(533\) −5.75231 + 9.19748i −0.249160 + 0.398387i
\(534\) 0 0
\(535\) 2.95965 37.0378i 0.127957 1.60128i
\(536\) 2.91329 + 5.04596i 0.125835 + 0.217952i
\(537\) 0 0
\(538\) −26.6268 −1.14796
\(539\) −24.2513 14.0015i −1.04458 0.603088i
\(540\) 0 0
\(541\) 17.6144i 0.757301i 0.925540 + 0.378650i \(0.123612\pi\)
−0.925540 + 0.378650i \(0.876388\pi\)
\(542\) −6.66899 3.85034i −0.286458 0.165386i
\(543\) 0 0
\(544\) −2.60564 + 1.50437i −0.111716 + 0.0644993i
\(545\) −20.4595 14.0976i −0.876390 0.603875i
\(546\) 0 0
\(547\) 40.8067i 1.74477i −0.488820 0.872385i \(-0.662572\pi\)
0.488820 0.872385i \(-0.337428\pi\)
\(548\) 6.20689 + 10.7506i 0.265145 + 0.459245i
\(549\) 0 0
\(550\) 1.87089 11.6316i 0.0797750 0.495975i
\(551\) 6.52991i 0.278184i
\(552\) 0 0
\(553\) 8.13765 14.0948i 0.346048 0.599373i
\(554\) 14.3023i 0.607646i
\(555\) 0 0
\(556\) −7.80915 13.5258i −0.331182 0.573623i
\(557\) −12.6109 21.8427i −0.534340 0.925504i −0.999195 0.0401170i \(-0.987227\pi\)
0.464855 0.885387i \(-0.346106\pi\)
\(558\) 0 0
\(559\) 24.6195 + 0.869535i 1.04129 + 0.0367774i
\(560\) −5.51347 + 8.00157i −0.232987 + 0.338128i
\(561\) 0 0
\(562\) −6.90002 + 3.98373i −0.291060 + 0.168043i
\(563\) 31.5356 + 18.2071i 1.32907 + 0.767337i 0.985155 0.171664i \(-0.0549145\pi\)
0.343912 + 0.939002i \(0.388248\pi\)
\(564\) 0 0
\(565\) −31.6238 + 15.0372i −1.33042 + 0.632622i
\(566\) −12.7095 7.33785i −0.534222 0.308433i
\(567\) 0 0
\(568\) 2.52520 + 1.45793i 0.105955 + 0.0611732i
\(569\) 13.6768 + 23.6888i 0.573360 + 0.993088i 0.996218 + 0.0868922i \(0.0276936\pi\)
−0.422858 + 0.906196i \(0.638973\pi\)
\(570\) 0 0
\(571\) 45.7020 1.91257 0.956285 0.292438i \(-0.0944664\pi\)
0.956285 + 0.292438i \(0.0944664\pi\)
\(572\) −3.98541 7.50267i −0.166638 0.313702i
\(573\) 0 0
\(574\) −11.3232 + 6.53747i −0.472622 + 0.272869i
\(575\) −25.0061 20.3491i −1.04283 0.848615i
\(576\) 0 0
\(577\) 31.1697 1.29761 0.648806 0.760954i \(-0.275269\pi\)
0.648806 + 0.760954i \(0.275269\pi\)
\(578\) 3.97374 6.88273i 0.165286 0.286284i
\(579\) 0 0
\(580\) −12.2463 + 17.7728i −0.508500 + 0.737974i
\(581\) 22.5011 38.9730i 0.933501 1.61687i
\(582\) 0 0
\(583\) 11.1143 + 19.2506i 0.460308 + 0.797278i
\(584\) 7.67804 0.317720
\(585\) 0 0
\(586\) 6.86396 0.283547
\(587\) −7.61411 13.1880i −0.314268 0.544328i 0.665014 0.746831i \(-0.268426\pi\)
−0.979282 + 0.202503i \(0.935092\pi\)
\(588\) 0 0
\(589\) −2.40665 + 4.16844i −0.0991643 + 0.171758i
\(590\) −9.70288 6.68576i −0.399461 0.275248i
\(591\) 0 0
\(592\) 3.74165 6.48073i 0.153781 0.266356i
\(593\) 15.1921 0.623865 0.311933 0.950104i \(-0.399024\pi\)
0.311933 + 0.950104i \(0.399024\pi\)
\(594\) 0 0
\(595\) −2.32883 + 29.1435i −0.0954726 + 1.19477i
\(596\) 16.9104 9.76324i 0.692678 0.399918i
\(597\) 0 0
