Properties

Label 117.8.q.b.82.2
Level $117$
Weight $8$
Character 117.82
Analytic conductor $36.549$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [117,8,Mod(10,117)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("117.10"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(117, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 117.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.5490479816\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 1279 x^{12} + 629380 x^{10} + 148562016 x^{8} + 16872573312 x^{6} + 790180980480 x^{4} + \cdots + 4669637050368 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{7}\cdot 13^{4} \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 82.2
Root \(14.7644i\) of defining polynomial
Character \(\chi\) \(=\) 117.82
Dual form 117.8.q.b.10.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-12.7863 - 7.38219i) q^{2} +(44.9933 + 77.9308i) q^{4} -248.787i q^{5} +(497.017 - 286.953i) q^{7} +561.243i q^{8} +(-1836.59 + 3181.07i) q^{10} +(-3411.39 - 1969.56i) q^{11} +(2867.43 - 7384.20i) q^{13} -8473.37 q^{14} +(9902.35 - 17151.4i) q^{16} +(7791.62 + 13495.5i) q^{17} +(-1742.44 + 1006.00i) q^{19} +(19388.2 - 11193.8i) q^{20} +(29079.4 + 50367.0i) q^{22} +(33680.6 - 58336.5i) q^{23} +16229.9 q^{25} +(-91175.3 + 73248.9i) q^{26} +(44724.9 + 25822.0i) q^{28} +(94582.0 - 163821. i) q^{29} -281068. i q^{31} +(-191015. + 110282. i) q^{32} -230077. i q^{34} +(-71390.3 - 123652. i) q^{35} +(228285. + 131800. i) q^{37} +29705.8 q^{38} +139630. q^{40} +(125678. + 72560.2i) q^{41} +(-371259. - 643040. i) q^{43} -354469. i q^{44} +(-861302. + 497273. i) q^{46} +1.08055e6i q^{47} +(-247087. + 427968. i) q^{49} +(-207521. - 119812. i) q^{50} +(704471. - 108779. i) q^{52} -1.63799e6 q^{53} +(-490002. + 848709. i) q^{55} +(161050. + 278947. i) q^{56} +(-2.41871e6 + 1.39644e6i) q^{58} +(-778187. + 449287. i) q^{59} +(-254459. - 440737. i) q^{61} +(-2.07490e6 + 3.59383e6i) q^{62} +721500. q^{64} +(-1.83709e6 - 713379. i) q^{65} +(315772. + 182311. i) q^{67} +(-701142. + 1.21441e6i) q^{68} +2.10806e6i q^{70} +(2.46548e6 - 1.42345e6i) q^{71} +4.44132e6i q^{73} +(-1.94595e6 - 3.37048e6i) q^{74} +(-156796. - 90526.4i) q^{76} -2.26069e6 q^{77} -6.66251e6 q^{79} +(-4.26704e6 - 2.46358e6i) q^{80} +(-1.07131e6 - 1.85556e6i) q^{82} -4.05229e6i q^{83} +(3.35750e6 - 1.93846e6i) q^{85} +1.09628e7i q^{86} +(1.10540e6 - 1.91462e6i) q^{88} +(1.01547e6 + 586279. i) q^{89} +(-693759. - 4.49289e6i) q^{91} +6.06161e6 q^{92} +(7.97686e6 - 1.38163e7i) q^{94} +(250279. + 433496. i) q^{95} +(-1.12996e7 + 6.52384e6i) q^{97} +(6.31867e6 - 3.64809e6i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 3 q^{2} + 383 q^{4} - 2772 q^{7} - 509 q^{10} - 6516 q^{11} + 5109 q^{13} + 47916 q^{14} - 633 q^{16} + 38403 q^{17} + 43254 q^{19} - 89409 q^{20} - 125882 q^{22} + 68550 q^{23} + 39380 q^{25} - 361959 q^{26}+ \cdots - 16173003 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{1}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −12.7863 7.38219i −1.13016 0.652499i −0.186186 0.982514i \(-0.559613\pi\)
−0.943976 + 0.330015i \(0.892946\pi\)
\(3\) 0 0
\(4\) 44.9933 + 77.9308i 0.351510 + 0.608834i
\(5\) 248.787i 0.890088i −0.895509 0.445044i \(-0.853188\pi\)
0.895509 0.445044i \(-0.146812\pi\)
\(6\) 0 0
\(7\) 497.017 286.953i 0.547682 0.316204i −0.200505 0.979693i \(-0.564258\pi\)
0.748187 + 0.663488i \(0.230925\pi\)
\(8\) 561.243i 0.387557i
\(9\) 0 0
\(10\) −1836.59 + 3181.07i −0.580782 + 1.00594i
\(11\) −3411.39 1969.56i −0.772781 0.446165i 0.0610849 0.998133i \(-0.480544\pi\)
−0.833866 + 0.551967i \(0.813877\pi\)
\(12\) 0 0
\(13\) 2867.43 7384.20i 0.361985 0.932184i
\(14\) −8473.37 −0.825292
\(15\) 0 0
\(16\) 9902.35 17151.4i 0.604391 1.04684i
\(17\) 7791.62 + 13495.5i 0.384642 + 0.666220i 0.991719 0.128423i \(-0.0409915\pi\)
−0.607077 + 0.794643i \(0.707658\pi\)
\(18\) 0 0
\(19\) −1742.44 + 1006.00i −0.0582800 + 0.0336480i −0.528857 0.848711i \(-0.677379\pi\)
0.470577 + 0.882359i \(0.344046\pi\)
\(20\) 19388.2 11193.8i 0.541916 0.312875i
\(21\) 0 0
\(22\) 29079.4 + 50367.0i 0.582245 + 1.00848i
\(23\) 33680.6 58336.5i 0.577208 0.999753i −0.418590 0.908175i \(-0.637476\pi\)
0.995798 0.0915781i \(-0.0291911\pi\)
\(24\) 0 0
\(25\) 16229.9 0.207743
\(26\) −91175.3 + 73248.9i −1.01735 + 0.817324i
\(27\) 0 0
\(28\) 44724.9 + 25822.0i 0.385032 + 0.222298i
\(29\) 94582.0 163821.i 0.720138 1.24732i −0.240807 0.970573i \(-0.577412\pi\)
0.960944 0.276742i \(-0.0892547\pi\)
\(30\) 0 0
\(31\) 281068.i 1.69452i −0.531181 0.847258i \(-0.678252\pi\)
0.531181 0.847258i \(-0.321748\pi\)
\(32\) −191015. + 110282.i −1.03049 + 0.594951i
\(33\) 0 0
\(34\) 230077.i 1.00391i
\(35\) −71390.3 123652.i −0.281450 0.487485i
\(36\) 0 0
\(37\) 228285. + 131800.i 0.740920 + 0.427770i 0.822404 0.568904i \(-0.192633\pi\)
−0.0814838 + 0.996675i \(0.525966\pi\)
\(38\) 29705.8 0.0878212
\(39\) 0 0
\(40\) 139630. 0.344960
\(41\) 125678. + 72560.2i 0.284784 + 0.164420i 0.635587 0.772029i \(-0.280758\pi\)
−0.350803 + 0.936449i \(0.614091\pi\)
\(42\) 0 0
\(43\) −371259. 643040.i −0.712095 1.23338i −0.964069 0.265650i \(-0.914413\pi\)
0.251975 0.967734i \(-0.418920\pi\)
\(44\) 354469.i 0.627327i
\(45\) 0 0
\(46\) −861302. + 497273.i −1.30468 + 0.753255i
\(47\) 1.08055e6i 1.51811i 0.651024 + 0.759057i \(0.274340\pi\)
−0.651024 + 0.759057i \(0.725660\pi\)
\(48\) 0 0
\(49\) −247087. + 427968.i −0.300030 + 0.519667i
\(50\) −207521. 119812.i −0.234784 0.135552i
\(51\) 0 0
\(52\) 704471. 108779.i 0.694787 0.107284i
\(53\) −1.63799e6 −1.51128 −0.755642 0.654985i \(-0.772675\pi\)
−0.755642 + 0.654985i \(0.772675\pi\)
\(54\) 0 0
\(55\) −490002. + 848709.i −0.397126 + 0.687843i
\(56\) 161050. + 278947.i 0.122547 + 0.212258i
\(57\) 0 0
\(58\) −2.41871e6 + 1.39644e6i −1.62774 + 0.939779i
\(59\) −778187. + 449287.i −0.493290 + 0.284801i −0.725938 0.687760i \(-0.758594\pi\)
0.232649 + 0.972561i \(0.425261\pi\)
\(60\) 0 0
\(61\) −254459. 440737.i −0.143537 0.248614i 0.785289 0.619129i \(-0.212514\pi\)
−0.928826 + 0.370516i \(0.879181\pi\)
\(62\) −2.07490e6 + 3.59383e6i −1.10567 + 1.91508i
\(63\) 0 0
\(64\) 721500. 0.344038
