Properties

Label 117.8.q.b.82.4
Level $117$
Weight $8$
Character 117.82
Analytic conductor $36.549$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [117,8,Mod(10,117)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("117.10"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(117, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 117.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.5490479816\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 1279 x^{12} + 629380 x^{10} + 148562016 x^{8} + 16872573312 x^{6} + 790180980480 x^{4} + \cdots + 4669637050368 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{7}\cdot 13^{4} \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 82.4
Root \(0.679146i\) of defining polynomial
Character \(\chi\) \(=\) 117.82
Dual form 117.8.q.b.10.4

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.588158 - 0.339573i) q^{2} +(-63.7694 - 110.452i) q^{4} +439.155i q^{5} +(-1128.14 + 651.329i) q^{7} +173.548i q^{8} +(149.125 - 258.293i) q^{10} +(-497.807 - 287.409i) q^{11} +(-7892.42 + 676.938i) q^{13} +884.695 q^{14} +(-8103.55 + 14035.8i) q^{16} +(5634.27 + 9758.85i) q^{17} +(35549.9 - 20524.7i) q^{19} +(48505.5 - 28004.7i) q^{20} +(195.193 + 338.083i) q^{22} +(22132.8 - 38335.2i) q^{23} -114732. q^{25} +(4871.86 + 2281.91i) q^{26} +(143881. + 83069.7i) q^{28} +(-72756.1 + 126017. i) q^{29} -122045. i q^{31} +(28770.4 - 16610.6i) q^{32} -7652.99i q^{34} +(-286035. - 495427. i) q^{35} +(36374.8 + 21001.0i) q^{37} -27878.6 q^{38} -76214.6 q^{40} +(75942.3 + 43845.3i) q^{41} +(-374876. - 649305. i) q^{43} +73311.5i q^{44} +(-26035.2 + 15031.4i) q^{46} -940126. i q^{47} +(436688. - 756366. i) q^{49} +(67480.7 + 38960.0i) q^{50} +(578064. + 828564. i) q^{52} +924214. q^{53} +(126217. - 218614. i) q^{55} +(-113037. - 195786. i) q^{56} +(85584.1 - 49412.0i) q^{58} +(-547626. + 316172. i) q^{59} +(32203.2 + 55777.7i) q^{61} +(-41443.3 + 71781.9i) q^{62} +2.05195e6 q^{64} +(-297281. - 3.46600e6i) q^{65} +(-1.68358e6 - 972013. i) q^{67} +(718588. - 1.24463e6i) q^{68} +388519. i q^{70} +(4.09113e6 - 2.36202e6i) q^{71} -1.92731e6i q^{73} +(-14262.8 - 24703.8i) q^{74} +(-4.53399e6 - 2.61770e6i) q^{76} +748791. q^{77} -1.50287e6 q^{79} +(-6.16388e6 - 3.55872e6i) q^{80} +(-29777.4 - 51575.9i) q^{82} -1.87974e6i q^{83} +(-4.28565e6 + 2.47432e6i) q^{85} +509191. i q^{86} +(49879.3 - 86393.4i) q^{88} +(-3.78860e6 - 2.18735e6i) q^{89} +(8.46281e6 - 5.90424e6i) q^{91} -5.64559e6 q^{92} +(-319241. + 552942. i) q^{94} +(9.01354e6 + 1.56119e7i) q^{95} +(-1.53602e6 + 886819. i) q^{97} +(-513683. + 296575. i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 3 q^{2} + 383 q^{4} - 2772 q^{7} - 509 q^{10} - 6516 q^{11} + 5109 q^{13} + 47916 q^{14} - 633 q^{16} + 38403 q^{17} + 43254 q^{19} - 89409 q^{20} - 125882 q^{22} + 68550 q^{23} + 39380 q^{25} - 361959 q^{26}+ \cdots - 16173003 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.588158 0.339573i −0.0519863 0.0300143i 0.473782 0.880642i \(-0.342889\pi\)
−0.525768 + 0.850628i \(0.676222\pi\)
\(3\) 0 0
\(4\) −63.7694 110.452i −0.498198 0.862905i
\(5\) 439.155i 1.57117i 0.618754 + 0.785585i \(0.287638\pi\)
−0.618754 + 0.785585i \(0.712362\pi\)
\(6\) 0 0
\(7\) −1128.14 + 651.329i −1.24313 + 0.717724i −0.969731 0.244175i \(-0.921483\pi\)
−0.273403 + 0.961899i \(0.588149\pi\)
\(8\) 173.548i 0.119841i
\(9\) 0 0
\(10\) 149.125 258.293i 0.0471576 0.0816793i
\(11\) −497.807 287.409i −0.112768 0.0651067i 0.442555 0.896741i \(-0.354072\pi\)
−0.555323 + 0.831635i \(0.687405\pi\)
\(12\) 0 0
\(13\) −7892.42 + 676.938i −0.996342 + 0.0854568i
\(14\) 884.695 0.0861679
\(15\) 0 0
\(16\) −8103.55 + 14035.8i −0.494601 + 0.856675i
\(17\) 5634.27 + 9758.85i 0.278142 + 0.481756i 0.970923 0.239392i \(-0.0769481\pi\)
−0.692781 + 0.721148i \(0.743615\pi\)
\(18\) 0 0
\(19\) 35549.9 20524.7i 1.18905 0.686499i 0.230960 0.972963i \(-0.425813\pi\)
0.958091 + 0.286464i \(0.0924800\pi\)
\(20\) 48505.5 28004.7i 1.35577 0.782754i
\(21\) 0 0
\(22\) 195.193 + 338.083i 0.00390826 + 0.00676931i
\(23\) 22132.8 38335.2i 0.379306 0.656977i −0.611655 0.791124i \(-0.709496\pi\)
0.990961 + 0.134147i \(0.0428294\pi\)
\(24\) 0 0
\(25\) −114732. −1.46857
\(26\) 4871.86 + 2281.91i 0.0543610 + 0.0254619i
\(27\) 0 0
\(28\) 143881. + 83069.7i 1.23865 + 0.715138i
\(29\) −72756.1 + 126017.i −0.553957 + 0.959482i 0.444027 + 0.896014i \(0.353550\pi\)
−0.997984 + 0.0634685i \(0.979784\pi\)
\(30\) 0 0
\(31\) 122045.i 0.735793i −0.929867 0.367896i \(-0.880078\pi\)
0.929867 0.367896i \(-0.119922\pi\)
\(32\) 28770.4 16610.6i 0.155210 0.0896107i
\(33\) 0 0
\(34\) 7652.99i 0.0333930i
\(35\) −286035. 495427.i −1.12767 1.95318i
\(36\) 0 0
\(37\) 36374.8 + 21001.0i 0.118058 + 0.0681608i 0.557866 0.829931i \(-0.311620\pi\)
−0.439808 + 0.898092i \(0.644954\pi\)
\(38\) −27878.6 −0.0824191
\(39\) 0 0
\(40\) −76214.6 −0.188290
\(41\) 75942.3 + 43845.3i 0.172084 + 0.0993526i 0.583568 0.812064i \(-0.301656\pi\)
−0.411484 + 0.911417i \(0.634989\pi\)
\(42\) 0 0
\(43\) −374876. 649305.i −0.719032 1.24540i −0.961384 0.275212i \(-0.911252\pi\)
0.242352 0.970188i \(-0.422081\pi\)
\(44\) 73311.5i 0.129744i
\(45\) 0 0
\(46\) −26035.2 + 15031.4i −0.0394374 + 0.0227692i
\(47\) 940126.i 1.32082i −0.750905 0.660410i \(-0.770383\pi\)
0.750905 0.660410i \(-0.229617\pi\)
\(48\) 0 0
\(49\) 436688. 756366.i 0.530255 0.918429i
\(50\) 67480.7 + 38960.0i 0.0763457 + 0.0440782i
\(51\) 0 0
\(52\) 578064. + 828564.i 0.570117 + 0.817174i
\(53\) 924214. 0.852721 0.426360 0.904553i \(-0.359796\pi\)
0.426360 + 0.904553i \(0.359796\pi\)
\(54\) 0 0
\(55\) 126217. 218614.i 0.102294 0.177178i
\(56\) −113037. 195786.i −0.0860127 0.148978i
\(57\) 0 0
\(58\) 85584.1 49412.0i 0.0575964 0.0332533i
\(59\) −547626. + 316172.i −0.347138 + 0.200420i −0.663424 0.748244i \(-0.730897\pi\)
0.316286 + 0.948664i \(0.397564\pi\)
\(60\) 0 0
\(61\) 32203.2 + 55777.7i 0.0181654 + 0.0314634i 0.874965 0.484186i \(-0.160884\pi\)
−0.856800 + 0.515649i \(0.827551\pi\)
\(62\) −41443.3 + 71781.9i −0.0220843 + 0.0382511i
\(63\) 0 0
\(64\) 2.05195e6 0.978444
\(65\) −297281. 3.46600e6i −0.134267 1.56542i
\(66\) 0 0
\(67\) −1.68358e6 972013.i −0.683866 0.394830i 0.117444 0.993079i \(-0.462530\pi\)