\(598\) −23.2338 0.820594i −0.950100 0.0335566i
\(599\) −4.34655 −0.177595 −0.0887975 0.996050i \(-0.528302\pi\)
−0.0887975 + 0.996050i \(0.528302\pi\)
\(600\) 0 0
\(601\) −5.14622 8.91351i −0.209918 0.363590i 0.741770 0.670654i \(-0.233987\pi\)
−0.951689 + 0.307065i \(0.900653\pi\)
\(602\) 25.7136 + 14.8458i 1.04801 + 0.605069i
\(603\) 0 0
\(604\) 9.96166 + 5.75137i 0.405334 + 0.234020i
\(605\) −5.23152 11.0021i −0.212691 0.447297i
\(606\) 0 0
\(607\) −37.6094 21.7138i −1.52652 0.881335i −0.999504 0.0314772i \(-0.989979\pi\)
−0.527012 0.849858i \(-0.676688\pi\)
\(608\) 0.585872 0.338254i 0.0237603 0.0137180i
\(609\) 0 0
\(610\) −5.47194 + 7.94129i −0.221552 + 0.321534i
\(611\) 17.8801 9.49791i 0.723352 0.384244i
\(612\) 0 0
\(613\) 16.3258 + 28.2771i 0.659392 + 1.14210i 0.980773 + 0.195150i \(0.0625194\pi\)
−0.321382 + 0.946950i \(0.604147\pi\)
\(614\) 5.49584 + 9.51907i 0.221794 + 0.384159i
\(615\) 0 0
\(616\) 10.2393i 0.412555i
\(617\) 4.83488 8.37426i 0.194645 0.337135i −0.752139 0.659004i \(-0.770978\pi\)
0.946784 + 0.321869i \(0.104311\pi\)
\(618\) 0 0
\(619\) 5.20064i 0.209031i −0.994523 0.104516i \(-0.966671\pi\)
0.994523 0.104516i \(-0.0333292\pi\)
\(620\) 14.3678 6.83197i 0.577027 0.274378i
\(621\) 0 0
\(622\) 6.95220 + 12.0416i 0.278758 + 0.482823i
\(623\) 20.8348i 0.834729i
\(624\) 0 0
\(625\) −18.6587 + 16.6389i −0.746347 + 0.665557i
\(626\) −12.2746 + 7.08672i −0.490590 + 0.283242i
\(627\) 0 0
\(628\) 3.87629 + 2.23798i 0.154681 + 0.0893050i
\(629\) 22.5153i 0.897743i
\(630\) 0 0
\(631\) −6.86811 3.96531i −0.273415 0.157856i 0.357023 0.934095i \(-0.383792\pi\)
−0.630439 + 0.776239i \(0.717125\pi\)
\(632\) 3.74519 0.148976
\(633\) 0 0
\(634\) 1.60404 + 2.77828i 0.0637046 + 0.110340i
\(635\) −2.42319 + 30.3244i −0.0961613 + 1.20339i
\(636\) 0 0
\(637\) 36.3305 + 22.7219i 1.43947 + 0.900276i
\(638\) 22.7432i 0.900413i
\(639\) 0 0
\(640\) −2.22896 0.178114i −0.0881075 0.00704057i
\(641\) 1.69937 2.94340i 0.0671212 0.116257i −0.830512 0.557001i \(-0.811952\pi\)
0.897633 + 0.440744i \(0.145285\pi\)
\(642\) 0 0
\(643\) 4.69916 8.13918i 0.185317 0.320978i −0.758367 0.651828i \(-0.774002\pi\)
0.943683 + 0.330851i \(0.107336\pi\)
\(644\) −24.2664 14.0102i −0.956228 0.552079i
\(645\) 0 0
\(646\) 1.01772 1.76274i 0.0400415 0.0693540i
\(647\) 34.6972 20.0324i 1.36409 0.787555i 0.373921 0.927461i \(-0.378013\pi\)
0.990165 + 0.139905i \(0.0446798\pi\)
\(648\) 0 0
\(649\) 12.4165 0.487389
\(650\) −3.48934 + 17.6868i −0.136863 + 0.693735i
\(651\) 0 0
\(652\) 3.87774 + 6.71645i 0.151864 + 0.263036i
\(653\) −27.1900 + 15.6981i −1.06403 + 0.614316i −0.926543 0.376189i \(-0.877234\pi\)
−0.137483 + 0.990504i \(0.543901\pi\)
\(654\) 0 0
\(655\) 12.9566 18.8036i 0.506255 0.734717i