\(65\) −1.83709e6 713379.i −0.829726 0.322198i
\(66\) 0 0
\(67\) 315772. + 182311.i 0.128266 + 0.0740544i 0.562760 0.826620i \(-0.309739\pi\)
−0.434494 + 0.900675i \(0.643073\pi\)
\(68\) −701142. + 1.21441e6i −0.270411 + 0.468366i
\(69\) 0 0
\(70\) 2.10806e6i 0.734583i
\(71\) 2.46548e6 1.42345e6i 0.817518 0.471994i −0.0320418 0.999487i \(-0.510201\pi\)
0.849560 + 0.527492i \(0.176868\pi\)
\(72\) 0 0
\(73\) 4.44132e6i 1.33623i 0.744057 + 0.668116i \(0.232899\pi\)
−0.744057 + 0.668116i \(0.767101\pi\)
\(74\) −1.94595e6 3.37048e6i −0.558240 0.966899i
\(75\) 0 0
\(76\) −156796. 90526.4i −0.0409721 0.0236552i
\(77\) −2.26069e6 −0.564318
\(78\) 0 0
\(79\) −6.66251e6 −1.52035 −0.760174 0.649720i \(-0.774886\pi\)
−0.760174 + 0.649720i \(0.774886\pi\)
\(80\) −4.26704e6 2.46358e6i −0.931776 0.537961i
\(81\) 0 0
\(82\) −1.07131e6 1.85556e6i −0.214568 0.371643i
\(83\) 4.05229e6i 0.777906i −0.921258 0.388953i \(-0.872837\pi\)
0.921258 0.388953i \(-0.127163\pi\)
\(84\) 0 0
\(85\) 3.35750e6 1.93846e6i 0.592994 0.342365i
\(86\) 1.09628e7i 1.85856i
\(87\) 0 0
\(88\) 1.10540e6 1.91462e6i 0.172915 0.299497i
\(89\) 1.01547e6 + 586279.i 0.152686 + 0.0881535i 0.574397 0.818577i \(-0.305237\pi\)
−0.421710 + 0.906731i \(0.638570\pi\)
\(90\) 0 0
\(91\) −693759. 4.49289e6i −0.0965081 0.625002i
\(92\) 6.06161e6 0.811578
\(93\) 0 0
\(94\) 7.97686e6 1.38163e7i 0.990568 1.71571i
\(95\) 250279. + 433496.i 0.0299497 + 0.0518744i
\(96\) 0 0
\(97\) −1.12996e7 + 6.52384e6i −1.25708 + 0.725776i −0.972506 0.232878i \(-0.925186\pi\)
−0.284574 + 0.958654i \(0.591852\pi\)
\(98\) 6.31867e6 3.64809e6i 0.678164 0.391538i
\(99\) 0 0
\(100\) 730240. + 1.26481e6i 0.0730240 + 0.126481i
\(101\) −712550. + 1.23417e6i −0.0688162 + 0.119193i −0.898380 0.439218i \(-0.855256\pi\)
0.829564 + 0.558411i \(0.188589\pi\)
\(102\) 0 0
\(103\) 3.43743e6 0.309959 0.154979 0.987918i \(-0.450469\pi\)
0.154979 + 0.987918i \(0.450469\pi\)
\(104\) 4.14433e6 + 1.60932e6i 0.361275 + 0.140290i
\(105\) 0 0
\(106\) 2.09439e7 + 1.20920e7i 1.70800 + 0.986112i
\(107\) −4.55117e6 + 7.88286e6i −0.359153 + 0.622072i −0.987820 0.155604i \(-0.950268\pi\)
0.628666 + 0.777675i \(0.283601\pi\)
\(108\) 0 0
\(109\) 3.25125e6i 0.240468i 0.992746 + 0.120234i \(0.0383646\pi\)
−0.992746 + 0.120234i \(0.961635\pi\)
\(110\) 1.25307e7 7.23458e6i 0.897634 0.518249i
\(111\) 0 0
\(112\) 1.13660e7i 0.764445i
\(113\) −1.18415e7 2.05100e7i −0.772023 1.33718i −0.936452 0.350794i \(-0.885912\pi\)
0.164429 0.986389i \(-0.447422\pi\)
\(114\) 0 0
\(115\) −1.45134e7 8.37930e6i −0.889868 0.513766i
\(116\) 1.70222e7 1.01254
\(117\) 0 0
\(118\) 1.32669e7 0.743329
\(119\) 7.74515e6 + 4.47166e6i 0.421323 + 0.243251i
\(120\) 0 0
\(121\) −1.98522e6 3.43850e6i −0.101873 0.176449i
\(122\) 7.51387e6i 0.374631i
\(123\) 0 0
\(124\) 2.19039e7 1.26462e7i 1.03168 0.595640i
\(125\) 2.34743e7i 1.07500i
\(126\) 0 0
\(127\) 9.29215e6 1.60945e7i 0.402535 0.697210i −0.591497 0.806308i \(-0.701463\pi\)
0.994031 + 0.109097i \(0.0347960\pi\)
\(128\) 1.52246e7 + 8.78990e6i 0.641667 + 0.370467i
\(129\) 0 0
\(130\) 1.82234e7 + 2.26833e7i 0.727490 + 0.905532i
\(131\) 1.85251e7 0.719964 0.359982 0.932959i \(-0.382783\pi\)
0.359982 + 0.932959i \(0.382783\pi\)
\(132\) 0 0
\(133\) −577348. + 999996.i −0.0212793 + 0.0368568i
\(134\) −2.69171e6 4.66217e6i −0.0966409 0.167387i
\(135\) 0 0
\(136\) −7.57425e6 + 4.37299e6i −0.258198 + 0.149071i
\(137\) 4.37505e6 2.52594e6i 0.145366 0.0839268i −0.425553 0.904933i \(-0.639920\pi\)
0.570919 + 0.821007i \(0.306587\pi\)
\(138\) 0 0
\(139\) −7.79200e6 1.34961e7i −0.246092 0.426244i 0.716346 0.697745i \(-0.245813\pi\)
−0.962438 + 0.271501i \(0.912480\pi\)
\(140\) 6.42417e6 1.11270e7i 0.197865 0.342712i
\(141\) 0 0
\(142\) −4.20326e7 −1.23190
\(143\) −2.43255e7 + 1.95428e7i −0.695643 + 0.558869i
\(144\) 0 0
\(145\) −4.07565e7 2.35308e7i −1.11022 0.640986i
\(146\) 3.27866e7 5.67881e7i 0.871890 1.51016i
\(147\) 0 0
\(148\) 2.37206e7i 0.601463i
\(149\) −3.21304e7 + 1.85505e7i −0.795727 + 0.459413i −0.841975 0.539517i \(-0.818607\pi\)
0.0462480 + 0.998930i \(0.485274\pi\)
\(150\) 0 0
\(151\) 4.72742e7i 1.11739i 0.829373 + 0.558695i \(0.188698\pi\)
−0.829373 + 0.558695i \(0.811302\pi\)
\(152\) −564609. 977931.i −0.0130405 0.0225869i
\(153\) 0 0
\(154\) 2.89059e7 + 1.66888e7i 0.637770 + 0.368217i
\(155\) −6.99262e7 −1.50827
\(156\) 0 0
\(157\) 6.68124e7 1.37787 0.688935 0.724823i \(-0.258078\pi\)
0.688935 + 0.724823i \(0.258078\pi\)
\(158\) 8.51889e7 + 4.91839e7i 1.71824 + 0.992025i
\(159\) 0 0
\(160\) 2.74368e7 + 4.75220e7i 0.529559 + 0.917223i
\(161\) 3.86590e7i 0.730063i
\(162\) 0 0
\(163\) −4.15217e7 + 2.39725e7i −0.750962 + 0.433568i −0.826041 0.563609i \(-0.809412\pi\)
0.0750793 + 0.997178i \(0.476079\pi\)
\(164\) 1.30589e7i 0.231181i
\(165\) 0 0
\(166\) −2.99148e7 + 5.18139e7i −0.507583 + 0.879160i
\(167\) 4.11000e7 + 2.37291e7i 0.682864 + 0.394252i 0.800933 0.598753i \(-0.204337\pi\)
−0.118069 + 0.993005i \(0.537670\pi\)
\(168\) 0 0
\(169\) −4.63043e7 4.23473e7i −0.737934 0.674873i
\(170\) −5.72402e7 −0.893572
\(171\) 0 0
\(172\) 3.34084e7 5.78650e7i 0.500617 0.867095i
\(173\) 5.19255e7 + 8.99376e7i 0.762464 + 1.32063i 0.941577 + 0.336798i \(0.109344\pi\)
−0.179113 + 0.983828i \(0.557323\pi\)
\(174\) 0 0
\(175\) 8.06657e6 4.65723e6i 0.113777 0.0656893i
\(176\) −6.75614e7 + 3.90066e7i −0.934124 + 0.539317i
\(177\) 0 0
\(178\) −8.65604e6 1.49927e7i −0.115040 0.199255i
\(179\) 1.01888e7 1.76475e7i 0.132782 0.229984i −0.791966 0.610565i \(-0.790942\pi\)
0.924748 + 0.380581i \(0.124276\pi\)
\(180\) 0 0
\(181\) −5.61052e7 −0.703280 −0.351640 0.936135i \(-0.614376\pi\)
−0.351640 + 0.936135i \(0.614376\pi\)
\(182\) −2.42967e7 + 6.25690e7i −0.298743 + 0.769324i
\(183\) 0 0
\(184\) 3.27409e7 + 1.89030e7i 0.387462 + 0.223701i
\(185\) 3.27902e7 5.67944e7i 0.380753 0.659484i
\(186\) 0 0
\(187\) 6.13844e7i 0.686456i
\(188\) −8.42085e7 + 4.86178e7i −0.924279 + 0.533633i
\(189\) 0 0
\(190\) 7.39043e6i 0.0781686i
\(191\) −4.54840e7 7.87807e7i −0.472326 0.818093i 0.527172 0.849759i \(-0.323252\pi\)
−0.999499 + 0.0316651i \(0.989919\pi\)
\(192\) 0 0
\(193\) −5.70124e7 3.29162e7i −0.570846 0.329578i 0.186641 0.982428i \(-0.440240\pi\)
