Properties

Label 1170.2.a.m
Level $1170$
Weight $2$
Character orbit 1170.a
Self dual yes
Analytic conductor $9.342$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Newspace parameters

Level: \( N \) \(=\) \( 1170 = 2 \cdot 3^{2} \cdot 5 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 1170.a (trivial)

Newform invariants

Self dual: yes
Analytic conductor: \(9.34249703649\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 390)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

\(f(q)\) \(=\) \( q + q^{2} + q^{4} + q^{5} + q^{8} + O(q^{10}) \) \( q + q^{2} + q^{4} + q^{5} + q^{8} + q^{10} - q^{13} + q^{16} + 6q^{17} + q^{20} + 4q^{23} + q^{25} - q^{26} + 10q^{29} + q^{32} + 6q^{34} - 6q^{37} + q^{40} - 2q^{41} - 4q^{43} + 4q^{46} - 7q^{49} + q^{50} - q^{52} + 6q^{53} + 10q^{58} + 6q^{61} + q^{64} - q^{65} + 4q^{67} + 6q^{68} - 16q^{71} - 2q^{73} - 6q^{74} + q^{80} - 2q^{82} - 4q^{83} + 6q^{85} - 4q^{86} + 6q^{89} + 4q^{92} + 14q^{97} - 7q^{98} + O(q^{100}) \)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Label \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
1.00000 0 1.00000 1.00000 0 0 1.00000 0 1.00000
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \(-1\)
\(3\) \(-1\)
\(5\) \(-1\)
\(13\) \(1\)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 1170.2.a.m 1
3.b odd 2 1 390.2.a.a 1
4.b odd 2 1 9360.2.a.bn 1
5.b even 2 1 5850.2.a.m 1
5.c odd 4 2 5850.2.e.p 2
12.b even 2 1 3120.2.a.q 1
15.d odd 2 1 1950.2.a.y 1
15.e even 4 2 1950.2.e.l 2
39.d odd 2 1 5070.2.a.s 1
39.f even 4 2 5070.2.b.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
390.2.a.a 1 3.b odd 2 1
1170.2.a.m 1 1.a even 1 1 trivial
1950.2.a.y 1 15.d odd 2 1
1950.2.e.l 2 15.e even 4 2
3120.2.a.q 1 12.b even 2 1
5070.2.a.s 1 39.d odd 2 1
5070.2.b.c 2 39.f even 4 2
5850.2.a.m 1 5.b even 2 1
5850.2.e.p 2 5.c odd 4 2
9360.2.a.bn 1 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(1170))\):

\( T_{7} \)
\( T_{11} \)
\( T_{17} - 6 \)
\( T_{31} \)

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( -1 + T \)
$3$ \( T \)
$5$ \( -1 + T \)
$7$ \( T \)
$11$ \( T \)
$13$ \( 1 + T \)
$17$ \( -6 + T \)
$19$ \( T \)
$23$ \( -4 + T \)
$29$ \( -10 + T \)
$31$ \( T \)
$37$ \( 6 + T \)
$41$ \( 2 + T \)
$43$ \( 4 + T \)
$47$ \( T \)
$53$ \( -6 + T \)
$59$ \( T \)
$61$ \( -6 + T \)
$67$ \( -4 + T \)
$71$ \( 16 + T \)
$73$ \( 2 + T \)
$79$ \( T \)
$83$ \( 4 + T \)
$89$ \( -6 + T \)
$97$ \( -14 + T \)
show more
show less