\(656\) −2.60564 1.50437i −0.101733 0.0587358i
\(657\) 0 0
\(658\) 24.4021 0.951292
\(659\) −9.48950 + 16.4363i −0.369659 + 0.640268i −0.989512 0.144450i \(-0.953859\pi\)
0.619853 + 0.784718i \(0.287192\pi\)
\(660\) 0 0
\(661\) 11.4484 6.60972i 0.445290 0.257088i −0.260549 0.965461i \(-0.583904\pi\)
0.705839 + 0.708372i \(0.250570\pi\)
\(662\) 25.7574i 1.00109i
\(663\) 0 0
\(664\) 10.3557 0.401878
\(665\) 0.523631 6.55285i 0.0203055 0.254109i
\(666\) 0 0
\(667\) −53.8995 31.1189i −2.08700 1.20493i
\(668\) 0.678042 0.0262342
\(669\) 0 0
\(670\) 5.59485 + 11.7662i 0.216148 + 0.454566i
\(671\) 10.1622i 0.392308i
\(672\) 0 0
\(673\) 7.44817 4.30020i 0.287106 0.165761i −0.349530 0.936925i \(-0.613659\pi\)
0.636636 + 0.771164i \(0.280325\pi\)
\(674\) −0.668639 + 0.386039i −0.0257550 + 0.0148697i
\(675\) 0 0
\(676\) 5.68953 + 11.6889i 0.218828 + 0.449571i
\(677\) 25.8539i 0.993646i 0.867852 + 0.496823i \(0.165500\pi\)
−0.867852 + 0.496823i \(0.834500\pi\)
\(678\) 0 0
\(679\) −35.5068 61.4997i −1.36263 2.36014i
\(680\) −6.07583 + 2.88908i −0.232998 + 0.110791i
\(681\) 0 0
\(682\) −8.38219 + 14.5184i −0.320971 + 0.555938i
\(683\) −10.4524 + 18.1041i −0.399950 + 0.692734i −0.993719 0.111901i \(-0.964306\pi\)
0.593769 + 0.804636i \(0.297639\pi\)
\(684\) 0 0
\(685\) 11.9201 + 25.0683i 0.455443 + 0.957811i
\(686\) 10.6136 + 18.3832i 0.405228 + 0.701875i
\(687\) 0 0
\(688\) 6.83247i 0.260486i
\(689\) −15.9570 30.0396i −0.607914 1.14442i
\(690\) 0 0
\(691\) −42.3440 + 24.4473i −1.61084 + 0.930019i −0.621665 + 0.783283i \(0.713543\pi\)
−0.989176 + 0.146736i \(0.953123\pi\)
\(692\) 0.625226 0.360974i 0.0237675 0.0137222i
\(693\) 0 0
\(694\) 25.1558i 0.954902i
\(695\) −14.9972 31.5395i −0.568875 1.19636i
\(696\) 0 0
\(697\) −9.05251 −0.342888
\(698\) −23.6602 13.6602i −0.895551 0.517046i
\(699\) 0 0
\(700\) −13.7145 + 16.8532i −0.518360 + 0.636990i
\(701\) −31.9805 −1.20789 −0.603944 0.797027i \(-0.706405\pi\)
−0.603944 + 0.797027i \(0.706405\pi\)
\(702\) 0 0
\(703\) 5.06250i 0.190936i
\(704\) 2.04055 1.17811i 0.0769062 0.0444018i
\(705\) 0 0
\(706\) 3.75948 6.51161i 0.141490 0.245068i
\(707\) −53.1831 −2.00016
\(708\) 0 0
\(709\) −5.42026 3.12939i −0.203562 0.117527i 0.394754 0.918787i \(-0.370830\pi\)
−0.598316 + 0.801260i \(0.704163\pi\)
\(710\) 5.36890 + 3.69944i 0.201491 + 0.138837i
\(711\) 0 0
\(712\) 4.15208 2.39720i 0.155606 0.0898389i
\(713\) 22.9382 + 39.7301i 0.859043 + 1.48791i
\(714\) 0 0
\(715\) −7.54701 17.4330i −0.282242 0.651958i
\(716\) 6.37346 0.238187
\(717\) 0 0
\(718\) 9.38789 5.42010i 0.350353 0.202276i
\(719\) 9.52308 16.4945i 0.355151 0.615140i −0.631993 0.774974i \(-0.717763\pi\)
0.987144 + 0.159835i \(0.0510961\pi\)
\(720\) 0 0
\(721\) 14.1183 + 8.15122i 0.525794 + 0.303567i