−0.757487 + 0.652850i \(0.773573\pi\)
\(194\) 1.92641e8 1.89427
\(195\) 0 0
\(196\) −4.44691e7 −0.421854
\(197\) −1.26253e8 7.28923e7i −1.17655 0.679281i −0.221336 0.975198i \(-0.571042\pi\)
−0.955214 + 0.295916i \(0.904375\pi\)
\(198\) 0 0
\(199\) 4.88672e7 + 8.46405e7i 0.439574 + 0.761364i 0.997657 0.0684210i \(-0.0217961\pi\)
−0.558083 + 0.829785i \(0.688463\pi\)
\(200\) 9.10894e6i 0.0805124i
\(201\) 0 0
\(202\) 1.82218e7 1.05204e7i 0.155547 0.0898050i
\(203\) 1.08562e8i 0.910843i
\(204\) 0 0
\(205\) 1.80520e7 3.12670e7i 0.146348 0.253483i
\(206\) −4.39521e7 2.53758e7i −0.350304 0.202248i
\(207\) 0 0
\(208\) −9.82549e7 1.22301e8i −0.757064 0.942343i
\(209\) 7.92551e6 0.0600503
\(210\) 0 0
\(211\) 6.34096e7 1.09829e8i 0.464693 0.804872i −0.534494 0.845172i \(-0.679498\pi\)
0.999188 + 0.0402998i \(0.0128313\pi\)
\(212\) −7.36987e7 1.27650e8i −0.531232 0.920121i
\(213\) 0 0
\(214\) 1.16385e8 6.71951e7i 0.811802 0.468694i
\(215\) −1.59980e8 + 9.23645e7i −1.09782 + 0.633827i
\(216\) 0 0
\(217\) −8.06534e7 1.39696e8i −0.535813 0.928056i
\(218\) 2.40014e7 4.15716e7i 0.156905 0.271768i
\(219\) 0 0
\(220\) −8.81874e7 −0.558376
\(221\) 1.21995e8 1.88376e7i 0.760274 0.117396i
\(222\) 0 0
\(223\) 1.54510e8 + 8.92066e7i 0.933019 + 0.538679i 0.887765 0.460296i \(-0.152257\pi\)
0.0452542 + 0.998976i \(0.485590\pi\)
\(224\) −6.32918e7 + 1.09625e8i −0.376252 + 0.651688i
\(225\) 0 0
\(226\) 3.49663e8i 2.01498i
\(227\) −9.00440e7 + 5.19869e7i −0.510934 + 0.294988i −0.733217 0.679994i \(-0.761982\pi\)
0.222284 + 0.974982i \(0.428649\pi\)
\(228\) 0 0
\(229\) 4.93769e7i 0.271706i 0.990729 + 0.135853i \(0.0433776\pi\)
−0.990729 + 0.135853i \(0.956622\pi\)
\(230\) 1.23715e8 + 2.14281e8i 0.670464 + 1.16128i
\(231\) 0 0
\(232\) 9.19433e7 + 5.30835e7i 0.483406 + 0.279095i
\(233\) −2.49971e8 −1.29462 −0.647312 0.762225i \(-0.724107\pi\)
−0.647312 + 0.762225i \(0.724107\pi\)
\(234\) 0 0
\(235\) 2.68828e8 1.35126
\(236\) −7.00265e7 4.04298e7i −0.346793 0.200221i
\(237\) 0 0
\(238\) −6.60213e7 1.14352e8i −0.317442 0.549826i
\(239\) 3.95989e7i 0.187625i 0.995590 + 0.0938124i \(0.0299054\pi\)
−0.995590 + 0.0938124i \(0.970095\pi\)
\(240\) 0 0
\(241\) −1.70708e8 + 9.85581e7i −0.785585 + 0.453558i −0.838406 0.545046i \(-0.816512\pi\)
0.0528210 + 0.998604i \(0.483179\pi\)
\(242\) 5.86210e7i 0.265889i
\(243\) 0 0
\(244\) 2.28980e7 3.96604e7i 0.100910 0.174781i
\(245\) 1.06473e8 + 6.14721e7i 0.462549 + 0.267053i
\(246\) 0 0
\(247\) 2.43217e6 + 1.57511e7i 0.0102696 + 0.0665078i
\(248\) 1.57747e8 0.656722
\(249\) 0 0
\(250\) −1.73292e8 + 3.00150e8i −0.701435 + 1.21492i
\(251\) −1.40289e7 2.42988e7i −0.0559972 0.0969900i 0.836668 0.547710i \(-0.184500\pi\)
−0.892665 + 0.450720i \(0.851167\pi\)
\(252\) 0 0
\(253\) −2.29795e8 + 1.32672e8i −0.892110 + 0.515060i
\(254\) −2.37625e8 + 1.37193e8i −0.909858 + 0.525307i
\(255\) 0 0
\(256\) −1.75953e8 3.04760e8i −0.655477 1.13532i
\(257\) −5.58401e7 + 9.67178e7i −0.205201 + 0.355419i −0.950197 0.311650i \(-0.899118\pi\)
0.744996 + 0.667069i \(0.232452\pi\)
\(258\) 0 0
\(259\) 1.51282e8 0.541051
\(260\) −2.70629e7 1.75263e8i −0.0954920 0.618421i
\(261\) 0 0
\(262\) −2.36868e8 1.36756e8i −0.813676 0.469776i
\(263\) 1.61308e8 2.79393e8i 0.546776 0.947044i −0.451717 0.892162i \(-0.649188\pi\)
0.998493 0.0548828i \(-0.0174785\pi\)
\(264\) 0 0
\(265\) 4.07511e8i 1.34518i
\(266\) 1.47643e7 8.52418e6i 0.0480981 0.0277694i
\(267\) 0 0
\(268\) 3.28111e7i 0.104124i
\(269\) −2.11106e8 3.65647e8i −0.661254 1.14532i −0.980287 0.197581i \(-0.936691\pi\)
0.319033 0.947744i \(-0.396642\pi\)
\(270\) 0 0
\(271\) −1.37631e8 7.94615e7i −0.420073 0.242529i 0.275036 0.961434i \(-0.411310\pi\)
−0.695108 + 0.718905i \(0.744644\pi\)
\(272\) 3.08621e8 0.929897
\(273\) 0 0
\(274\) −7.45878e7 −0.219049
\(275\) −5.53666e7 3.19659e7i −0.160540 0.0926879i
\(276\) 0 0
\(277\) −1.43949e8 2.49327e8i −0.406940 0.704840i 0.587605 0.809148i \(-0.300071\pi\)
−0.994545 + 0.104307i \(0.966737\pi\)
\(278\) 2.30088e8i 0.642299i
\(279\) 0 0
\(280\) 6.93985e7 4.00673e7i 0.188928 0.109078i
\(281\) 6.26146e8i 1.68346i 0.539897 + 0.841731i \(0.318463\pi\)
−0.539897 + 0.841731i \(0.681537\pi\)
\(282\) 0 0
\(283\) 2.36259e7 4.09212e7i 0.0619634 0.107324i −0.833380 0.552701i \(-0.813597\pi\)
0.895343 + 0.445377i \(0.146930\pi\)
\(284\) 2.21860e8 + 1.28091e8i 0.574732 + 0.331822i
\(285\) 0 0
\(286\) 4.55303e8 7.03044e7i 1.15085 0.177706i
\(287\) 8.32855e7 0.207961
\(288\) 0 0
\(289\) 8.37505e7 1.45060e8i 0.204101 0.353513i
\(290\) 3.47417e8 + 6.01745e8i 0.836486 + 1.44884i
\(291\) 0 0
\(292\) −3.46115e8 + 1.99830e8i −0.813543 + 0.469700i
\(293\) 6.60540e8 3.81363e8i 1.53413 0.885730i 0.534965 0.844874i \(-0.320325\pi\)
0.999165 0.0408560i \(-0.0130085\pi\)
\(294\) 0 0
\(295\) 1.11777e8 + 1.93603e8i 0.253498 + 0.439071i
\(296\) −7.39720e7 + 1.28123e8i −0.165785 + 0.287149i
\(297\) 0 0
\(298\) 5.47772e8 1.19907
\(299\) −3.34192e8 4.15980e8i −0.723014 0.899959i
\(300\) 0 0
\(301\) −3.69045e8 2.13068e8i −0.780003 0.450335i
\(302\) 3.48987e8 6.04463e8i 0.729096 1.26283i
\(303\) 0 0
\(304\) 3.98469e7i 0.0813462i
\(305\) −1.09650e8 + 6.33063e7i −0.221288 + 0.127761i
\(306\) 0 0
\(307\) 4.52948e8i 0.893436i −0.894675 0.446718i \(-0.852593\pi\)
0.894675 0.446718i \(-0.147407\pi\)
\(308\) −1.01716e8 1.76177e8i −0.198364 0.343576i
\(309\) 0 0
\(310\) 8.94098e8 + 5.16208e8i 1.70459 + 0.984144i
\(311\) 4.98788e8 0.940274 0.470137 0.882594i \(-0.344205\pi\)
0.470137 + 0.882594i \(0.344205\pi\)
\(312\) 0 0
\(313\) 9.49928e8 1.75100 0.875498 0.483221i \(-0.160533\pi\)
0.875498 + 0.483221i \(0.160533\pi\)
\(314\) −8.54285e8 4.93222e8i −1.55722 0.899059i
\(315\) 0 0
\(316\) −2.99768e8 5.19214e8i −0.534418 0.925639i
\(317\) 8.74259e8i 1.54146i −0.637161 0.770731i \(-0.719891\pi\)
0.637161 0.770731i \(-0.280109\pi\)
\(318\) 0 0
\(319\) −6.45311e8 + 3.72571e8i −1.11302 + 0.642601i
\(320\) 1.79500e8i 0.306224i
\(321\) 0 0
\(322\) −2.85388e8 + 4.94306e8i −0.476365 + 0.825089i
\(323\) −2.71529e7 1.56767e7i −0.0448339 0.0258849i
\(324\) 0 0
\(325\) 4.65382e7 1.19845e8i 0.0751999 0.193655i
\(326\) 7.07879e8 1.13161
\(327\) 0 0
\(328\) −4.07239e7 + 7.05358e7i −0.0637222 + 0.110370i