−0.801310 + 0.598249i \(0.795863\pi\)
\(68\) 718588. 1.24463e6i 0.277140 0.480020i
\(69\) 0 0
\(70\) 388519.i 0.135384i
\(71\) 4.09113e6 2.36202e6i 1.35656 0.783211i 0.367402 0.930062i \(-0.380247\pi\)
0.989159 + 0.146851i \(0.0469139\pi\)
\(72\) 0 0
\(73\) 1.92731e6i 0.579857i −0.957048 0.289928i \(-0.906368\pi\)
0.957048 0.289928i \(-0.0936315\pi\)
\(74\) −14262.8 24703.8i −0.00409159 0.00708685i
\(75\) 0 0
\(76\) −4.53399e6 2.61770e6i −1.18477 0.684025i
\(77\) 748791. 0.186915
\(78\) 0 0
\(79\) −1.50287e6 −0.342947 −0.171474 0.985189i \(-0.554853\pi\)
−0.171474 + 0.985189i \(0.554853\pi\)
\(80\) −6.16388e6 3.55872e6i −1.34598 0.777103i
\(81\) 0 0
\(82\) −29777.4 51575.9i −0.00596400 0.0103300i
\(83\) 1.87974e6i 0.360848i −0.983589 0.180424i \(-0.942253\pi\)
0.983589 0.180424i \(-0.0577470\pi\)
\(84\) 0 0
\(85\) −4.28565e6 + 2.47432e6i −0.756921 + 0.437008i
\(86\) 509191.i 0.0863250i
\(87\) 0 0
\(88\) 49879.3 86393.4i 0.00780244 0.0135142i
\(89\) −3.78860e6 2.18735e6i −0.569657 0.328892i 0.187355 0.982292i \(-0.440008\pi\)
−0.757012 + 0.653400i \(0.773342\pi\)
\(90\) 0 0
\(91\) 8.46281e6 5.90424e6i 1.17725 0.821333i
\(92\) −5.64559e6 −0.755879
\(93\) 0 0
\(94\) −319241. + 552942.i −0.0396435 + 0.0686645i
\(95\) 9.01354e6 + 1.56119e7i 1.07861 + 1.86820i
\(96\) 0 0
\(97\) −1.53602e6 + 886819.i −0.170881 + 0.0986583i −0.583001 0.812471i \(-0.698122\pi\)
0.412120 + 0.911130i \(0.364788\pi\)
\(98\) −513683. + 296575.i −0.0551320 + 0.0318305i
\(99\) 0 0
\(100\) 7.31641e6 + 1.26724e7i 0.731641 + 1.26724i
\(101\) 4.81973e6 8.34802e6i 0.465477 0.806229i −0.533746 0.845645i \(-0.679216\pi\)
0.999223 + 0.0394154i \(0.0125496\pi\)
\(102\) 0 0
\(103\) 7.14668e6 0.644427 0.322214 0.946667i \(-0.395573\pi\)
0.322214 + 0.946667i \(0.395573\pi\)
\(104\) −117481. 1.36971e6i −0.0102412 0.119402i
\(105\) 0 0
\(106\) −543583. 313838.i −0.0443298 0.0255938i
\(107\) −1.03003e7 + 1.78406e7i −0.812839 + 1.40788i 0.0980299 + 0.995183i \(0.468746\pi\)
−0.910869 + 0.412695i \(0.864587\pi\)
\(108\) 0 0
\(109\) 1.05713e7i 0.781872i 0.920418 + 0.390936i \(0.127849\pi\)
−0.920418 + 0.390936i \(0.872151\pi\)
\(110\) −148471. + 85719.8i −0.0106357 + 0.00614054i
\(111\) 0 0
\(112\) 2.11123e7i 1.41995i
\(113\) 1.34036e7 + 2.32157e7i 0.873868 + 1.51358i 0.857964 + 0.513711i \(0.171730\pi\)
0.0159047 + 0.999874i \(0.494937\pi\)
\(114\) 0 0
\(115\) 1.68351e7 + 9.71976e6i 1.03222 + 0.595954i
\(116\) 1.85584e7 1.10392
\(117\) 0 0
\(118\) 429454. 0.0240619
\(119\) −1.27124e7 7.33953e6i −0.691536 0.399258i
\(120\) 0 0
\(121\) −9.57838e6 1.65902e7i −0.491522 0.851341i
\(122\) 43741.4i 0.00218089i
\(123\) 0 0
\(124\) −1.34801e7 + 7.78276e6i −0.634919 + 0.366571i
\(125\) 1.60763e7i 0.736209i
\(126\) 0 0
\(127\) −4.03532e6 + 6.98938e6i −0.174810 + 0.302779i −0.940095 0.340912i \(-0.889264\pi\)
0.765286 + 0.643691i \(0.222598\pi\)
\(128\) −4.88947e6 2.82294e6i −0.206076 0.118978i
\(129\) 0 0
\(130\) −1.00211e6 + 2.13950e6i −0.0400050 + 0.0854104i
\(131\) −1.26390e7 −0.491206 −0.245603 0.969370i \(-0.578986\pi\)
−0.245603 + 0.969370i \(0.578986\pi\)
\(132\) 0 0
\(133\) −2.67367e7 + 4.63094e7i −0.985434 + 1.70682i
\(134\) 660139. + 1.14339e6i 0.0237011 + 0.0410515i
\(135\) 0 0
\(136\) −1.69363e6 + 977818.i −0.0577341 + 0.0333328i
\(137\) −2.45282e7 + 1.41614e7i −0.814975 + 0.470526i −0.848680 0.528906i \(-0.822602\pi\)
0.0337058 + 0.999432i \(0.489269\pi\)
\(138\) 0 0
\(139\) 4.44074e6 + 7.69159e6i 0.140250 + 0.242920i 0.927591 0.373598i \(-0.121876\pi\)
−0.787341 + 0.616518i \(0.788543\pi\)
\(140\) −3.64805e7 + 6.31861e7i −1.12360 + 1.94614i
\(141\) 0 0
\(142\) −3.20831e6 −0.0940301
\(143\) 4.12346e6 + 1.93137e6i 0.117919 + 0.0552317i
\(144\) 0 0
\(145\) −5.53411e7 3.19512e7i −1.50751 0.870361i
\(146\) −654461. + 1.13356e6i −0.0174040 + 0.0301446i
\(147\) 0 0
\(148\) 5.35689e6i 0.135830i
\(149\) 4.40391e7 2.54260e7i 1.09065 0.629689i 0.156902 0.987614i \(-0.449849\pi\)
0.933750 + 0.357926i \(0.116516\pi\)
\(150\) 0 0
\(151\) 9.76974e6i 0.230921i 0.993312 + 0.115461i \(0.0368344\pi\)
−0.993312 + 0.115461i \(0.963166\pi\)
\(152\) 3.56203e6 + 6.16961e6i 0.0822706 + 0.142497i
\(153\) 0 0
\(154\) −440407. 254269.i −0.00971699 0.00561011i
\(155\) 5.35969e7 1.15606
\(156\) 0 0
\(157\) 6.53474e7 1.34766 0.673828 0.738888i \(-0.264649\pi\)
0.673828 + 0.738888i \(0.264649\pi\)
\(158\) 883927. + 510335.i 0.0178286 + 0.0102933i
\(159\) 0 0
\(160\) 7.29462e6 + 1.26347e7i 0.140794 + 0.243862i
\(161\) 5.76631e7i 1.08895i
\(162\) 0 0
\(163\) 1.74920e7 1.00990e7i 0.316361 0.182651i −0.333409 0.942782i \(-0.608199\pi\)
0.649769 + 0.760132i \(0.274866\pi\)
\(164\) 1.11839e7i 0.197989i
\(165\) 0 0
\(166\) −638309. + 1.10558e6i −0.0108306 + 0.0187591i
\(167\) 5.86371e6 + 3.38542e6i 0.0974238 + 0.0562477i 0.547920 0.836531i \(-0.315420\pi\)
−0.450497 + 0.892778i \(0.648753\pi\)
\(168\) 0 0
\(169\) 6.18320e7 1.06853e7i 0.985394 0.170288i
\(170\) 3.36085e6 0.0524660
\(171\) 0 0
\(172\) −4.78112e7 + 8.28115e7i −0.716441 + 1.24091i
\(173\) −4.33522e7 7.50883e7i −0.636576 1.10258i −0.986179 0.165684i \(-0.947017\pi\)
0.349603 0.936898i \(-0.386316\pi\)
\(174\) 0 0
\(175\) 1.29434e8 7.47285e7i 1.82563 1.05403i
\(176\) 8.06800e6 4.65806e6i 0.111550 0.0644037i
\(177\) 0 0
\(178\) 1.48553e6 + 2.57301e6i 0.0197429 + 0.0341957i
\(179\) 4.47221e7 7.74609e7i 0.582823 1.00948i −0.412320 0.911039i \(-0.635281\pi\)
0.995143 0.0984398i \(-0.0313852\pi\)
\(180\) 0 0
\(181\) −2.55748e7 −0.320581 −0.160290 0.987070i \(-0.551243\pi\)
−0.160290 + 0.987070i \(0.551243\pi\)
\(182\) −6.98239e6 + 598883.i −0.0858527 + 0.00736364i
\(183\) 0 0
\(184\) 6.65300e6 + 3.84111e6i 0.0787328 + 0.0454564i
\(185\) −9.22271e6 + 1.59742e7i −0.107092 + 0.185489i
\(186\) 0 0
\(187\) 6.47736e6i 0.0724356i
\(188\) −1.03839e8 + 5.99512e7i −1.13974 + 0.658030i
\(189\) 0 0
\(190\) 1.22430e7i 0.129494i
\(191\) 7.26412e7 + 1.25818e8i 0.754339 + 1.30655i 0.945702 + 0.325034i \(0.105376\pi\)
−0.191364 + 0.981519i \(0.561291\pi\)
\(192\) 0 0
\(193\) −7.90017e7 4.56117e7i −0.791017 0.456694i 0.0493033 0.998784i \(-0.484300\pi\)
−0.840321 + 0.542090i \(0.817633\pi\)
\(194\) 1.20456e6 0.0118446
\(195\) 0 0
\(196\) −1.11389e8 −1.05669
\(197\) −1.47447e8 8.51285e7i −1.37405 0.793311i −0.382619 0.923906i \(-0.624978\pi\)