\(722\) 9.27117 16.0581i 0.345037 0.597622i
\(723\) 0 0
\(724\) −11.0107 + 19.0711i −0.409209 + 0.708770i
\(725\) −30.4621 + 37.4336i −1.13134 + 1.39025i
\(726\) 0 0
\(727\) 28.2602i 1.04811i 0.851684 + 0.524056i \(0.175582\pi\)
−0.851684 + 0.524056i \(0.824418\pi\)
\(728\) −0.553049 + 15.6587i −0.0204974 + 0.580350i
\(729\) 0 0
\(730\) 17.1141 + 1.36757i 0.633420 + 0.0506159i
\(731\) 10.2786 + 17.8030i 0.380166 + 0.658468i
\(732\) 0 0
\(733\) −5.28165 −0.195082 −0.0975410 0.995232i \(-0.531098\pi\)
−0.0975410 + 0.995232i \(0.531098\pi\)
\(734\) 6.50838 + 3.75761i 0.240229 + 0.138696i
\(735\) 0 0
\(736\) 6.44791i 0.237673i
\(737\) −11.8894 6.86437i −0.437953 0.252852i
\(738\) 0 0
\(739\) 34.5736 19.9611i 1.27181 0.734280i 0.296482 0.955038i \(-0.404187\pi\)
0.975329 + 0.220758i \(0.0708533\pi\)
\(740\) 9.49430 13.7789i 0.349018 0.506521i
\(741\) 0 0
\(742\) 40.9969i 1.50504i
\(743\) 9.28543 + 16.0828i 0.340650 + 0.590022i 0.984553 0.175084i \(-0.0560197\pi\)
−0.643904 + 0.765106i \(0.722686\pi\)
\(744\) 0 0
\(745\) 39.4317 18.7499i 1.44467 0.686944i
\(746\) 22.8786i 0.837646i
\(747\) 0 0
\(748\) 3.54464 6.13949i 0.129605 0.224482i
\(749\) 72.2100i 2.63850i
\(750\) 0 0
\(751\) 15.1001 + 26.1541i 0.551010 + 0.954377i 0.998202 + 0.0599394i \(0.0190907\pi\)
−0.447192 + 0.894438i \(0.647576\pi\)
\(752\) 2.80764 + 4.86298i 0.102384 + 0.177335i
\(753\) 0 0
\(754\) −1.22841 + 34.7805i −0.0447361 + 1.26663i
\(755\) 21.1798 + 14.5939i 0.770811 + 0.531126i
\(756\) 0 0
\(757\) −4.85341 + 2.80211i −0.176400 + 0.101845i −0.585600 0.810600i \(-0.699141\pi\)
0.409200 + 0.912445i \(0.365808\pi\)
\(758\) −22.6152 13.0569i −0.821421 0.474247i
\(759\) 0 0
\(760\) 1.36614 0.649603i 0.0495549 0.0235636i
\(761\) 5.77640 + 3.33501i 0.209394 + 0.120894i 0.601030 0.799227i \(-0.294757\pi\)
−0.391635 + 0.920120i \(0.628091\pi\)
\(762\) 0 0
\(763\) −41.8178 24.1435i −1.51391 0.874053i
\(764\) 0.293441 + 0.508255i 0.0106163 + 0.0183880i
\(765\) 0 0
\(766\) −13.6930 −0.494750
\(767\) −18.9881 0.670640i −0.685621 0.0242154i
\(768\) 0 0
\(769\) 6.03234 3.48277i 0.217532 0.125592i −0.387275 0.921964i \(-0.626584\pi\)
0.604807 + 0.796372i \(0.293250\pi\)
\(770\) 1.82377 22.8231i 0.0657241 0.822488i
\(771\) 0 0
\(772\) −22.6270 −0.814363
\(773\) 10.6748 18.4893i 0.383945 0.665013i −0.607677 0.794184i \(-0.707898\pi\)
0.991622 + 0.129172i \(0.0412318\pi\)
\(774\) 0 0
\(775\) 33.2423 12.6691i 1.19410 0.455087i
\(776\) 8.17066 14.1520i 0.293310 0.508027i
\(777\) 0 0
\(778\) −12.4701 21.5989i −0.447076 0.774359i
\(779\) 2.03543 0.0729270
\(780\) 0 0
\(781\) −6.87041 −0.245843
\(782\) −9.70004 16.8010i −0.346873 0.600801i
\(783\) 0 0
\(784\) −5.94234 + 10.2924i −0.212226 + 0.367587i
\(785\) 8.24149 + 5.67879i 0.294151 + 0.202685i
\(786\) 0