\(329\) 3.10069e8 + 5.37055e8i 0.480034 + 0.831444i
\(330\) 0 0
\(331\) 7.98662e8 4.61108e8i 1.21050 0.698883i 0.247632 0.968854i \(-0.420348\pi\)
0.962868 + 0.269971i \(0.0870142\pi\)
\(332\) 3.15798e8 1.82326e8i 0.473616 0.273442i
\(333\) 0 0
\(334\) −3.50345e8 6.06816e8i −0.514498 0.891137i
\(335\) 4.53566e7 7.85600e7i 0.0659150 0.114168i
\(336\) 0 0
\(337\) 1.85249e8 0.263664 0.131832 0.991272i \(-0.457914\pi\)
0.131832 + 0.991272i \(0.457914\pi\)
\(338\) 2.79446e8 + 8.83293e8i 0.393631 + 1.24422i
\(339\) 0 0
\(340\) 3.02131e8 + 1.74435e8i 0.416887 + 0.240690i
\(341\) −5.53582e8 + 9.58832e8i −0.756034 + 1.30949i
\(342\) 0 0
\(343\) 7.56246e8i 1.01189i
\(344\) 3.60902e8 2.08367e8i 0.478007 0.275977i
\(345\) 0 0
\(346\) 1.53329e9i 1.99003i
\(347\) 7.10332e7 + 1.23033e8i 0.0912658 + 0.158077i 0.908044 0.418875i \(-0.137575\pi\)
−0.816778 + 0.576952i \(0.804242\pi\)
\(348\) 0 0
\(349\) 4.07258e8 + 2.35130e8i 0.512838 + 0.296087i 0.734000 0.679150i \(-0.237651\pi\)
−0.221161 + 0.975237i \(0.570985\pi\)
\(350\) −1.37522e8 −0.171449
\(351\) 0 0
\(352\) 8.68833e8 1.06179
\(353\) −3.93517e8 2.27197e8i −0.476159 0.274911i 0.242655 0.970113i \(-0.421982\pi\)
−0.718814 + 0.695202i \(0.755315\pi\)
\(354\) 0 0
\(355\) −3.54135e8 6.13380e8i −0.420116 0.727663i
\(356\) 1.05515e8i 0.123947i
\(357\) 0 0
\(358\) −2.60555e8 + 1.50431e8i −0.300129 + 0.173280i
\(359\) 1.21160e9i 1.38207i −0.722821 0.691035i \(-0.757155\pi\)
0.722821 0.691035i \(-0.242845\pi\)
\(360\) 0 0
\(361\) −4.44912e8 + 7.70610e8i −0.497736 + 0.862103i
\(362\) 7.17379e8 + 4.14179e8i 0.794820 + 0.458890i
\(363\) 0 0
\(364\) 3.18920e8 2.56215e8i 0.346599 0.278452i
\(365\) 1.10494e9 1.18936
\(366\) 0 0
\(367\) 6.89733e8 1.19465e9i 0.728366 1.26157i −0.229208 0.973377i \(-0.573614\pi\)
0.957574 0.288189i \(-0.0930531\pi\)
\(368\) −6.67034e8 1.15534e9i −0.697719 1.20848i
\(369\) 0 0
\(370\) −8.38533e8 + 4.84127e8i −0.860626 + 0.496882i
\(371\) −8.14110e8 + 4.70027e8i −0.827703 + 0.477875i
\(372\) 0 0
\(373\) −7.04597e7 1.22040e8i −0.0703007 0.121764i 0.828732 0.559645i \(-0.189063\pi\)
−0.899033 + 0.437881i \(0.855729\pi\)
\(374\) −4.53151e8 + 7.84881e8i −0.447912 + 0.775806i
\(375\) 0 0
\(376\) −6.06454e8 −0.588356
\(377\) −9.38479e8 1.16816e9i −0.902048 1.12281i
\(378\) 0 0
\(379\) −1.25855e9 7.26626e8i −1.18750 0.685604i −0.229763 0.973247i \(-0.573795\pi\)
−0.957738 + 0.287642i \(0.907129\pi\)
\(380\) −2.25218e7 + 3.90089e7i −0.0210553 + 0.0364688i
\(381\) 0 0
\(382\) 1.34309e9i 1.23277i
\(383\) −8.94535e8 + 5.16460e8i −0.813583 + 0.469722i −0.848199 0.529678i \(-0.822313\pi\)
0.0346157 + 0.999401i \(0.488979\pi\)
\(384\) 0 0
\(385\) 5.62431e8i 0.502292i
\(386\) 4.85986e8 + 8.41753e8i 0.430099 + 0.744953i
\(387\) 0 0
\(388\) −1.01682e9 5.87059e8i −0.883754 0.510235i
\(389\) 3.93410e8 0.338861 0.169431 0.985542i \(-0.445807\pi\)
0.169431 + 0.985542i \(0.445807\pi\)
\(390\) 0 0
\(391\) 1.04971e9 0.888074
\(392\) −2.40194e8 1.38676e8i −0.201401 0.116279i
\(393\) 0 0
\(394\) 1.07621e9 + 1.86405e9i 0.886461 + 1.53540i
\(395\) 1.65755e9i 1.35324i
\(396\) 0 0
\(397\) 9.23207e8 5.33014e8i 0.740512 0.427535i −0.0817434 0.996653i \(-0.526049\pi\)
0.822255 + 0.569119i \(0.192715\pi\)
\(398\) 1.44299e9i 1.14729i
\(399\) 0 0
\(400\) 1.60715e8 2.78366e8i 0.125558 0.217473i
\(401\) −6.63509e8 3.83077e8i −0.513856 0.296675i 0.220561 0.975373i \(-0.429211\pi\)
−0.734417 + 0.678698i \(0.762545\pi\)
\(402\) 0 0
\(403\) −2.07546e9 8.05942e8i −1.57960 0.613389i
\(404\) −1.28240e8 −0.0967584
\(405\) 0 0
\(406\) −8.01428e8 + 1.38811e9i −0.594324 + 1.02940i
\(407\) −5.19179e8 8.99244e8i −0.381712 0.661145i
\(408\) 0 0
\(409\) −1.94247e9 + 1.12148e9i −1.40386 + 0.810516i −0.994786 0.101987i \(-0.967480\pi\)
−0.409069 + 0.912503i \(0.634147\pi\)
\(410\) −4.61638e8 + 2.66527e8i −0.330795 + 0.190984i
\(411\) 0 0
\(412\) 1.54662e8 + 2.67882e8i 0.108954 + 0.188714i
\(413\) −2.57848e8 + 4.46606e8i −0.180111 + 0.311961i
\(414\) 0 0
\(415\) −1.00816e9 −0.692405
\(416\) 2.66627e8 + 1.72672e9i 0.181584 + 1.17597i
\(417\) 0 0
\(418\) −1.01338e8 5.85076e7i −0.0678665 0.0391828i
\(419\) −7.01906e8 + 1.21574e9i −0.466154 + 0.807403i −0.999253 0.0386502i \(-0.987694\pi\)
0.533098 + 0.846053i \(0.321028\pi\)
\(420\) 0 0
\(421\) 1.81487e9i 1.18538i 0.805429 + 0.592692i \(0.201935\pi\)
−0.805429 + 0.592692i \(0.798065\pi\)
\(422\) −1.62155e9 + 9.36203e8i −1.05036 + 0.606424i
\(423\) 0 0
\(424\) 9.19311e8i 0.585709i
\(425\) 1.26458e8 + 2.19031e8i 0.0799068 + 0.138403i
\(426\) 0 0
\(427\) −2.52942e8 1.46036e8i −0.157225 0.0907741i
\(428\) −8.19089e8 −0.504984
\(429\) 0 0
\(430\) 2.72741e9 1.65429
\(431\) 1.54287e9 + 8.90776e8i 0.928237 + 0.535918i 0.886254 0.463201i \(-0.153299\pi\)
0.0419833 + 0.999118i \(0.486632\pi\)
\(432\) 0 0
\(433\) −7.17382e8 1.24254e9i −0.424662 0.735536i 0.571727 0.820444i \(-0.306274\pi\)
−0.996389 + 0.0849082i \(0.972940\pi\)
\(434\) 2.38159e9i 1.39847i
\(435\) 0 0
\(436\) −2.53373e8 + 1.46285e8i −0.146405 + 0.0845272i
\(437\) 1.35530e8i 0.0776876i
\(438\) 0 0
\(439\) −1.57839e9 + 2.73385e9i −0.890406 + 1.54223i −0.0510165 + 0.998698i \(0.516246\pi\)
−0.839389 + 0.543530i \(0.817087\pi\)
\(440\) −4.76332e8 2.75010e8i −0.266579 0.153909i
\(441\) 0 0
\(442\) −1.69893e9 6.59728e8i −0.935833 0.363402i
\(443\) −8.24759e8 −0.450727 −0.225364 0.974275i \(-0.572357\pi\)
−0.225364 + 0.974275i \(0.572357\pi\)
\(444\) 0 0
\(445\) 1.45859e8 2.52635e8i 0.0784643 0.135904i
\(446\) −1.31708e9 2.28125e9i −0.702975 1.21759i
\(447\) 0 0
\(448\) 3.58598e8 2.07037e8i 0.188423 0.108786i
\(449\) 1.94207e9 1.12126e9i 1.01252 0.584578i 0.100591 0.994928i \(-0.467927\pi\)
0.911928 + 0.410350i \(0.134593\pi\)
\(450\) 0 0
\(451\) −2.85824e8 4.95061e8i −0.146717 0.254121i
\(452\) 1.06557e9 1.84563e9i 0.542748 0.940068i
\(453\) 0 0
\(454\) 1.53511e9 0.769917
\(455\) −1.11777e9 + 1.72598e8i −0.556306 + 0.0859007i
\(456\) 0 0
\(457\) −9.49936e8 5.48446e8i −0.465573 0.268799i 0.248812 0.968552i \(-0.419960\pi\)
−0.714385 + 0.699753i \(0.753293\pi\)
\(458\) 3.64510e8 6.31349e8i 0.177288 0.307072i
\(459\) 0 0
\(460\) 1.50805e9i 0.722376i