−0.991436 + 0.130595i \(0.958311\pi\)
\(198\) 0 0
\(199\) −6.97613e7 1.20830e8i −0.627521 1.08690i −0.988047 0.154150i \(-0.950736\pi\)
0.360526 0.932749i \(-0.382597\pi\)
\(200\) 1.99116e7i 0.175995i
\(201\) 0 0
\(202\) −5.66952e6 + 3.27330e6i −0.0483968 + 0.0279419i
\(203\) 1.89553e8i 1.59035i
\(204\) 0 0
\(205\) −1.92549e7 + 3.33504e7i −0.156100 + 0.270373i
\(206\) −4.20337e6 2.42682e6i −0.0335014 0.0193420i
\(207\) 0 0
\(208\) 5.44553e7 1.16262e8i 0.419583 0.895808i
\(209\) −2.35960e7 −0.178783
\(210\) 0 0
\(211\) −4.18539e7 + 7.24931e7i −0.306724 + 0.531261i −0.977644 0.210269i \(-0.932566\pi\)
0.670920 + 0.741530i \(0.265899\pi\)
\(212\) −5.89365e7 1.02081e8i −0.424824 0.735817i
\(213\) 0 0
\(214\) 1.21163e7 6.99538e6i 0.0845130 0.0487936i
\(215\) 2.85146e8 1.64629e8i 1.95673 1.12972i
\(216\) 0 0
\(217\) 7.94917e7 + 1.37684e8i 0.528096 + 0.914689i
\(218\) 3.58973e6 6.21759e6i 0.0234673 0.0406466i
\(219\) 0 0
\(220\) −3.21951e7 −0.203850
\(221\) −5.10742e7 7.32069e7i −0.318294 0.456225i
\(222\) 0 0
\(223\) −8.23600e7 4.75506e7i −0.497335 0.287137i 0.230277 0.973125i \(-0.426037\pi\)
−0.727612 + 0.685988i \(0.759370\pi\)
\(224\) −2.16379e7 + 3.74779e7i −0.128631 + 0.222796i
\(225\) 0 0
\(226\) 1.82060e7i 0.104914i
\(227\) −8.55988e7 + 4.94205e7i −0.485710 + 0.280425i −0.722793 0.691064i \(-0.757142\pi\)
0.237083 + 0.971489i \(0.423809\pi\)
\(228\) 0 0
\(229\) 8.72426e7i 0.480070i −0.970764 0.240035i \(-0.922841\pi\)
0.970764 0.240035i \(-0.0771589\pi\)
\(230\) −6.60113e6 1.14335e7i −0.0357743 0.0619629i
\(231\) 0 0
\(232\) −2.18701e7 1.26267e7i −0.114985 0.0663867i
\(233\) 2.42490e8 1.25588 0.627940 0.778262i \(-0.283898\pi\)
0.627940 + 0.778262i \(0.283898\pi\)
\(234\) 0 0
\(235\) 4.12861e8 2.07523
\(236\) 6.98436e7 + 4.03242e7i 0.345887 + 0.199698i
\(237\) 0 0
\(238\) 4.98462e6 + 8.63361e6i 0.0239669 + 0.0415119i
\(239\) 4.08512e8i 1.93558i −0.251750 0.967792i \(-0.581006\pi\)
0.251750 0.967792i \(-0.418994\pi\)
\(240\) 0 0
\(241\) 1.89875e8 1.09624e8i 0.873792 0.504484i 0.00518518 0.999987i \(-0.498349\pi\)
0.868606 + 0.495503i \(0.165016\pi\)
\(242\) 1.30102e7i 0.0590108i
\(243\) 0 0
\(244\) 4.10716e6 7.11381e6i 0.0181000 0.0313500i
\(245\) 3.32162e8 + 1.91774e8i 1.44301 + 0.833121i
\(246\) 0 0
\(247\) −2.66681e8 + 1.86055e8i −1.12604 + 0.785600i
\(248\) 2.11807e7 0.0881780
\(249\) 0 0
\(250\) −5.45908e6 + 9.45541e6i −0.0220968 + 0.0382728i
\(251\) −7.42822e6 1.28661e7i −0.0296501 0.0513556i 0.850820 0.525458i \(-0.176106\pi\)
−0.880470 + 0.474102i \(0.842773\pi\)
\(252\) 0 0
\(253\) −2.20358e7 + 1.27223e7i −0.0855473 + 0.0493907i
\(254\) 4.74681e6 2.74057e6i 0.0181754 0.0104936i
\(255\) 0 0
\(256\) −1.29407e8 2.24140e8i −0.482080 0.834987i
\(257\) −2.49812e8 + 4.32688e8i −0.918011 + 1.59004i −0.115579 + 0.993298i \(0.536872\pi\)
−0.802432 + 0.596744i \(0.796461\pi\)
\(258\) 0 0
\(259\) −5.47143e7 −0.195682
\(260\) −3.63868e8 + 2.53860e8i −1.28392 + 0.895750i
\(261\) 0 0
\(262\) 7.43374e6 + 4.29187e6i 0.0255360 + 0.0147432i
\(263\) 1.51725e7 2.62796e7i 0.0514295 0.0890785i −0.839165 0.543878i \(-0.816956\pi\)
0.890594 + 0.454799i \(0.150289\pi\)
\(264\) 0 0
\(265\) 4.05873e8i 1.33977i
\(266\) 3.14508e7 1.81581e7i 0.102458 0.0591542i
\(267\) 0 0
\(268\) 2.47939e8i 0.786815i
\(269\) 5.52630e7 + 9.57183e7i 0.173102 + 0.299821i 0.939503 0.342541i \(-0.111288\pi\)
−0.766401 + 0.642363i \(0.777954\pi\)
\(270\) 0 0
\(271\) 4.36530e7 + 2.52031e7i 0.133236 + 0.0769238i 0.565136 0.824997i \(-0.308824\pi\)
−0.431901 + 0.901921i \(0.642157\pi\)
\(272\) −1.82630e8 −0.550278
\(273\) 0 0
\(274\) 1.92353e7 0.0564900
\(275\) 5.71145e7 + 3.29751e7i 0.165608 + 0.0956140i
\(276\) 0 0
\(277\) −2.69297e8 4.66436e8i −0.761294 1.31860i −0.942184 0.335097i \(-0.891231\pi\)
0.180889 0.983503i \(-0.442102\pi\)
\(278\) 6.03182e6i 0.0168380i
\(279\) 0 0
\(280\) 8.59804e7 4.96408e7i 0.234070 0.135140i
\(281\) 1.43482e8i 0.385766i 0.981222 + 0.192883i \(0.0617839\pi\)
−0.981222 + 0.192883i \(0.938216\pi\)
\(282\) 0 0
\(283\) 5.06236e7 8.76826e7i 0.132770 0.229964i −0.791973 0.610556i \(-0.790946\pi\)
0.924743 + 0.380591i \(0.124279\pi\)
\(284\) −5.21778e8 3.01249e8i −1.35167 0.780389i
\(285\) 0 0
\(286\) −1.76940e6 2.53616e6i −0.00447245 0.00641056i
\(287\) −1.14231e8 −0.285231
\(288\) 0 0
\(289\) 1.41679e8 2.45396e8i 0.345274 0.598032i
\(290\) 2.16995e7 + 3.75847e7i 0.0522465 + 0.0904937i
\(291\) 0 0
\(292\) −2.12875e8 + 1.22903e8i −0.500361 + 0.288884i
\(293\) 2.65267e8 1.53152e8i 0.616094 0.355702i −0.159252 0.987238i \(-0.550908\pi\)
0.775347 + 0.631536i \(0.217575\pi\)
\(294\) 0 0
\(295\) −1.38849e8 2.40493e8i −0.314894 0.545413i
\(296\) −3.64469e6 + 6.31279e6i −0.00816845 + 0.0141482i
\(297\) 0 0
\(298\) −3.45359e7 −0.0755986
\(299\) −1.48731e8 + 3.17540e8i −0.321775 + 0.686988i
\(300\) 0 0
\(301\) 8.45822e8 + 4.88336e8i 1.78771 + 1.03213i
\(302\) 3.31754e6 5.74615e6i 0.00693094 0.0120047i
\(303\) 0 0
\(304\) 6.65293e8i 1.35817i
\(305\) −2.44951e7 + 1.41422e7i −0.0494344 + 0.0285409i
\(306\) 0 0
\(307\) 8.86416e6i 0.0174845i −0.999962 0.00874225i \(-0.997217\pi\)
0.999962 0.00874225i \(-0.00278278\pi\)
\(308\) −4.77499e7 8.27053e7i −0.0931205 0.161289i
\(309\) 0 0
\(310\) −3.15234e7 1.82001e7i −0.0600990 0.0346982i
\(311\) 3.95364e8 0.745309 0.372654 0.927970i \(-0.378448\pi\)
0.372654 + 0.927970i \(0.378448\pi\)
\(312\) 0 0
\(313\) −8.88408e8 −1.63760 −0.818799 0.574080i \(-0.805360\pi\)
−0.818799 + 0.574080i \(0.805360\pi\)
\(314\) −3.84346e7 2.21902e7i −0.0700597 0.0404490i
\(315\) 0 0
\(316\) 9.58373e7 + 1.65995e8i 0.170856 + 0.295931i
\(317\) 3.40256e8i 0.599928i 0.953951 + 0.299964i \(0.0969746\pi\)
−0.953951 + 0.299964i \(0.903025\pi\)
\(318\) 0 0
\(319\) 7.24369e7 4.18215e7i 0.124937 0.0721326i
\(320\) 9.01123e8i 1.53730i
\(321\) 0 0
\(322\) 1.95808e7 3.39150e7i 0.0326840 0.0566104i
\(323\) 4.00595e8 + 2.31284e8i 0.661450 + 0.381888i
\(324\) 0 0
\(325\) 9.05516e8 7.76666e7i 1.46320 0.125500i
\(326\) −1.37174e7 −0.0219286
\(327\) 0 0
\(328\) −7.60927e6 + 1.31796e7i −0.0119065 + 0.0206227i
\(329\) 6.12331e8 + 1.06059e9i 0.947984 + 1.64196i
\(330\) 0 0
\(331\) −4.75802e8 + 2.74704e8i −0.721154 + 0.416359i −0.815177 0.579211i \(-0.803361\pi\)
