# Properties

 Label 1170.2.a.n Level $1170$ Weight $2$ Character orbit 1170.a Self dual yes Analytic conductor $9.342$ Analytic rank $0$ Dimension $1$ CM no Inner twists $1$

# Related objects

## Newspace parameters

 Level: $$N$$ $$=$$ $$1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13$$ Weight: $$k$$ $$=$$ $$2$$ Character orbit: $$[\chi]$$ $$=$$ 1170.a (trivial)

## Newform invariants

 Self dual: yes Analytic conductor: $$9.34249703649$$ Analytic rank: $$0$$ Dimension: $$1$$ Coefficient field: $$\mathbb{Q}$$ Coefficient ring: $$\mathbb{Z}$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 390) Fricke sign: $$-1$$ Sato-Tate group: $\mathrm{SU}(2)$

## $q$-expansion

 $$f(q)$$ $$=$$ $$q + q^{2} + q^{4} + q^{5} + 4q^{7} + q^{8} + O(q^{10})$$ $$q + q^{2} + q^{4} + q^{5} + 4q^{7} + q^{8} + q^{10} - q^{13} + 4q^{14} + q^{16} + 2q^{17} + 4q^{19} + q^{20} - 8q^{23} + q^{25} - q^{26} + 4q^{28} - 2q^{29} - 8q^{31} + q^{32} + 2q^{34} + 4q^{35} + 2q^{37} + 4q^{38} + q^{40} + 6q^{41} + 12q^{43} - 8q^{46} + 9q^{49} + q^{50} - q^{52} - 10q^{53} + 4q^{56} - 2q^{58} - 10q^{61} - 8q^{62} + q^{64} - q^{65} - 4q^{67} + 2q^{68} + 4q^{70} + 16q^{71} - 6q^{73} + 2q^{74} + 4q^{76} - 8q^{79} + q^{80} + 6q^{82} + 4q^{83} + 2q^{85} + 12q^{86} + 14q^{89} - 4q^{91} - 8q^{92} + 4q^{95} - 6q^{97} + 9q^{98} + O(q^{100})$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

Label $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
1.1
 0
1.00000 0 1.00000 1.00000 0 4.00000 1.00000 0 1.00000
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Atkin-Lehner signs

$$p$$ Sign
$$2$$ $$-1$$
$$3$$ $$-1$$
$$5$$ $$-1$$
$$13$$ $$1$$

## Inner twists

This newform does not admit any (nontrivial) inner twists.

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1170.2.a.n 1
3.b odd 2 1 390.2.a.c 1
4.b odd 2 1 9360.2.a.bc 1
5.b even 2 1 5850.2.a.c 1
5.c odd 4 2 5850.2.e.m 2
12.b even 2 1 3120.2.a.a 1
15.d odd 2 1 1950.2.a.n 1
15.e even 4 2 1950.2.e.e 2
39.d odd 2 1 5070.2.a.u 1
39.f even 4 2 5070.2.b.i 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
390.2.a.c 1 3.b odd 2 1
1170.2.a.n 1 1.a even 1 1 trivial
1950.2.a.n 1 15.d odd 2 1
1950.2.e.e 2 15.e even 4 2
3120.2.a.a 1 12.b even 2 1
5070.2.a.u 1 39.d odd 2 1
5070.2.b.i 2 39.f even 4 2
5850.2.a.c 1 5.b even 2 1
5850.2.e.m 2 5.c odd 4 2
9360.2.a.bc 1 4.b odd 2 1

## Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on $$S_{2}^{\mathrm{new}}(\Gamma_0(1170))$$:

 $$T_{7} - 4$$ $$T_{11}$$ $$T_{17} - 2$$ $$T_{31} + 8$$

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$-1 + T$$
$3$ $$T$$
$5$ $$-1 + T$$
$7$ $$-4 + T$$
$11$ $$T$$
$13$ $$1 + T$$
$17$ $$-2 + T$$
$19$ $$-4 + T$$
$23$ $$8 + T$$
$29$ $$2 + T$$
$31$ $$8 + T$$
$37$ $$-2 + T$$
$41$ $$-6 + T$$
$43$ $$-12 + T$$
$47$ $$T$$
$53$ $$10 + T$$
$59$ $$T$$
$61$ $$10 + T$$
$67$ $$4 + T$$
$71$ $$-16 + T$$
$73$ $$6 + T$$
$79$ $$8 + T$$
$83$ $$-4 + T$$
$89$ $$-14 + T$$
$97$ $$6 + T$$