\(461\) −1.37164e9 + 7.91917e8i −0.652059 + 0.376467i −0.789245 0.614079i \(-0.789528\pi\)
0.137186 + 0.990545i \(0.456194\pi\)
\(462\) 0 0
\(463\) 2.25948e9i 1.05798i 0.848629 + 0.528988i \(0.177428\pi\)
−0.848629 + 0.528988i \(0.822572\pi\)
\(464\) −1.87317e9 3.24442e9i −0.870490 1.50773i
\(465\) 0 0
\(466\) 3.19621e9 + 1.84533e9i 1.46314 + 0.844742i
\(467\) 2.17106e9 0.986421 0.493211 0.869910i \(-0.335823\pi\)
0.493211 + 0.869910i \(0.335823\pi\)
\(468\) 0 0
\(469\) 2.09259e8 0.0936653
\(470\) −3.43732e9 1.98454e9i −1.52714 0.881693i
\(471\) 0 0
\(472\) −2.52159e8 4.36752e8i −0.110377 0.191178i
\(473\) 2.92488e9i 1.27085i
\(474\) 0 0
\(475\) −2.82797e7 + 1.63273e7i −0.0121073 + 0.00699015i
\(476\) 8.04780e8i 0.342021i
\(477\) 0 0
\(478\) 2.92326e8 5.06324e8i 0.122425 0.212046i
\(479\) 5.66356e8 + 3.26986e8i 0.235459 + 0.135942i 0.613088 0.790015i \(-0.289927\pi\)
−0.377629 + 0.925957i \(0.623261\pi\)
\(480\) 0 0
\(481\) 1.62783e9 1.30777e9i 0.666962 0.535827i
\(482\) 2.91030e9 1.18378
\(483\) 0 0
\(484\) 1.78643e8 3.09419e8i 0.0716190 0.124048i
\(485\) 1.62305e9 + 2.81120e9i 0.646004 + 1.11891i
\(486\) 0 0
\(487\) 2.35359e9 1.35885e9i 0.923377 0.533112i 0.0386663 0.999252i \(-0.487689\pi\)
0.884711 + 0.466140i \(0.154356\pi\)
\(488\) 2.47360e8 1.42814e8i 0.0963520 0.0556288i
\(489\) 0 0
\(490\) −9.07598e8 1.57201e9i −0.348503 0.603626i
\(491\) −1.39241e8 + 2.41173e8i −0.0530864 + 0.0919483i −0.891347 0.453321i \(-0.850239\pi\)
0.838261 + 0.545269i \(0.183573\pi\)
\(492\) 0 0
\(493\) 2.94779e9 1.10798
\(494\) 8.51793e7 2.19354e8i 0.0317899 0.0818655i
\(495\) 0 0
\(496\) −4.82070e9 2.78323e9i −1.77388 1.02415i
\(497\) 8.16924e8 1.41495e9i 0.298493 0.517006i
\(498\) 0 0
\(499\) 1.57082e9i 0.565947i −0.959128 0.282973i \(-0.908679\pi\)
0.959128 0.282973i \(-0.0913208\pi\)
\(500\) 1.82937e9 1.05619e9i 0.654495 0.377873i
\(501\) 0 0
\(502\) 4.14257e8i 0.146153i
\(503\) −1.85784e9 3.21787e9i −0.650909 1.12741i −0.982903 0.184126i \(-0.941055\pi\)
0.331993 0.943282i \(-0.392279\pi\)
\(504\) 0 0
\(505\) 3.07046e8 + 1.77273e8i 0.106092 + 0.0612525i
\(506\) 3.91764e9 1.34431
\(507\) 0 0
\(508\) 1.67234e9 0.565980
\(509\) −4.81978e8 2.78270e8i −0.162000 0.0935308i 0.416808 0.908994i \(-0.363149\pi\)
−0.578808 + 0.815464i \(0.696482\pi\)
\(510\) 0 0
\(511\) 1.27445e9 + 2.20741e9i 0.422522 + 0.731830i
\(512\) 2.94547e9i 0.969860i
\(513\) 0 0
\(514\) 1.42798e9 8.24443e8i 0.463821 0.267787i
\(515\) 8.55189e8i 0.275891i
\(516\) 0 0
\(517\) 2.12822e9 3.68619e9i 0.677330 1.17317i
\(518\) −1.93434e9 1.11679e9i −0.611476 0.353036i
\(519\) 0 0
\(520\) 4.00379e8 1.03106e9i 0.124870 0.321566i
\(521\) 1.65430e9 0.512486 0.256243 0.966612i \(-0.417515\pi\)
0.256243 + 0.966612i \(0.417515\pi\)
\(522\) 0 0
\(523\) 9.42609e8 1.63265e9i 0.288122 0.499041i −0.685240 0.728318i \(-0.740303\pi\)
0.973361 + 0.229276i \(0.0736359\pi\)
\(524\) 8.33506e8 + 1.44367e9i 0.253075 + 0.438339i
\(525\) 0 0
\(526\) −4.12506e9 + 2.38161e9i −1.23589 + 0.713542i
\(527\) 3.79315e9 2.18998e9i 1.12892 0.651782i
\(528\) 0 0
\(529\) −5.66351e8 9.80949e8i −0.166338 0.288106i
\(530\) 3.00832e9 5.21057e9i 0.877726 1.52027i
\(531\) 0 0
\(532\) −1.03907e8 −0.0299196
\(533\) 8.96171e8 7.19970e8i 0.256357 0.205953i
\(534\) 0 0
\(535\) 1.96115e9 + 1.13227e9i 0.553698 + 0.319678i
\(536\) −1.02321e8 + 1.77225e8i −0.0287003 + 0.0497104i
\(537\) 0 0
\(538\) 6.23370e9i 1.72587i
\(539\) 1.68582e9 9.73309e8i 0.463714 0.267726i
\(540\) 0 0
\(541\) 4.62326e7i 0.0125533i −0.999980 0.00627665i \(-0.998002\pi\)
0.999980 0.00627665i \(-0.00199793\pi\)
\(542\) 1.17320e9 + 2.03204e9i 0.316500 + 0.548194i
\(543\) 0 0
\(544\) −2.97663e9 1.71856e9i −0.792736 0.457686i
\(545\) 8.08870e8 0.214038
\(546\) 0 0
\(547\) 5.53529e9 1.44605 0.723027 0.690819i \(-0.242750\pi\)
0.723027 + 0.690819i \(0.242750\pi\)
\(548\) 3.93697e8 + 2.27301e8i 0.102195 + 0.0590023i
\(549\) 0 0
\(550\) 4.71957e8 + 8.17453e8i 0.120958 + 0.209505i
\(551\) 3.80597e8i 0.0969248i
\(552\) 0 0
\(553\) −3.31138e9 + 1.91183e9i −0.832667 + 0.480740i
\(554\) 4.25064e9i 1.06211i
\(555\) 0 0
\(556\) 7.01176e8 1.21447e9i 0.173008 0.299658i
\(557\) 4.15944e9 + 2.40146e9i 1.01986 + 0.588819i 0.914065 0.405569i \(-0.132927\pi\)
0.105799 + 0.994387i \(0.466260\pi\)
\(558\) 0 0
\(559\) −5.81289e9 + 8.97583e8i −1.40751 + 0.217337i
\(560\) −2.82772e9 −0.680423
\(561\) 0 0
\(562\) 4.62232e9 8.00610e9i 1.09846 1.90258i
\(563\) −2.91491e8 5.04878e8i −0.0688409 0.119236i 0.829550 0.558432i \(-0.188597\pi\)
−0.898391 + 0.439196i \(0.855263\pi\)
\(564\) 0 0
\(565\) −5.10262e9 + 2.94600e9i −1.19021 + 0.687169i
\(566\) −6.04176e8 + 3.48821e8i −0.140057 + 0.0808621i
\(567\) 0 0
\(568\) 7.98899e8 + 1.38373e9i 0.182925 + 0.316835i
\(569\) −1.09595e9 + 1.89824e9i −0.249401 + 0.431975i −0.963360 0.268213i \(-0.913567\pi\)
0.713959 + 0.700188i \(0.246900\pi\)
\(570\) 0 0
\(571\) 3.96943e9 0.892281 0.446140 0.894963i \(-0.352798\pi\)
0.446140 + 0.894963i \(0.352798\pi\)
\(572\) −2.61747e9 1.01641e9i −0.584784 0.227083i
\(573\) 0 0
\(574\) −1.06491e9 6.14829e8i −0.235030 0.135695i
\(575\) 5.46634e8 9.46798e8i 0.119911 0.207692i
\(576\) 0 0
\(577\) 5.01942e9i 1.08777i 0.839159 + 0.543886i \(0.183048\pi\)
−0.839159 + 0.543886i \(0.816952\pi\)
\(578\) −2.14172e9 + 1.23652e9i −0.461334 + 0.266351i
\(579\) 0 0
\(580\) 4.23492e9i 0.901253i
\(581\) −1.16282e9 2.01406e9i −0.245977 0.426045i
\(582\) 0 0
\(583\) 5.58782e9 + 3.22613e9i 1.16789 + 0.674282i
\(584\) −2.49266e9 −0.517866
\(585\) 0 0
\(586\) −1.12612e10 −2.31175
\(587\) −3.33458e9 1.92522e9i −0.680468 0.392868i 0.119563 0.992827i \(-0.461851\pi\)
−0.800031 + 0.599958i \(0.795184\pi\)
\(588\) 0 0
\(589\) 2.82754e8 + 4.89744e8i 0.0570171 + 0.0987565i
\(590\) 3.30063e9i 0.661629i
\(591\) 0 0
\(592\) 4.52111e9 2.61027e9i 0.895611 0.517081i
\(593\) 3.30871e9i 0.651580i 0.945442 + 0.325790i \(0.105630\pi\)
−0.945442 + 0.325790i \(0.894370\pi\)
\(594\) 0 0
\(595\) 1.11249e9 1.92689e9i 0.216515 0.375015i
\(596\) −2.89131e9 1.66930e9i −0.559413 0.322977i
\(597\) 0 0
\(598\) 1.20224e9 + 7.78591e9i 0.229899 + 1.48887i
\(599\) 1.42968e9 0.271797 0.135899 0.990723i \(-0.456608\pi\)
0.135899 + 0.990723i \(0.456608\pi\)