0.0940230 + 0.995570i \(0.470027\pi\)
\(332\) −2.07621e8 + 1.19870e8i −0.311377 + 0.179774i
\(333\) 0 0
\(334\) −2.29919e6 3.98232e6i −0.00337647 0.00584821i
\(335\) 4.26865e8 7.39351e8i 0.620345 1.07447i
\(336\) 0 0
\(337\) −6.88538e8 −0.979993 −0.489997 0.871724i \(-0.663002\pi\)
−0.489997 + 0.871724i \(0.663002\pi\)
\(338\) −3.99954e7 1.47118e7i −0.0563381 0.0207233i
\(339\) 0 0
\(340\) 5.46586e8 + 3.15572e8i 0.754193 + 0.435434i
\(341\) −3.50769e7 + 6.07550e7i −0.0479050 + 0.0829739i
\(342\) 0 0
\(343\) 6.49158e7i 0.0868602i
\(344\) 1.12686e8 6.50591e7i 0.149250 0.0861694i
\(345\) 0 0
\(346\) 5.88850e7i 0.0764255i
\(347\) −3.43577e8 5.95094e8i −0.441440 0.764596i 0.556357 0.830943i \(-0.312199\pi\)
−0.997797 + 0.0663474i \(0.978865\pi\)
\(348\) 0 0
\(349\) −8.95711e8 5.17139e8i −1.12792 0.651206i −0.184510 0.982831i \(-0.559070\pi\)
−0.943411 + 0.331625i \(0.892403\pi\)
\(350\) −1.01503e8 −0.126544
\(351\) 0 0
\(352\) −1.90961e7 −0.0233370
\(353\) −9.29168e8 5.36455e8i −1.12430 0.649116i −0.181806 0.983334i \(-0.558194\pi\)
−0.942496 + 0.334219i \(0.891528\pi\)
\(354\) 0 0
\(355\) 1.03729e9 + 1.79664e9i 1.23056 + 2.13139i
\(356\) 5.57943e8i 0.655413i
\(357\) 0 0
\(358\) −5.26073e7 + 3.03728e7i −0.0605976 + 0.0349860i
\(359\) 6.57582e8i 0.750100i −0.927005 0.375050i \(-0.877626\pi\)
0.927005 0.375050i \(-0.122374\pi\)
\(360\) 0 0
\(361\) 3.95593e8 6.85188e8i 0.442562 0.766539i
\(362\) 1.50420e7 + 8.68452e6i 0.0166658 + 0.00962201i
\(363\) 0 0
\(364\) −1.19180e9 5.58223e8i −1.29524 0.606670i
\(365\) 8.46387e8 0.911054
\(366\) 0 0
\(367\) 4.47343e8 7.74821e8i 0.472400 0.818220i −0.527102 0.849802i \(-0.676721\pi\)
0.999501 + 0.0315822i \(0.0100546\pi\)
\(368\) 3.58709e8 + 6.21303e8i 0.375211 + 0.649884i
\(369\) 0 0
\(370\) 1.08488e7 6.26357e6i 0.0111346 0.00642859i
\(371\) −1.04264e9 + 6.01967e8i −1.06005 + 0.612018i
\(372\) 0 0
\(373\) −3.42088e8 5.92515e8i −0.341317 0.591178i 0.643361 0.765563i \(-0.277540\pi\)
−0.984677 + 0.174385i \(0.944206\pi\)
\(374\) −2.19954e6 + 3.80971e6i −0.00217410 + 0.00376566i
\(375\) 0 0
\(376\) 1.63157e8 0.158288
\(377\) 4.88916e8 1.04383e9i 0.469937 1.00331i
\(378\) 0 0
\(379\) −9.87024e8 5.69859e8i −0.931302 0.537687i −0.0440788 0.999028i \(-0.514035\pi\)
−0.887223 + 0.461341i \(0.847369\pi\)
\(380\) 1.14958e9 1.99112e9i 1.07472 1.86147i
\(381\) 0 0
\(382\) 9.86680e7i 0.0905638i
\(383\) −1.16426e9 + 6.72186e8i −1.05890 + 0.611355i −0.925127 0.379657i \(-0.876042\pi\)
−0.133771 + 0.991012i \(0.542709\pi\)
\(384\) 0 0
\(385\) 3.28835e8i 0.293674i
\(386\) 3.09770e7 + 5.36537e7i 0.0274147 + 0.0474837i
\(387\) 0 0
\(388\) 1.95901e8 + 1.13104e8i 0.170265 + 0.0983028i
\(389\) −4.06758e8 −0.350359 −0.175179 0.984537i \(-0.556051\pi\)
−0.175179 + 0.984537i \(0.556051\pi\)
\(390\) 0 0
\(391\) 4.98810e8 0.422004
\(392\) 1.31266e8 + 7.57864e7i 0.110065 + 0.0635463i
\(393\) 0 0
\(394\) 5.78147e7 + 1.00138e8i 0.0476213 + 0.0824826i
\(395\) 6.59995e8i 0.538829i
\(396\) 0 0
\(397\) 1.70506e8 9.84416e7i 0.136764 0.0789609i −0.430057 0.902802i \(-0.641506\pi\)
0.566821 + 0.823841i \(0.308173\pi\)
\(398\) 9.47562e7i 0.0753385i
\(399\) 0 0
\(400\) 9.29739e8 1.61036e9i 0.726359 1.25809i
\(401\) −8.66177e8 5.00088e8i −0.670813 0.387294i 0.125572 0.992085i \(-0.459923\pi\)
−0.796385 + 0.604791i \(0.793257\pi\)
\(402\) 0 0
\(403\) 8.26171e7 + 9.63233e8i 0.0628785 + 0.733101i
\(404\) −1.22940e9 −0.927599
\(405\) 0 0
\(406\) −6.43670e7 + 1.11487e8i −0.0477333 + 0.0826766i
\(407\) −1.20718e7 2.09089e7i −0.00887544 0.0153727i
\(408\) 0 0
\(409\) 1.40643e9 8.12004e8i 1.01645 0.586850i 0.103379 0.994642i \(-0.467035\pi\)
0.913075 + 0.407793i \(0.133701\pi\)
\(410\) 2.26498e7 1.30769e7i 0.0162301 0.00937045i
\(411\) 0 0
\(412\) −4.55739e8 7.89363e8i −0.321053 0.556079i
\(413\) 4.11864e8 7.13370e8i 0.287693 0.498299i
\(414\) 0 0
\(415\) 8.25497e8 0.566953
\(416\) −2.15823e8 + 1.50573e8i −0.146985 + 0.102547i
\(417\) 0 0
\(418\) 1.38781e7 + 8.01255e6i 0.00929425 + 0.00536604i
\(419\) −9.59601e7 + 1.66208e8i −0.0637297 + 0.110383i −0.896130 0.443792i \(-0.853633\pi\)
0.832400 + 0.554175i \(0.186966\pi\)
\(420\) 0 0
\(421\) 1.17016e9i 0.764292i 0.924102 + 0.382146i \(0.124815\pi\)
−0.924102 + 0.382146i \(0.875185\pi\)
\(422\) 4.92334e7 2.84249e7i 0.0318909 0.0184122i
\(423\) 0 0
\(424\) 1.60396e8i 0.102191i
\(425\) −6.46433e8 1.11966e9i −0.408472 0.707495i
\(426\) 0 0
\(427\) −7.26592e7 4.19498e7i −0.0451641 0.0260755i
\(428\) 2.62736e9 1.61982
\(429\) 0 0
\(430\) −2.23614e8 −0.135631
\(431\) 1.83241e8 + 1.05794e8i 0.110243 + 0.0636491i 0.554108 0.832445i \(-0.313059\pi\)
−0.443864 + 0.896094i \(0.646393\pi\)
\(432\) 0 0
\(433\) −5.87978e8 1.01841e9i −0.348060 0.602857i 0.637845 0.770165i \(-0.279826\pi\)
−0.985905 + 0.167308i \(0.946493\pi\)
\(434\) 1.07973e8i 0.0634017i
\(435\) 0 0
\(436\) 1.16762e9 6.74125e8i 0.674681 0.389527i
\(437\) 1.81708e9i 1.04157i
\(438\) 0 0
\(439\) −1.21215e9 + 2.09950e9i −0.683802 + 1.18438i 0.290010 + 0.957024i \(0.406341\pi\)
−0.973812 + 0.227356i \(0.926992\pi\)
\(440\) 3.79401e7 + 2.19047e7i 0.0212331 + 0.0122590i
\(441\) 0 0
\(442\) 5.18059e6 + 6.04006e7i 0.00285366 + 0.0332708i
\(443\) −8.11271e7 −0.0443356 −0.0221678 0.999754i \(-0.507057\pi\)
−0.0221678 + 0.999754i \(0.507057\pi\)
\(444\) 0 0
\(445\) 9.60586e8 1.66378e9i 0.516745 0.895028i
\(446\) 3.22938e7 + 5.59345e7i 0.0172364 + 0.0298543i
\(447\) 0 0
\(448\) −2.31487e9 + 1.33649e9i −1.21634 + 0.702253i
\(449\) 2.29405e7 1.32447e7i 0.0119603 0.00690525i −0.494008 0.869457i \(-0.664469\pi\)
0.505968 + 0.862552i \(0.331135\pi\)
\(450\) 0 0
\(451\) −2.52030e7 4.36529e7i −0.0129370 0.0224076i
\(452\) 1.70947e9 2.96090e9i 0.870719 1.50813i
\(453\) 0 0
\(454\) 6.71275e7 0.0336670
\(455\) 2.59288e9 + 3.71649e9i 1.29045 + 1.84966i
\(456\) 0 0
\(457\) −2.28711e9 1.32046e9i −1.12094 0.647172i −0.179296 0.983795i \(-0.557382\pi\)
−0.941640 + 0.336623i \(0.890715\pi\)
\(458\) −2.96252e7 + 5.13124e7i −0.0144090 + 0.0249570i
\(459\) 0 0
\(460\) 2.47929e9i 1.18761i
\(461\) 1.91120e8 1.10343e8i 0.0908558 0.0524556i −0.453884 0.891061i \(-0.649962\pi\)
0.544740 + 0.838605i \(0.316629\pi\)
\(462\) 0 0
\(463\) 1.40461e9i 0.657691i 0.944384 + 0.328845i \(0.106659\pi\)
−0.944384 + 0.328845i \(0.893341\pi\)
\(464\) −1.17916e9 2.04237e9i −0.547976 0.949122i
\(465\) 0 0
\(466\) −1.42622e8 8.23431e7i −0.0652885 0.0376944i
\(467\) −1.70943e9 −0.776681 −0.388341 0.921516i \(-0.626952\pi\)
−0.388341 + 0.921516i \(0.626952\pi\)
\(468\) 0 0
\(469\) 2.53240e9 1.13352
\(470\) −2.42827e8 1.40197e8i −0.107884 0.0622866i
\(471\) 0 0
\(472\) −5.48711e7 9.50395e7i −0.0240185 0.0416013i
\(473\) 4.30971e8i 0.187255i
\(474\) 0 0
\(475\) −4.07872e9 + 2.35485e9i −1.74621 + 1.00817i
\(476\) 1.87215e9i 0.795640i
\(477\) 0 0
\(478\) −1.38720e8 + 2.40269e8i −0.0580952 + 0.100624i
\(479\) 1.87473e9 + 1.08237e9i 0.779405 + 0.449990i 0.836220 0.548395i \(-0.184761\pi\)
−0.0568141 + 0.998385i \(0.518094\pi\)
\(480\) 0 0
\(481\) −3.01302e8 1.41125e8i −0.123451 0.0578226i
\(482\) −1.48902e8 −0.0605669
\(483\) 0 0
\(484\) −1.22161e9 + 2.11590e9i −0.489751 + 0.848274i
\(485\) −3.89451e8 6.74549e8i −0.155009 0.268483i
\(486\) 0 0
\(487\) 3.13354e9 1.80915e9i 1.22937 0.709779i 0.262474 0.964939i \(-0.415462\pi\)
0.966899 + 0.255160i \(0.0821282\pi\)
\(488\) −9.68011e6 + 5.58881e6i −0.00377060 + 0.00217696i
\(489\) 0 0
\(490\) −1.30242e8 2.25587e8i −0.0500111 0.0866218i
\(491\) 8.96441e8 1.55268e9i 0.341772 0.591966i −0.642990 0.765875i \(-0.722306\pi\)
0.984762 + 0.173908i \(0.0556397\pi\)
\(492\) 0 0
\(493\) −1.63971e9 −0.616315
\(494\) 2.20029e8 1.88721e7i 0.0821176 0.00704328i
\(495\) 0 0
\(496\) 1.71300e9 + 9.89001e8i 0.630335 + 0.363924i
\(497\) −3.07690e9 + 5.32935e9i −1.12426 + 1.94727i
\(498\) 0 0
\(499\) 1.87794e9i 0.676596i −0.941039 0.338298i \(-0.890149\pi\)
0.941039 0.338298i \(-0.109851\pi\)
\(500\) −1.77566e9 + 1.02518e9i −0.635279 + 0.366778i
\(501\) 0 0
\(502\) 1.00897e7i 0.00355971i
\(503\) −5.65977e7 9.80300e7i −0.0198294 0.0343456i 0.855940 0.517074i \(-0.172979\pi\)
−0.875770 + 0.482729i \(0.839646\pi\)
\(504\) 0 0
\(505\) 3.66608e9 + 2.11661e9i 1.26672 + 0.731343i
\(506\) 1.72807e7 0.00592971
\(507\) 0 0
\(508\) 1.02932e9 0.348359
\(509\) −4.69915e9 2.71305e9i −1.57945 0.911898i −0.994935 0.100516i \(-0.967950\pi\)
−0.584517 0.811381i \(-0.698716\pi\)
\(510\) 0 0
\(511\) 1.25531e9 + 2.17426e9i 0.416177 + 0.720840i
\(512\) 8.98445e8i 0.295833i
\(513\) 0 0
\(514\) 2.93858e8 1.69659e8i 0.0954480 0.0551069i
\(515\) 3.13850e9i 1.01250i
\(516\) 0 0
\(517\) −2.70200e8 + 4.68001e8i −0.0859942 + 0.148946i
\(518\) 3.21807e7 + 1.85795e7i 0.0101728 + 0.00587327i
\(519\) 0 0
\(520\) 6.01517e8 5.15925e7i 0.187602 0.0160907i
\(521\) 2.65903e9 0.823741 0.411871 0.911242i \(-0.364876\pi\)
0.411871 + 0.911242i \(0.364876\pi\)
\(522\) 0 0
\(523\) −2.02223e9 + 3.50260e9i −0.618122 + 1.07062i 0.371706 + 0.928350i \(0.378773\pi\)
−0.989828 + 0.142268i \(0.954560\pi\)
\(524\) 8.05983e8 + 1.39600e9i 0.244718 + 0.423864i
\(525\) 0 0
\(526\) −1.78477e7 + 1.03044e7i −0.00534726 + 0.00308724i
\(527\) 1.19102e9 6.87637e8i 0.354473 0.204655i
\(528\) 0 0
\(529\) 7.22687e8 + 1.25173e9i 0.212254 + 0.367634i
\(530\) 1.37824e8 2.38717e8i 0.0402122 0.0696496i
\(531\) 0 0
\(532\) 6.81994e9 1.96377
\(533\) −6.29049e8 2.94637e8i −0.179945 0.0842835i
\(534\) 0 0
\(535\) −7.83478e9 4.52341e9i −2.21202 1.27711i
\(536\) 1.68691e8 2.92181e8i 0.0473168 0.0819551i
\(537\) 0 0
\(538\) 7.50633e7i 0.0207821i
\(539\) −4.34772e8 + 2.51016e8i −0.119592 + 0.0690463i
\(540\) 0 0
\(541\) 6.97904e9i 1.89498i −0.319782 0.947491i \(-0.603610\pi\)
0.319782 0.947491i \(-0.396390\pi\)
\(542\) −1.71166e7 2.96467e7i −0.00461763 0.00799796i
\(543\) 0 0
\(544\) 3.24200e8 + 1.87177e8i 0.0863410 + 0.0498490i
\(545\) −4.64244e9 −1.22845
\(546\) 0 0
\(547\) 5.47434e7 0.0143013 0.00715065 0.999974i \(-0.497724\pi\)
0.00715065 + 0.999974i \(0.497724\pi\)
\(548\) 3.12830e9 + 1.80612e9i 0.812038 + 0.468830i
\(549\) 0 0
\(550\) −2.23949e7 3.87891e7i −0.00573957 0.00994123i
\(551\) 5.97320e9i 1.52116i
\(552\) 0 0
\(553\) 1.69544e9 9.78866e8i 0.426330 0.246142i
\(554\) 3.65784e8i 0.0913989i
\(555\) 0 0
\(556\) 5.66366e8 9.80975e8i 0.139745 0.242045i
\(557\) −1.87977e8 1.08528e8i −0.0460905 0.0266103i 0.476778 0.879024i \(-0.341805\pi\)
−0.522868 + 0.852414i \(0.675138\pi\)
\(558\) 0 0
\(559\) 3.39822e9 + 4.87082e9i 0.822830 + 1.17940i
\(560\) 9.27158e9 2.23098
\(561\) 0 0
\(562\) 4.87225e7 8.43899e7i 0.0115785 0.0200546i
\(563\) −2.39971e9 4.15643e9i −0.566735 0.981614i −0.996886 0.0788572i \(-0.974873\pi\)
0.430151 0.902757i \(-0.358460\pi\)
\(564\) 0 0
\(565\) −1.01953e10 + 5.88625e9i −2.37810 + 1.37300i
\(566\) −5.95493e7 + 3.43808e7i −0.0138044 + 0.00797000i
\(567\) 0 0
\(568\) 4.09923e8 + 7.10008e8i 0.0938607 + 0.162571i
\(569\) −2.61206e9 + 4.52422e9i −0.594415 + 1.02956i 0.399214 + 0.916858i \(0.369283\pi\)
−0.993629 + 0.112699i \(0.964050\pi\)
\(570\) 0 0
\(571\) −9.53468e8 −0.214328 −0.107164 0.994241i \(-0.534177\pi\)
−0.107164 + 0.994241i \(0.534177\pi\)
\(572\) −4.96273e7 5.78605e8i −0.0110875 0.129270i
\(573\) 0 0
\(574\) 6.71858e7 + 3.87897e7i 0.0148281 + 0.00856101i
\(575\) −2.53935e9 + 4.39829e9i −0.557039 + 0.964820i
\(576\) 0 0
\(577\) 7.41729e6i 0.00160742i −1.00000 0.000803711i \(-0.999744\pi\)
1.00000 0.000803711i \(-0.000255829\pi\)
\(578\) −1.66659e8 + 9.62209e7i −0.0358990 + 0.0207263i
\(579\) 0 0
\(580\) 8.15004e9i 1.73445i
\(581\) 1.22433e9 + 2.12060e9i 0.258989 + 0.448583i
\(582\) 0 0
\(583\) −4.60080e8 2.65627e8i −0.0961597 0.0555178i
\(584\) 3.34481e8 0.0694906
\(585\) 0 0
\(586\) −2.08025e8 −0.0427046
\(587\) −5.20465e9 3.00490e9i −1.06208 0.613193i −0.136074 0.990699i \(-0.543449\pi\)
−0.926007 + 0.377505i \(0.876782\pi\)
\(588\) 0 0
\(589\) −2.50495e9 4.33870e9i −0.505121 0.874895i
\(590\) 1.88597e8i 0.0378053i
\(591\) 0 0
\(592\) −5.89531e8 + 3.40366e8i −0.116783 + 0.0674248i
\(593\) 1.00461e9i 0.197836i 0.995096 + 0.0989178i \(0.0315381\pi\)
−0.995096 + 0.0989178i \(0.968462\pi\)
\(594\) 0 0
\(595\) 3.22320e9 5.58274e9i 0.627303 1.08652i
\(596\) −5.61669e9 3.24280e9i −1.08672 0.627420i
\(597\) 0 0
\(598\) 1.95305e8 1.36259e8i 0.0373474 0.0260561i
\(599\) 4.70768e9 0.894979 0.447489 0.894289i \(-0.352318\pi\)
0.447489 + 0.894289i \(0.352318\pi\)
\(600\) 0 0
\(601\) −3.02639e9 + 5.24187e9i −0.568676 + 0.984975i 0.428022 + 0.903768i \(0.359211\pi\)
−0.996697 + 0.0812066i \(0.974123\pi\)
\(602\) −3.31651e8 5.74437e8i −0.0619575 0.107314i