\(600\) 0 0
\(601\) −9.80155e8 + 1.69768e9i −0.184176 + 0.319003i −0.943299 0.331945i \(-0.892295\pi\)
0.759122 + 0.650948i \(0.225628\pi\)
\(602\) 3.14582e9 + 5.44871e9i 0.587686 + 1.01790i
\(603\) 0 0
\(604\) −3.68411e9 + 2.12702e9i −0.680305 + 0.392774i
\(605\) −8.55455e8 + 4.93897e8i −0.157056 + 0.0906761i
\(606\) 0 0
\(607\) −2.47671e9 4.28978e9i −0.449484 0.778529i 0.548868 0.835909i \(-0.315059\pi\)
−0.998352 + 0.0573795i \(0.981726\pi\)
\(608\) 2.21888e8 3.84321e8i 0.0400378 0.0693475i
\(609\) 0 0
\(610\) 1.86935e9 0.333455
\(611\) 7.97903e9 + 3.09841e9i 1.41516 + 0.549534i
\(612\) 0 0
\(613\) 5.81190e9 + 3.35550e9i 1.01908 + 0.588363i 0.913836 0.406084i \(-0.133106\pi\)
0.105239 + 0.994447i \(0.466439\pi\)
\(614\) −3.34374e9 + 5.79153e9i −0.582967 + 1.00973i
\(615\) 0 0
\(616\) 1.26880e9i 0.218705i
\(617\) −2.06965e9 + 1.19491e9i −0.354730 + 0.204804i −0.666767 0.745267i \(-0.732322\pi\)
0.312036 + 0.950070i \(0.398989\pi\)
\(618\) 0 0
\(619\) 3.61543e9i 0.612693i 0.951920 + 0.306346i \(0.0991066\pi\)
−0.951920 + 0.306346i \(0.900893\pi\)
\(620\) −3.14621e9 5.44940e9i −0.530172 0.918285i
\(621\) 0 0
\(622\) −6.37766e9 3.68214e9i −1.06266 0.613528i
\(623\) 6.72938e8 0.111498
\(624\) 0 0
\(625\) −4.57214e9 −0.749099
\(626\) −1.21461e10 7.01254e9i −1.97891 1.14252i
\(627\) 0 0
\(628\) 3.00611e9 + 5.20674e9i 0.484336 + 0.838894i
\(629\) 4.10776e9i 0.658154i
\(630\) 0 0
\(631\) 5.59855e7 3.23232e7i 0.00887100 0.00512167i −0.495558 0.868575i \(-0.665036\pi\)
0.504429 + 0.863453i \(0.331703\pi\)
\(632\) 3.73928e9i 0.589221i
\(633\) 0 0
\(634\) −6.45394e9 + 1.11786e10i −1.00580 + 1.74210i
\(635\) −4.00410e9 2.31177e9i −0.620578 0.358291i
\(636\) 0 0
\(637\) 2.45169e9 + 3.05171e9i 0.375819 + 0.467794i
\(638\) 1.10015e10 1.67719
\(639\) 0 0
\(640\) 2.18681e9 3.78767e9i 0.329748 0.571140i
\(641\) 2.88121e9 + 4.99039e9i 0.432087 + 0.748397i 0.997053 0.0767177i \(-0.0244440\pi\)
−0.564966 + 0.825114i \(0.691111\pi\)
\(642\) 0 0
\(643\) −1.98357e9 + 1.14522e9i −0.294245 + 0.169883i −0.639855 0.768496i \(-0.721005\pi\)
0.345610 + 0.938378i \(0.387672\pi\)
\(644\) 3.01273e9 1.73940e9i 0.444487 0.256625i
\(645\) 0 0
\(646\) 2.31457e8 + 4.00895e8i 0.0337797 + 0.0585082i
\(647\) 4.23115e9 7.32857e9i 0.614177 1.06379i −0.376352 0.926477i \(-0.622822\pi\)
0.990528 0.137308i \(-0.0438452\pi\)
\(648\) 0 0
\(649\) 3.53959e9 0.508273
\(650\) −1.47977e9 + 1.18883e9i −0.211348 + 0.169794i
\(651\) 0 0
\(652\) −3.73640e9 2.15721e9i −0.527942 0.304808i
\(653\) −1.94059e9 + 3.36119e9i −0.272732 + 0.472386i −0.969560 0.244852i \(-0.921261\pi\)
0.696828 + 0.717238i \(0.254594\pi\)
\(654\) 0 0
\(655\) 4.60880e9i 0.640831i
\(656\) 2.48901e9 1.43703e9i 0.344242 0.198748i
\(657\) 0 0
\(658\) 9.15594e9i 1.25289i
\(659\) 6.98230e8 + 1.20937e9i 0.0950385 + 0.164612i 0.909625 0.415431i \(-0.136369\pi\)
−0.814586 + 0.580043i \(0.803036\pi\)
\(660\) 0 0
\(661\) 4.16961e9 + 2.40733e9i 0.561552 + 0.324212i 0.753768 0.657140i \(-0.228234\pi\)
−0.192216 + 0.981353i \(0.561567\pi\)
\(662\) −1.36159e10 −1.82408
\(663\) 0 0
\(664\) 2.27432e9 0.301483
\(665\) 2.48786e8 + 1.43637e8i 0.0328058 + 0.0189404i
\(666\) 0 0
\(667\) −6.37116e9 1.10352e10i −0.831338 1.43992i
\(668\) 4.27061e9i 0.554335i
\(669\) 0 0
\(670\) −1.15989e9 + 6.69662e8i −0.148989 + 0.0860189i
\(671\) 2.00470e9i 0.256165i
\(672\) 0 0
\(673\) 7.05428e9 1.22184e10i 0.892072 1.54511i 0.0546842 0.998504i \(-0.482585\pi\)
0.837387 0.546610i \(-0.184082\pi\)
\(674\) −2.36865e9 1.36754e9i −0.297983 0.172040i
\(675\) 0 0
\(676\) 1.21677e9 5.51387e9i 0.151494 0.686504i
\(677\) −6.91643e8 −0.0856686 −0.0428343 0.999082i \(-0.513639\pi\)
−0.0428343 + 0.999082i \(0.513639\pi\)
\(678\) 0 0
\(679\) −3.74407e9 + 6.48493e9i −0.458987 + 0.794988i
\(680\) 1.08794e9 + 1.88438e9i 0.132686 + 0.229819i
\(681\) 0 0
\(682\) 1.41565e10 8.17329e9i 1.70888 0.986624i
\(683\) −2.97479e8 + 1.71750e8i −0.0357260 + 0.0206264i −0.517757 0.855528i \(-0.673233\pi\)
0.482031 + 0.876154i \(0.339899\pi\)
\(684\) 0 0
\(685\) −6.28421e8 1.08846e9i −0.0747023 0.129388i
\(686\) 5.58275e9 9.66961e9i 0.660258 1.14360i
\(687\) 0 0
\(688\) −1.47054e10 −1.72154
\(689\) −4.69682e9 + 1.20953e10i −0.547062 + 1.40879i
\(690\) 0 0
\(691\) 3.75457e7 + 2.16770e7i 0.00432899 + 0.00249935i 0.502163 0.864773i \(-0.332538\pi\)
−0.497834 + 0.867272i \(0.665871\pi\)
\(692\) −4.67260e9 + 8.09318e9i −0.536028 + 0.928428i
\(693\) 0 0
\(694\) 2.09752e9i 0.238204i
\(695\) −3.35767e9 + 1.93855e9i −0.379394 + 0.219043i
\(696\) 0 0
\(697\) 2.26145e9i 0.252971i
\(698\) −3.47155e9 6.01291e9i −0.386394 0.669253i
\(699\) 0 0
\(700\) 7.25884e8 + 4.19089e8i 0.0799878 + 0.0461810i
\(701\) 3.13161e9 0.343364 0.171682 0.985152i \(-0.445080\pi\)
0.171682 + 0.985152i \(0.445080\pi\)
\(702\) 0 0
\(703\) −5.30363e8 −0.0575745
\(704\) −2.46131e9 1.42104e9i −0.265866 0.153498i
\(705\) 0 0
\(706\) 3.35442e9 + 5.81003e9i 0.358758 + 0.621387i
\(707\) 8.17874e8i 0.0870399i
\(708\) 0 0
\(709\) −1.36402e8 + 7.87519e7i −0.0143734 + 0.00829850i −0.507169 0.861846i \(-0.669308\pi\)
0.492796 + 0.870145i \(0.335975\pi\)
\(710\) 1.04572e10i 1.09650i
\(711\) 0 0
\(712\) −3.29045e8 + 5.69922e8i −0.0341645 + 0.0591747i
\(713\) −1.63965e10 9.46654e9i −1.69410 0.978088i
\(714\) 0 0
\(715\) 4.86199e9 + 6.05188e9i 0.497443 + 0.619184i
\(716\) 1.83371e9 0.186696
\(717\) 0 0
\(718\) −8.94429e9 + 1.54920e10i −0.901800 + 1.56196i
\(719\) −6.01180e9 1.04127e10i −0.603189 1.04475i −0.992335 0.123578i \(-0.960563\pi\)
0.389146 0.921176i \(-0.372770\pi\)
\(720\) 0 0
\(721\) 1.70846e9 9.86383e8i 0.169759 0.0980104i
\(722\) 1.13776e10 6.56884e9i 1.12504 0.649544i
\(723\) 0 0
\(724\) −2.52436e9 4.37232e9i −0.247210 0.428181i
\(725\) 1.53506e9 2.65880e9i 0.149604 0.259121i
\(726\) 0 0
\(727\) 2.27511e9 0.219600 0.109800 0.993954i \(-0.464979\pi\)
0.109800 + 0.993954i \(0.464979\pi\)
\(728\) 2.52160e9 3.89367e8i 0.242224 0.0374024i
\(729\) 0 0
\(730\) −1.41282e10 8.15689e9i −1.34417 0.776059i
\(731\) 5.78543e9 1.00207e10i 0.547803 0.948823i
\(732\) 0 0
\(733\) 1.24052e10i 1.16343i −0.813394 0.581713i \(-0.802383\pi\)
0.813394 0.581713i \(-0.197617\pi\)
\(734\) −1.76383e10 + 1.01835e10i −1.64634 + 0.950516i
\(735\) 0 0
\(736\) 1.48575e10i 1.37364i
\(737\) −7.18146e8 1.24387e9i −0.0660810 0.114456i
\(738\) 0 0
\(739\) −1.03072e10 5.95087e9i −0.939475 0.542406i −0.0496793 0.998765i \(-0.515820\pi\)
−0.889796 + 0.456359i \(0.849153\pi\)
\(740\) 5.90137e9 0.535355
\(741\) 0 0
\(742\) 1.38793e10 1.24725
\(743\) 7.70983e9 + 4.45127e9i 0.689579 + 0.398128i 0.803454 0.595367i \(-0.202993\pi\)
−0.113876 + 0.993495i \(0.536327\pi\)
\(744\) 0 0
\(745\) 4.61512e9 + 7.99363e9i 0.408918 + 0.708267i
\(746\) 2.08059e9i 0.183485i
\(747\) 0 0
\(748\) 4.78373e9 2.76189e9i 0.417938 0.241296i
\(749\) 5.22389e9i 0.454263i
\(750\) 0 0
\(751\) 9.35730e9 1.62073e10i 0.806141 1.39628i −0.109378 0.994000i \(-0.534886\pi\)
0.915518 0.402276i \(-0.131781\pi\)
\(752\) 1.85330e10 + 1.07000e10i 1.58922 + 0.917535i
\(753\) 0 0
\(754\) 3.37614e9 + 2.18644e10i 0.286828 + 1.85754i
\(755\) 1.17612e10 0.994575
\(756\) 0 0
\(757\) −1.12646e10 + 1.95108e10i −0.943799 + 1.63471i −0.185660 + 0.982614i \(0.559442\pi\)
−0.758139 + 0.652093i \(0.773891\pi\)
\(758\) 1.07282e10 + 1.85817e10i 0.894712 + 1.54969i
\(759\) 0 0
\(760\) −2.43297e8 + 1.40467e8i −0.0201043 + 0.0116072i
\(761\) −6.90340e9 + 3.98568e9i −0.567828 + 0.327835i −0.756281 0.654247i \(-0.772986\pi\)
0.188454 + 0.982082i \(0.439652\pi\)
\(762\) 0 0
\(763\) 9.32957e8 + 1.61593e9i 0.0760372 + 0.131700i
\(764\) 4.09296e9 7.08921e9i 0.332055 0.575137i
\(765\) 0 0
\(766\) 1.52504e10 1.22597
\(767\) 1.08623e9 + 7.03458e9i 0.0869235 + 0.562930i
\(768\) 0 0
\(769\) −5.04153e9 2.91073e9i −0.399779 0.230813i 0.286610 0.958047i \(-0.407472\pi\)
−0.686389 + 0.727235i \(0.740805\pi\)
\(770\) 4.15197e9 7.19142e9i 0.327745 0.567672i
\(771\) 0 0
\(772\) 5.92403e9i 0.463401i
\(773\) −1.74452e10 + 1.00720e10i −1.35846 + 0.784308i −0.989416 0.145104i \(-0.953648\pi\)
−0.369045 + 0.929412i \(0.620315\pi\)
\(774\) 0 0
\(775\) 4.56172e9i 0.352024i
\(776\) −3.66146e9 6.34183e9i −0.281280 0.487191i
\(777\) 0 0
\(778\) −5.03027e9 2.90423e9i −0.382968 0.221107i
\(779\) −2.91981e8 −0.0221296
\(780\) 0 0
\(781\) −1.12143e10 −0.842350
\(782\) −1.34219e10 7.74913e9i −1.00367 0.579467i
\(783\) 0 0
\(784\) 4.89349e9 + 8.47577e9i 0.362671 + 0.628164i
\(785\) 1.66221e10i 1.22643i
\(786\) 0 0
\(787\) 7.31133e8 4.22120e8i 0.0534669 0.0308691i −0.473028 0.881047i \(-0.656839\pi\)
0.526495 + 0.850178i \(0.323506\pi\)
\(788\) 1.31187e10i 0.955098i
\(789\) 0 0
\(790\) 1.22363e10 2.11939e10i 0.882990 1.52938i
\(791\) −1.17708e10 6.79588e9i −0.845646 0.488234i
\(792\) 0 0
\(793\) −3.98413e9 + 6.15200e8i −0.283712 + 0.0438087i
\(794\) −1.57392e10 −1.11586
\(795\) 0 0
\(796\) −4.39740e9 + 7.61652e9i −0.309030 + 0.535255i
\(797\) −8.84381e9 1.53179e10i −0.618779 1.07176i −0.989709 0.143095i \(-0.954294\pi\)
0.370930 0.928661i \(-0.379039\pi\)
\(798\) 0 0
\(799\) −1.45826e10 + 8.41928e9i −1.01140 + 0.583931i
\(800\) −3.10016e9 + 1.78988e9i −0.214076 + 0.123597i
\(801\) 0 0
\(802\) 5.65590e9 + 9.79630e9i 0.387161 + 0.670582i
\(803\) 8.74746e9 1.51510e10i 0.596180 1.03261i
\(804\) 0 0
\(805\) −9.61786e9 −0.649820
\(806\) 2.05879e10 + 2.56265e10i 1.38497 + 1.72392i
\(807\) 0 0
\(808\) −6.92671e8 3.99914e8i −0.0461942 0.0266702i
\(809\) −6.07311e9 + 1.05189e10i −0.403266 + 0.698477i −0.994118 0.108303i \(-0.965458\pi\)
0.590852 + 0.806780i \(0.298792\pi\)
\(810\) 0 0
\(811\) 9.76645e9i 0.642930i −0.946921 0.321465i \(-0.895825\pi\)
0.946921 0.321465i \(-0.104175\pi\)
\(812\) 8.46035e9 4.88459e9i 0.554552 0.320171i
\(813\) 0 0
\(814\) 1.53307e10i 0.996268i
\(815\) 5.96406e9 + 1.03301e10i 0.385914 + 0.668422i
\(816\) 0 0
\(817\) 1.29379e9 + 7.46972e8i 0.0830018 + 0.0479211i
\(818\) 3.31160e10 2.11544
\(819\) 0 0
\(820\) 3.24889e9 0.205772
\(821\) −7.00087e9 4.04196e9i −0.441521 0.254912i 0.262722 0.964872i \(-0.415380\pi\)
−0.704243 + 0.709959i \(0.748713\pi\)
\(822\) 0 0
\(823\) 5.48917e9 + 9.50753e9i 0.343248 + 0.594522i 0.985034 0.172361i \(-0.0551397\pi\)
−0.641786 + 0.766884i \(0.721806\pi\)
\(824\) 1.92924e9i 0.120127i
\(825\) 0 0
\(826\) 6.59386e9 3.80697e9i 0.407108 0.235044i
\(827\) 1.39129e10i 0.855357i −0.903931 0.427678i \(-0.859332\pi\)
0.903931 0.427678i \(-0.140668\pi\)
\(828\) 0 0
\(829\) −1.31171e10 + 2.27195e10i −0.799646 + 1.38503i 0.120200 + 0.992750i \(0.461646\pi\)
−0.919847 + 0.392278i \(0.871687\pi\)
\(830\) 1.28906e10 + 7.44241e9i 0.782530 + 0.451794i
\(831\) 0 0
\(832\) 2.06885e9 5.32770e9i 0.124536 0.320707i
\(833\) −7.70085e9 −0.461616
\(834\) 0 0
\(835\) 5.90350e9 1.02252e10i 0.350919 0.607809i
\(836\) 3.56595e8 + 6.17641e8i 0.0211083 + 0.0365606i
\(837\) 0 0
\(838\) 1.79496e10 1.03632e10i 1.05366 0.608331i
\(839\) 1.04861e10 6.05413e9i 0.612979 0.353904i −0.161151 0.986930i \(-0.551521\pi\)
0.774130 + 0.633026i \(0.218187\pi\)
\(840\) 0 0
\(841\) −9.26658e9 1.60502e10i −0.537197 0.930452i
\(842\) 1.33977e10 2.32056e10i 0.773462 1.33968i
\(843\) 0 0
\(844\) 1.14120e10 0.653378
\(845\) −1.05355e10 + 1.15199e10i −0.600696 + 0.656826i
\(846\) 0 0
\(847\) −1.97338e9 1.13933e9i −0.111588 0.0644255i
\(848\) −1.62200e10 + 2.80938e10i −0.913407 + 1.58207i
\(849\) 0 0
\(850\) 3.73414e9i 0.208557i
\(851\) 1.53775e10 8.87823e9i 0.855330 0.493825i
\(852\) 0 0
\(853\) 1.60323e10i 0.884453i 0.896903 + 0.442227i \(0.145811\pi\)
−0.896903 + 0.442227i \(0.854189\pi\)
\(854\) 2.15613e9 + 3.73452e9i 0.118460 + 0.205179i
\(855\) 0 0
\(856\) −4.42420e9 2.55431e9i −0.241088 0.139192i
\(857\) 2.24463e10 1.21818 0.609092 0.793100i \(-0.291534\pi\)
0.609092 + 0.793100i \(0.291534\pi\)
\(858\) 0 0
\(859\) −1.36041e10 −0.732310 −0.366155 0.930554i \(-0.619326\pi\)
−0.366155 + 0.930554i \(0.619326\pi\)
\(860\) −1.43961e10 8.31158e9i −0.771791 0.445594i
\(861\) 0 0
\(862\) −1.31518e10 2.27795e10i −0.699372 1.21135i
\(863\) 1.13911e10i 0.603290i −0.953420 0.301645i \(-0.902464\pi\)
0.953420 0.301645i \(-0.0975358\pi\)
\(864\) 0 0
\(865\) 2.23753e10 1.29184e10i 1.17547 0.678660i
\(866\) 2.11834e10i 1.10837i
\(867\) 0 0
\(868\) 7.25773e9 1.25708e10i 0.376688 0.652443i
\(869\) 2.27284e10 + 1.31222e10i 1.17490 + 0.678326i
\(870\) 0 0
\(871\) 2.25167e9 1.80896e9i 0.115463 0.0927610i
\(872\) −1.82474e9 −0.0931953