\(603\) 0 0
\(604\) 1.07909e9 6.23010e8i 0.199263 0.115045i
\(605\) 7.28569e9 4.20640e9i 1.33760 0.772265i
\(606\) 0 0
\(607\) 3.56363e9 + 6.17239e9i 0.646744 + 1.12019i 0.983896 + 0.178743i \(0.0572031\pi\)
−0.337152 + 0.941450i \(0.609464\pi\)
\(608\) 6.81855e8 1.18101e9i 0.123035 0.213103i
\(609\) 0 0
\(610\) 1.92093e7 0.00342655
\(611\) 6.36406e8 + 7.41987e9i 0.112873 + 1.31599i
\(612\) 0 0
\(613\) −8.66562e8 5.00310e8i −0.151946 0.0877258i 0.422100 0.906549i \(-0.361293\pi\)
−0.574045 + 0.818824i \(0.694627\pi\)
\(614\) −3.01003e6 + 5.21352e6i −0.000524785 + 0.000908954i
\(615\) 0 0
\(616\) 1.29951e8i 0.0224000i
\(617\) 3.21958e9 1.85882e9i 0.551825 0.318596i −0.198033 0.980195i \(-0.563455\pi\)
0.749858 + 0.661599i \(0.230122\pi\)
\(618\) 0 0
\(619\) 8.30664e9i 1.40769i −0.710352 0.703847i \(-0.751464\pi\)
0.710352 0.703847i \(-0.248536\pi\)
\(620\) −3.41784e9 5.91987e9i −0.575945 0.997565i
\(621\) 0 0
\(622\) −2.32537e8 1.34255e8i −0.0387458 0.0223699i
\(623\) 5.69874e9 0.944214
\(624\) 0 0
\(625\) −1.90347e9 −0.311864
\(626\) 5.22524e8 + 3.01680e8i 0.0851327 + 0.0491514i
\(627\) 0 0
\(628\) −4.16716e9 7.21773e9i −0.671400 1.16290i
\(629\) 4.73302e8i 0.0758335i
\(630\) 0 0
\(631\) 6.78879e9 3.91951e9i 1.07570 0.621053i 0.145963 0.989290i \(-0.453372\pi\)
0.929732 + 0.368237i \(0.120038\pi\)
\(632\) 2.60821e8i 0.0410991i
\(633\) 0 0
\(634\) 1.15542e8 2.00124e8i 0.0180064 0.0311880i
\(635\) −3.06942e9 1.77213e9i −0.475717 0.274655i
\(636\) 0 0
\(637\) −2.93451e9 + 6.26517e9i −0.449830 + 0.960384i
\(638\) −5.68058e7 −0.00866004
\(639\) 0 0
\(640\) 1.23971e9 2.14724e9i 0.186935 0.323780i
\(641\) −6.36068e8 1.10170e9i −0.0953895 0.165220i 0.814382 0.580330i \(-0.197076\pi\)
−0.909771 + 0.415110i \(0.863743\pi\)
\(642\) 0 0
\(643\) 4.91826e9 2.83956e9i 0.729581 0.421224i −0.0886881 0.996059i \(-0.528267\pi\)
0.818269 + 0.574836i \(0.194934\pi\)
\(644\) 6.36899e9 3.67714e9i 0.939659 0.542512i
\(645\) 0 0
\(646\) −1.57076e8 2.72063e8i −0.0229242 0.0397059i
\(647\) 4.91513e9 8.51325e9i 0.713460 1.23575i −0.250091 0.968222i \(-0.580460\pi\)
0.963551 0.267526i \(-0.0862063\pi\)
\(648\) 0 0
\(649\) 3.63483e8 0.0521948
\(650\) −5.58960e8 2.61808e8i −0.0798332 0.0373927i
\(651\) 0 0
\(652\) −2.23091e9 1.28801e9i −0.315221 0.181993i
\(653\) −1.92707e9 + 3.33778e9i −0.270832 + 0.469096i −0.969075 0.246765i \(-0.920632\pi\)
0.698243 + 0.715861i \(0.253966\pi\)
\(654\) 0 0
\(655\) 5.55049e9i 0.771769i
\(656\) −1.23080e9 + 7.10605e8i −0.170226 + 0.0982799i
\(657\) 0 0
\(658\) 8.31725e8i 0.113812i
\(659\) −2.45749e9 4.25650e9i −0.334498 0.579367i 0.648891 0.760882i \(-0.275233\pi\)
−0.983388 + 0.181515i \(0.941900\pi\)
\(660\) 0 0
\(661\) 1.10777e10 + 6.39573e9i 1.49192 + 0.861360i 0.999957 0.00925625i \(-0.00294640\pi\)
0.491962 + 0.870616i \(0.336280\pi\)
\(662\) 3.73129e8 0.0499869
\(663\) 0 0
\(664\) 3.26225e8 0.0432443
\(665\) −2.03370e10 1.17416e10i −2.68171 1.54828i
\(666\) 0 0
\(667\) 3.22060e9 + 5.57824e9i 0.420239 + 0.727875i
\(668\) 8.63544e8i 0.112090i
\(669\) 0 0
\(670\) −5.02127e8 + 2.89903e8i −0.0644989 + 0.0372384i
\(671\) 3.70220e7i 0.00473076i
\(672\) 0 0
\(673\) −5.49257e9 + 9.51341e9i −0.694581 + 1.20305i 0.275741 + 0.961232i \(0.411077\pi\)
−0.970322 + 0.241818i \(0.922256\pi\)
\(674\) 4.04969e8 + 2.33809e8i 0.0509462 + 0.0294138i
\(675\) 0 0
\(676\) −5.12321e9 6.14806e9i −0.637864 0.765464i
\(677\) −3.14306e9 −0.389307 −0.194653 0.980872i \(-0.562358\pi\)
−0.194653 + 0.980872i \(0.562358\pi\)
\(678\) 0 0
\(679\) 1.15522e9 2.00090e9i 0.141619 0.245291i
\(680\) −4.29414e8 7.43766e8i −0.0523715 0.0907100i
\(681\) 0 0
\(682\) 4.12615e7 2.38223e7i 0.00498081 0.00287567i
\(683\) 1.33989e10 7.73584e9i 1.60915 0.929042i 0.619586 0.784929i \(-0.287301\pi\)
0.989561 0.144113i \(-0.0460328\pi\)
\(684\) 0 0
\(685\) −6.21904e9 1.07717e10i −0.739276 1.28046i
\(686\) 2.20436e7 3.81807e7i 0.00260705 0.00451554i
\(687\) 0 0
\(688\) 1.21513e10 1.42254
\(689\) −7.29428e9 + 6.25635e8i −0.849601 + 0.0728708i
\(690\) 0 0
\(691\) −4.00359e9 2.31148e9i −0.461612 0.266512i 0.251110 0.967959i \(-0.419204\pi\)
−0.712722 + 0.701447i \(0.752538\pi\)
\(692\) −5.52909e9 + 9.57666e9i −0.634282 + 1.09861i
\(693\) 0 0
\(694\) 4.66678e8i 0.0529980i
\(695\) −3.37780e9 + 1.95017e9i −0.381669 + 0.220357i
\(696\) 0 0
\(697\) 9.88145e8i 0.110537i
\(698\) 3.51213e8 + 6.08319e8i 0.0390910 + 0.0677076i
\(699\) 0 0
\(700\) −1.65078e10 9.53079e9i −1.81906 1.05023i
\(701\) 1.41767e10 1.55440 0.777200 0.629253i \(-0.216639\pi\)
0.777200 + 0.629253i \(0.216639\pi\)
\(702\) 0 0
\(703\) 1.72416e9 0.187169
\(704\) −1.02147e9 5.89747e8i −0.110337 0.0637033i
\(705\) 0 0
\(706\) 3.64332e8 + 6.31041e8i 0.0389655 + 0.0674902i
\(707\) 1.25569e10i 1.33634i
\(708\) 0 0
\(709\) 7.07624e9 4.08547e9i 0.745660 0.430507i −0.0784635 0.996917i \(-0.525001\pi\)
0.824124 + 0.566410i \(0.191668\pi\)
\(710\) 1.40895e9i 0.147737i
\(711\) 0 0
\(712\) 3.79610e8 6.57504e8i 0.0394147 0.0682682i
\(713\) −4.67864e9 2.70121e9i −0.483399 0.279091i
\(714\) 0 0
\(715\) −8.48170e8 + 1.81084e9i −0.0867784 + 0.185271i
\(716\) −1.14076e10 −1.16145
\(717\) 0 0
\(718\) −2.23297e8 + 3.86762e8i −0.0225137 + 0.0389949i
\(719\) 7.71168e9 + 1.33570e10i 0.773745 + 1.34017i 0.935497 + 0.353334i \(0.114952\pi\)
−0.161752 + 0.986831i \(0.551714\pi\)
\(720\) 0 0
\(721\) −8.06242e9 + 4.65484e9i −0.801110 + 0.462521i
\(722\) −4.65343e8 + 2.68666e8i −0.0460143 + 0.0265664i
\(723\) 0 0
\(724\) 1.63089e9 + 2.82479e9i 0.159713 + 0.276631i
\(725\) 8.34748e9 1.44583e10i 0.813527 1.40907i
\(726\) 0 0
\(727\) 5.70391e9 0.550557 0.275279 0.961365i \(-0.411230\pi\)
0.275279 + 0.961365i \(0.411230\pi\)
\(728\) 1.02467e9 + 1.46870e9i 0.0984292 + 0.141083i
\(729\) 0 0
\(730\) −4.97809e8 2.87410e8i −0.0473623 0.0273446i
\(731\) 4.22431e9 7.31672e9i 0.399986 0.692796i
\(732\) 0 0
\(733\) 1.66495e10i 1.56148i 0.624854 + 0.780742i \(0.285159\pi\)
−0.624854 + 0.780742i \(0.714841\pi\)
\(734\) −5.26217e8 + 3.03811e8i −0.0491166 + 0.0283575i
\(735\) 0 0
\(736\) 1.47056e9i 0.135959i
\(737\) 5.58730e8 + 9.67749e8i 0.0514122 + 0.0890485i
\(738\) 0 0
\(739\) −4.26718e9 2.46366e9i −0.388943 0.224556i 0.292759 0.956186i \(-0.405427\pi\)
−0.681702 + 0.731630i \(0.738760\pi\)
\(740\) 2.35251e9 0.213412
\(741\) 0 0
\(742\) 8.17647e8 0.0734772
\(743\) 8.58753e9 + 4.95801e9i 0.768082 + 0.443452i 0.832190 0.554491i \(-0.187087\pi\)
−0.0641082 + 0.997943i \(0.520420\pi\)
\(744\) 0 0
\(745\) 1.11660e10 + 1.93400e10i 0.989348 + 1.71360i
\(746\) 4.64656e8i 0.0409775i
\(747\) 0 0
\(748\) −7.15436e8 + 4.13057e8i −0.0625051 + 0.0360873i
\(749\) 2.68354e10i 2.33358i
\(750\) 0 0
\(751\) 1.12646e10 1.95109e10i 0.970456 1.68088i 0.276276 0.961078i \(-0.410900\pi\)
0.694180 0.719801i \(-0.255767\pi\)
\(752\) 1.31954e10 + 7.61835e9i 1.13151 + 0.653279i
\(753\) 0 0
\(754\) −6.42017e8 + 4.47915e8i −0.0545439 + 0.0380536i
\(755\) −4.29043e9 −0.362816
\(756\) 0 0
\(757\) 1.10819e10 1.91944e10i 0.928493 1.60820i 0.142647 0.989774i \(-0.454439\pi\)
0.785846 0.618423i \(-0.212228\pi\)
\(758\) 3.87017e8 + 6.70333e8i 0.0322766 + 0.0559047i
\(759\) 0 0
\(760\) −2.70942e9 + 1.56428e9i −0.223887 + 0.129261i
\(761\) −6.64485e9 + 3.83641e9i −0.546561 + 0.315557i −0.747734 0.663999i \(-0.768858\pi\)
0.201173 + 0.979556i \(0.435525\pi\)
\(762\) 0 0
\(763\) −6.88540e9 1.19259e10i −0.561168 0.971972i
\(764\) 9.26457e9 1.60467e10i 0.751620 1.30184i
\(765\) 0 0
\(766\) 9.13025e8 0.0733976
\(767\) 4.10807e9 2.86607e9i 0.328741 0.229352i
\(768\) 0 0
\(769\) −7.77528e9 4.48906e9i −0.616558 0.355970i 0.158970 0.987283i \(-0.449183\pi\)
−0.775528 + 0.631314i \(0.782516\pi\)
\(770\) 1.11664e8 1.93407e8i 0.00881443 0.0152670i
\(771\) 0 0
\(772\) 1.16345e10i 0.910097i
\(773\) −9.70027e9 + 5.60045e9i −0.755363 + 0.436109i −0.827628 0.561276i \(-0.810310\pi\)
0.0722655 + 0.997385i \(0.476977\pi\)
\(774\) 0 0
\(775\) 1.40026e10i 1.08057i
\(776\) −1.53906e8 2.66573e8i −0.0118233 0.0204786i
\(777\) 0 0
\(778\) 2.39238e8 + 1.38124e8i 0.0182138 + 0.0105158i
\(779\) 3.59965e9 0.272822
\(780\) 0 0
\(781\) −2.71546e9 −0.203969
\(782\) −2.93379e8 1.69382e8i −0.0219384 0.0126662i
\(783\) 0 0
\(784\) 7.07745e9 + 1.22585e10i 0.524530 + 0.908513i
\(785\) 2.86976e10i 2.11740i
\(786\) 0 0
\(787\) −9.57297e8 + 5.52696e8i −0.0700060 + 0.0404180i −0.534594 0.845109i \(-0.679536\pi\)
0.464588 + 0.885527i \(0.346202\pi\)
\(788\) 2.17144e10i 1.58090i
\(789\) 0 0
\(790\) −2.24116e8 + 3.88181e8i −0.0161726 + 0.0280117i
\(791\) −3.02421e10 1.74603e10i −2.17267 1.25439i
\(792\) 0 0
\(793\) −2.91920e8 4.18421e8i −0.0207877 0.0297960i
\(794\) −1.33712e8 −0.00947982
\(795\) 0 0
\(796\) −8.89727e9 + 1.54105e10i −0.625260 + 1.08298i
\(797\) 7.49691e9 + 1.29850e10i 0.524540 + 0.908529i 0.999592 + 0.0285717i \(0.00909588\pi\)
−0.475052 + 0.879958i \(0.657571\pi\)
\(798\) 0 0
\(799\) 9.17454e9 5.29693e9i 0.636313 0.367375i
\(800\) −3.30089e9 + 1.90577e9i −0.227938 + 0.131600i
\(801\) 0 0
\(802\) 3.39632e8 + 5.88261e8i 0.0232487 + 0.0402679i
\(803\) −5.53925e8 + 9.59426e8i −0.0377526 + 0.0653894i
\(804\) 0 0
\(805\) −2.53230e10 −1.71092
\(806\) 2.78496e8 5.94588e8i 0.0187347 0.0399985i
\(807\) 0 0
\(808\) 1.44878e9 + 8.36455e8i 0.0966192 + 0.0557831i
\(809\) 7.66062e9 1.32686e10i 0.508679 0.881059i −0.491270 0.871007i \(-0.663467\pi\)
0.999949 0.0100514i \(-0.00319951\pi\)
\(810\) 0 0
\(811\) 1.14391e10i 0.753041i 0.926408 + 0.376521i \(0.122880\pi\)
−0.926408 + 0.376521i \(0.877120\pi\)
\(812\) −2.09364e10 + 1.20877e10i −1.37232 + 0.792311i
\(813\) 0 0
\(814\) 1.63970e7i 0.00106556i
\(815\) 4.43503e9 + 7.68170e9i 0.286976 + 0.497056i
\(816\) 0 0
\(817\) −2.66536e10 1.53885e10i −1.70993 0.987229i
\(818\) −1.10294e9 −0.0704555
\(819\) 0 0
\(820\) 4.91149e9 0.311075
\(821\) −1.88617e10 1.08898e10i −1.18954 0.686782i −0.231339 0.972873i \(-0.574311\pi\)
−0.958202 + 0.286091i \(0.907644\pi\)
\(822\) 0 0
\(823\) −1.08157e9 1.87333e9i −0.0676324 0.117143i 0.830226 0.557426i \(-0.188211\pi\)
−0.897859 + 0.440284i \(0.854878\pi\)
\(824\) 1.24029e9i 0.0772287i
\(825\) 0 0
\(826\) −4.84482e8 + 2.79716e8i −0.0299122 + 0.0172698i
\(827\) 2.27847e10i 1.40079i 0.713755 + 0.700395i \(0.246993\pi\)
−0.713755 + 0.700395i \(0.753007\pi\)
\(828\) 0 0
\(829\) 4.91919e9 8.52030e9i 0.299884 0.519414i −0.676225 0.736695i \(-0.736385\pi\)
0.976109 + 0.217281i \(0.0697187\pi\)
\(830\) −4.85523e8 2.80317e8i −0.0294738 0.0170167i
\(831\) 0 0
\(832\) −1.61948e10 + 1.38904e9i −0.974865 + 0.0836148i
\(833\) 9.84168e9 0.589945
\(834\) 0 0
\(835\) −1.48672e9 + 2.57508e9i −0.0883746 + 0.153069i
\(836\) 1.50470e9 + 2.60622e9i 0.0890692 + 0.154272i
\(837\) 0 0
\(838\) 1.12879e8 6.51709e7i 0.00662614 0.00382560i
\(839\) 1.81235e10 1.04636e10i 1.05944 0.611666i 0.134160 0.990960i \(-0.457166\pi\)
0.925276 + 0.379294i \(0.123833\pi\)
\(840\) 0 0
\(841\) −1.96195e9 3.39821e9i −0.113737 0.196999i
\(842\) 3.97356e8 6.88240e8i 0.0229397 0.0397327i
\(843\) 0 0
\(844\) 1.06760e10 0.611237
\(845\) 4.69253e9 + 2.71539e10i 0.267552 + 1.54822i
\(846\) 0 0
\(847\) 2.16114e10 + 1.24774e10i 1.22206 + 0.705555i
\(848\) −7.48941e9 + 1.29720e10i −0.421757 + 0.730504i
\(849\) 0 0
\(850\) 8.78045e8i 0.0490400i
\(851\) 1.61016e9 9.29625e8i 0.0895602 0.0517076i
\(852\) 0 0
\(853\) 2.52741e10i 1.39429i 0.716928 + 0.697147i \(0.245548\pi\)
−0.716928 + 0.697147i \(0.754452\pi\)
\(854\) 2.84901e7 + 4.93462e7i 0.00156528 + 0.00271114i
\(855\) 0 0
\(856\) −3.09620e9 1.78759e9i −0.168721 0.0974114i
\(857\) 2.67167e10 1.44994 0.724969 0.688782i \(-0.241854\pi\)
0.724969 + 0.688782i \(0.241854\pi\)
\(858\) 0 0
\(859\) −8.51182e9 −0.458191 −0.229095 0.973404i \(-0.573577\pi\)
−0.229095 + 0.973404i \(0.573577\pi\)
\(860\) −3.63671e10 2.09966e10i −1.94968 1.12565i
\(861\) 0 0
\(862\) −7.18499e7 1.24448e8i −0.00382077 0.00661776i
\(863\) 5.94525e9i 0.314871i 0.987529 + 0.157435i \(0.0503226\pi\)
−0.987529 + 0.157435i \(0.949677\pi\)
\(864\) 0 0
\(865\) 3.29754e10 1.90384e10i 1.73234 1.00017i
\(866\) 7.98646e8i 0.0417871i
\(867\) 0 0
\(868\) 1.01383e10 1.75600e10i 0.526193 0.911393i
\(869\) 7.48140e8 + 4.31939e8i 0.0386735 + 0.0223282i
\(870\) 0 0
\(871\) 1.39455e10 + 6.53186e9i 0.715105 + 0.334945i
\(872\) −1.83463e9 −0.0937002
\(873\) 0 0
\(874\) −6.17032e8 + 1.06873e9i −0.0312621 + 0.0541475i
\(875\) 1.04710e10 + 1.81363e10i 0.528395 + 0.915207i
\(876\) 0 0
\(877\) 9.21976e9 5.32303e9i 0.461552 0.266477i −0.251144 0.967950i \(-0.580807\pi\)
0.712697 + 0.701472i \(0.247474\pi\)
\(878\) 1.42587e9 8.23226e8i 0.0710966 0.0410477i
\(879\) 0 0
\(880\) 2.04561e9 + 3.54310e9i 0.101189 + 0.175265i
\(881\) 1.91599e9 3.31860e9i 0.0944014 0.163508i −0.814957 0.579521i \(-0.803240\pi\)
0.909359 + 0.416013i \(0.136573\pi\)
\(882\) 0 0
\(883\) −1.75487e10 −0.857792 −0.428896 0.903354i \(-0.641097\pi\)
−0.428896 + 0.903354i \(0.641097\pi\)
\(884\) −4.82886e9 + 1.03096e10i −0.235105 + 0.501948i
\(885\) 0 0
\(886\) 4.77155e7 + 2.75486e7i 0.00230485 + 0.00133070i
\(887\) −5.37291e9 + 9.30616e9i −0.258510 + 0.447752i −0.965843 0.259128i \(-0.916565\pi\)
0.707333 + 0.706880i \(0.249898\pi\)
\(888\) 0 0
\(889\) 1.05133e10i 0.501860i
\(890\) −1.12995e9 + 6.52378e8i −0.0537273 + 0.0310195i
\(891\) 0 0
\(892\) 1.21291e10i 0.572204i
\(893\) −1.92958e10 3.34214e10i −0.906741 1.57052i
\(894\) 0 0
\(895\) 3.40174e10 + 1.96399e10i 1.58606 + 0.915714i
\(896\) 7.35465e9 0.341573
\(897\) 0 0
\(898\) −1.79902e7 −0.000829025
\(899\) 1.53798e10 + 8.87954e9i 0.705980 + 0.407598i
\(900\) 0 0
\(901\) 5.20727e9 + 9.01926e9i 0.237178 + 0.410803i
\(902\) 3.42331e7i 0.00155319i
\(903\) 0 0
\(904\) −4.02904e9 + 2.32616e9i −0.181389 + 0.104725i
\(905\) 1.12313e10i 0.503687i
\(906\) 0 0
\(907\) −1.03600e10 + 1.79440e10i −0.461034 + 0.798534i −0.999013 0.0444245i \(-0.985855\pi\)
0.537979 + 0.842958i \(0.319188\pi\)
\(908\) 1.09172e10 + 6.30303e9i 0.483960 + 0.279415i
\(909\) 0 0
\(910\) −2.63003e8 3.06635e9i −0.0115695 0.134889i
\(911\) 3.76677e10 1.65065 0.825325 0.564658i \(-0.190992\pi\)
0.825325 + 0.564658i \(0.190992\pi\)
\(912\) 0 0
\(913\) −5.40254e8 + 9.35747e8i −0.0234936 + 0.0406921i
\(914\) 8.96788e8 + 1.55328e9i 0.0388489 + 0.0672882i
\(915\) 0 0
\(916\) −9.63610e9 + 5.56341e9i −0.414255 + 0.239170i
\(917\) 1.42585e10 8.23217e9i 0.610636 0.352551i
\(918\) 0 0
\(919\) −7.80748e9 1.35229e10i −0.331823 0.574734i 0.651046 0.759038i \(-0.274330\pi\)
−0.982869 + 0.184304i \(0.940997\pi\)
\(920\) −1.68685e9 + 2.92170e9i −0.0714197 + 0.123703i
\(921\) 0 0
\(922\) −1.49878e8 −0.00629768
\(923\) −3.06900e10 + 2.14115e10i −1.28467 + 0.896273i
\(924\) 0 0
\(925\) −4.17337e9 2.40950e9i −0.173377 0.100099i
\(926\) 4.76967e8 8.26131e8i 0.0197401 0.0341909i
\(927\) 0 0
\(928\) 4.83408e9i 0.198562i
\(929\) −2.38983e10 + 1.37977e10i −0.977941 + 0.564615i −0.901648 0.432471i \(-0.857642\pi\)
−0.0762934 + 0.997085i \(0.524309\pi\)
\(930\) 0 0
\(931\) 3.58516e10i 1.45608i
\(932\) −1.54634e10 2.67835e10i −0.625677 1.08370i
\(933\) 0 0
\(934\) 1.00542e9 + 5.80477e8i 0.0403768 + 0.0233115i
\(935\) 2.84457e9 0.113809
\(936\) 0 0
\(937\) −3.75571e9 −0.149143 −0.0745715 0.997216i \(-0.523759\pi\)
−0.0745715 + 0.997216i \(0.523759\pi\)
\(938\) −1.48945e9 8.59935e8i −0.0589273 0.0340217i
\(939\) 0 0
\(940\) −2.63279e10 4.56013e10i −1.03388 1.79073i
\(941\) 3.77084e10i 1.47528i −0.675193 0.737641i \(-0.735940\pi\)
0.675193 0.737641i \(-0.264060\pi\)
\(942\) 0 0
\(943\) 3.36164e9 1.94084e9i 0.130545 0.0753701i
\(944\) 1.02485e10i 0.396512i
\(945\) 0 0
\(946\) 1.46346e8 2.53479e8i 0.00562033 0.00973470i
\(947\) 3.96761e10 + 2.29070e10i 1.51811 + 0.876483i 0.999773 + 0.0213086i \(0.00678325\pi\)
0.518340 + 0.855174i \(0.326550\pi\)
\(948\) 0 0
\(949\) 1.30467e9 + 1.52111e10i 0.0495527 + 0.577736i
\(950\) 3.19857e9 0.121039
\(951\) 0 0
\(952\) 1.27376e9 2.20622e9i 0.0478475 0.0828743i
\(953\) −9.15154e9 1.58509e10i −0.342507 0.593239i 0.642391 0.766377i \(-0.277943\pi\)
−0.984898 + 0.173138i \(0.944609\pi\)
\(954\) 0 0
\(955\) −5.52538e10 + 3.19008e10i −2.05282 + 1.18519i
\(956\) −4.51209e10 + 2.60506e10i −1.67023 + 0.964305i
\(957\) 0 0
\(958\) −7.35089e8 1.27321e9i −0.0270123 0.0467866i
\(959\) 1.84474e10 3.19519e10i 0.675415 1.16985i
\(960\) 0 0
\(961\) 1.26175e10 0.458609
\(962\) 1.29291e8 + 1.85318e8i 0.00468225 + 0.00671127i
\(963\) 0 0
\(964\) −2.42164e10 1.39813e10i −0.870643 0.502666i
\(965\) 2.00306e10 3.46940e10i 0.717544 1.24282i
\(966\) 0 0
\(967\) 2.62013e10i 0.931816i 0.884833 + 0.465908i \(0.154272\pi\)
−0.884833 + 0.465908i \(0.845728\pi\)
\(968\) 2.87920e9 1.66231e9i 0.102026 0.0589045i
\(969\) 0 0
\(970\) 5.28988e8i 0.0186099i
\(971\) 1.52480e9 + 2.64103e9i 0.0534497 + 0.0925777i 0.891512 0.452996i \(-0.149645\pi\)
−0.838063 + 0.545574i \(0.816312\pi\)
\(972\) 0 0
\(973\) −1.00195e10 5.78477e9i −0.348700 0.201322i
\(974\) −2.45735e9 −0.0852141
\(975\) 0 0
\(976\) −1.04384e9 −0.0359385
\(977\) −3.81568e10 2.20298e10i −1.30900 0.755754i −0.327074 0.944999i \(-0.606063\pi\)
−0.981930 + 0.189245i \(0.939396\pi\)
\(978\) 0 0
\(979\) 1.25733e9 + 2.17775e9i 0.0428261 + 0.0741770i
\(980\) 4.89172e10i 1.66024i
\(981\) 0 0
\(982\) −1.05450e9 + 6.08814e8i −0.0355349 + 0.0205161i
\(983\) 3.19323e10i 1.07224i 0.844141 + 0.536122i \(0.180111\pi\)
−0.844141 + 0.536122i \(0.819889\pi\)
\(984\) 0 0
\(985\) 3.73846e10 6.47521e10i 1.24643 2.15887i
\(986\) 9.64408e8 + 5.56801e8i 0.0320399 + 0.0184983i
\(987\) 0 0
\(988\) 3.75561e10 + 1.75907e10i 1.23889 + 0.580277i
\(989\) −3.31883e10 −1.09093
\(990\) 0 0
\(991\) −1.83299e10 + 3.17483e10i −0.598277 + 1.03625i 0.394798 + 0.918768i \(0.370814\pi\)
−0.993075 + 0.117478i \(0.962519\pi\)
\(992\) −2.02724e9 3.51129e9i −0.0659349 0.114203i
\(993\) 0 0
\(994\) 3.61941e9 2.08966e9i 0.116892 0.0674876i
\(995\) 5.30632e10 3.06360e10i 1.70770 0.985943i
\(996\) 0 0
\(997\) −2.93042e10 5.07563e10i −0.936476 1.62202i −0.771981 0.635646i \(-0.780734\pi\)
−0.164495 0.986378i \(-0.552600\pi\)
\(998\) −6.37697e8 + 1.10452e9i −0.0203076 + 0.0351737i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.8.q.b.82.4 14
3.2 odd 2 13.8.e.a.4.4 14
12.11 even 2 208.8.w.a.17.7 14
13.10 even 6 inner 117.8.q.b.10.4 14
39.17 odd 6 169.8.b.d.168.8 14
39.20 even 12 169.8.a.g.1.8 14
39.23 odd 6 13.8.e.a.10.4 yes 14
39.32 even 12 169.8.a.g.1.7 14
39.35 odd 6 169.8.b.d.168.7 14
156.23 even 6 208.8.w.a.49.7 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.8.e.a.4.4 14 3.2 odd 2
13.8.e.a.10.4 yes 14 39.23 odd 6
117.8.q.b.10.4 14 13.10 even 6 inner
117.8.q.b.82.4 14 1.1 even 1 trivial
169.8.a.g.1.7 14 39.32 even 12
169.8.a.g.1.8 14 39.20 even 12
169.8.b.d.168.7 14 39.35 odd 6
169.8.b.d.168.8 14 39.17 odd 6
208.8.w.a.17.7 14 12.11 even 2
208.8.w.a.49.7 14 156.23 even 6