\(873\) 0 0
\(874\) 1.00051e9 1.73293e9i 0.0506911 0.0877995i
\(875\) −6.73602e9 1.16671e10i −0.339919 0.588757i
\(876\) 0 0
\(877\) 2.38991e10 1.37981e10i 1.19642 0.690752i 0.236662 0.971592i \(-0.423946\pi\)
0.959755 + 0.280840i \(0.0906131\pi\)
\(878\) 4.03636e10 2.33039e10i 2.01261 1.16198i
\(879\) 0 0
\(880\) 9.70434e9 + 1.68084e10i 0.480039 + 0.831453i
\(881\) −5.80856e9 + 1.00607e10i −0.286189 + 0.495694i −0.972897 0.231240i \(-0.925722\pi\)
0.686708 + 0.726934i \(0.259055\pi\)
\(882\) 0 0
\(883\) −2.60345e10 −1.27258 −0.636292 0.771449i \(-0.719532\pi\)
−0.636292 + 0.771449i \(0.719532\pi\)
\(884\) 6.95700e9 + 8.65962e9i 0.338719 + 0.421615i
\(885\) 0 0
\(886\) 1.05456e10 + 6.08852e9i 0.509395 + 0.294099i
\(887\) −1.36152e10 + 2.35823e10i −0.655078 + 1.13463i 0.326796 + 0.945095i \(0.394031\pi\)
−0.981874 + 0.189533i \(0.939302\pi\)
\(888\) 0 0
\(889\) 1.06656e10i 0.509133i
\(890\) −3.72999e9 + 2.15351e9i −0.177355 + 0.102396i
\(891\) 0 0
\(892\) 1.60548e10i 0.757405i
\(893\) −1.08704e9 1.88280e9i −0.0510815 0.0884757i
\(894\) 0 0
\(895\) −4.39048e9 2.53484e9i −0.204706 0.118187i
\(896\) 1.00892e10 0.468573
\(897\) 0 0
\(898\) −3.31093e10 −1.52575
\(899\) −4.60448e10 2.65840e10i −2.11360 1.22029i
\(900\) 0 0
\(901\) −1.27626e10 2.21055e10i −0.581303 1.00685i
\(902\) 8.44002e9i 0.382931i
\(903\) 0 0
\(904\) 1.15111e10 6.64593e9i 0.518235 0.299203i
\(905\) 1.39583e10i 0.625981i
\(906\) 0 0
\(907\) 1.45545e10 2.52092e10i 0.647698 1.12185i −0.335974 0.941871i \(-0.609065\pi\)
0.983671 0.179974i \(-0.0576013\pi\)
\(908\) −8.10276e9 4.67813e9i −0.359197 0.207382i
\(909\) 0 0
\(910\) 1.55664e10 + 6.04472e9i 0.684766 + 0.265908i
\(911\) 1.86121e9 0.0815606 0.0407803 0.999168i \(-0.487016\pi\)
0.0407803 + 0.999168i \(0.487016\pi\)
\(912\) 0 0
\(913\) −7.98125e9 + 1.38239e10i −0.347075 + 0.601151i
\(914\) 8.09745e9 + 1.40252e10i 0.350782 + 0.607572i
\(915\) 0 0
\(916\) −3.84798e9 + 2.22163e9i −0.165424 + 0.0955077i
\(917\) 9.20729e9 5.31583e9i 0.394311 0.227656i
\(918\) 0 0
\(919\) 1.67606e10 + 2.90302e10i 0.712336 + 1.23380i 0.963978 + 0.265982i \(0.0856962\pi\)
−0.251642 + 0.967820i \(0.580970\pi\)
\(920\) 4.70282e9 8.14552e9i 0.199114 0.344875i
\(921\) 0 0
\(922\) 2.33843e10 0.982576
\(923\) −3.44143e9 2.22872e10i −0.144056 0.932932i
\(924\) 0 0
\(925\) 3.70505e9 + 2.13911e9i 0.153921 + 0.0888664i
\(926\) 1.66799e10 2.88905e10i 0.690328 1.19568i
\(927\) 0 0
\(928\) 4.17229e10i 1.71379i
\(929\) 1.54742e10 8.93401e9i 0.633216 0.365588i −0.148780 0.988870i \(-0.547535\pi\)
0.781997 + 0.623283i \(0.214201\pi\)
\(930\) 0 0
\(931\) 9.94277e8i 0.0403816i
\(932\) −1.12470e10 1.94804e10i −0.455074 0.788211i
\(933\) 0 0
\(934\) −2.77599e10 1.60272e10i −1.11482 0.643639i
\(935\) −1.52717e10 −0.611006
\(936\) 0 0
\(937\) 2.15006e10 0.853811 0.426905 0.904296i \(-0.359604\pi\)
0.426905 + 0.904296i \(0.359604\pi\)
\(938\) −2.67565e9 1.54479e9i −0.105857 0.0611166i
\(939\) 0 0
\(940\) 1.20955e10 + 2.09500e10i 0.474980 + 0.822690i
\(941\) 1.20772e10i 0.472502i 0.971692 + 0.236251i \(0.0759188\pi\)
−0.971692 + 0.236251i \(0.924081\pi\)
\(942\) 0 0
\(943\) 8.46581e9 4.88774e9i 0.328759 0.189809i
\(944\) 1.77960e10i 0.688525i
\(945\) 0 0
\(946\) 2.15920e10 3.73984e10i 0.829227 1.43626i
\(947\) −3.63894e10 2.10094e10i −1.39235 0.803876i −0.398779 0.917047i \(-0.630566\pi\)
−0.993576 + 0.113171i \(0.963899\pi\)
\(948\) 0 0
\(949\) 3.27956e10 + 1.27351e10i 1.24561 + 0.483696i
\(950\) 4.82124e8 0.0182443
\(951\) 0 0
\(952\) −2.50969e9 + 4.34691e9i −0.0942737 + 0.163287i
\(953\) 1.06091e10 + 1.83754e10i 0.397056 + 0.687722i 0.993361 0.115036i \(-0.0366984\pi\)
−0.596305 + 0.802758i \(0.703365\pi\)
\(954\) 0 0
\(955\) −1.95996e10 + 1.13158e10i −0.728175 + 0.420412i
\(956\) −3.08597e9 + 1.78169e9i −0.114232 + 0.0659521i
\(957\) 0 0
\(958\) −4.82774e9 8.36188e9i −0.177404 0.307273i
\(959\) 1.44965e9 2.51087e9i 0.0530761 0.0919304i
\(960\) 0 0
\(961\) −5.14867e10 −1.87139
\(962\) −3.04682e10 + 4.70467e9i −1.10340 + 0.170379i
\(963\) 0 0
\(964\) −1.53614e10 8.86891e9i −0.552283 0.318861i
\(965\) −8.18912e9 + 1.41840e10i −0.293354 + 0.508103i
\(966\) 0 0
\(967\) 2.68721e10i 0.955671i −0.878449 0.477836i \(-0.841421\pi\)
0.878449 0.477836i \(-0.158579\pi\)
\(968\) 1.92983e9 1.11419e9i 0.0683843 0.0394817i
\(969\) 0 0
\(970\) 4.79266e10i 1.68607i
\(971\) −1.52953e10 2.64923e10i −0.536157 0.928651i −0.999106 0.0422666i \(-0.986542\pi\)
0.462949 0.886385i \(-0.346791\pi\)
\(972\) 0 0
\(973\) −7.74552e9 4.47188e9i −0.269560 0.155631i
\(974\) −4.01250e10 −1.39142
\(975\) 0 0
\(976\) −1.00790e10 −0.347010
\(977\) 2.41063e10 + 1.39178e10i 0.826990 + 0.477463i 0.852821 0.522204i \(-0.174890\pi\)
−0.0258312 + 0.999666i \(0.508223\pi\)
\(978\) 0 0
\(979\) −2.30943e9 4.00005e9i −0.0786620 0.136247i
\(980\) 1.10633e10i 0.375487i
\(981\) 0 0
\(982\) 3.56077e9 2.05581e9i 0.119992 0.0692777i
\(983\) 2.17619e8i 0.00730735i −0.999993 0.00365368i \(-0.998837\pi\)
0.999993 0.00365368i \(-0.00116300\pi\)
\(984\) 0 0
\(985\) −1.81347e10 + 3.14101e10i −0.604620 + 1.04723i
\(986\) −3.76914e10 2.17611e10i −1.25220 0.722957i
\(987\) 0 0
\(988\) −1.11807e9 + 8.98237e8i −0.0368823 + 0.0296307i
\(989\) −5.00169e10 −1.64411
\(990\) 0 0
\(991\) −1.81782e9 + 3.14855e9i −0.0593325 + 0.102767i −0.894166 0.447736i \(-0.852231\pi\)
0.834833 + 0.550503i \(0.185564\pi\)
\(992\) 3.09969e10 + 5.36882e10i 1.00815 + 1.74617i
\(993\) 0 0
\(994\) −2.08909e10 + 1.20614e10i −0.674691 + 0.389533i
\(995\) 2.10575e10 1.21575e10i 0.677681 0.391259i
\(996\) 0 0
\(997\) 2.88782e9 + 5.00185e9i 0.0922862 + 0.159844i 0.908473 0.417944i \(-0.137249\pi\)
−0.816187 + 0.577788i \(0.803916\pi\)
\(998\) −1.15961e10 + 2.00851e10i −0.369280 + 0.639612i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.8.q.b.82.2 14
3.2 odd 2 13.8.e.a.4.6 14
12.11 even 2 208.8.w.a.17.6 14
13.10 even 6 inner 117.8.q.b.10.2 14
39.17 odd 6 169.8.b.d.168.11 14
39.20 even 12 169.8.a.g.1.11 14
39.23 odd 6 13.8.e.a.10.6 yes 14
39.32 even 12 169.8.a.g.1.4 14
39.35 odd 6 169.8.b.d.168.4 14
156.23 even 6 208.8.w.a.49.6 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.8.e.a.4.6 14 3.2 odd 2
13.8.e.a.10.6 yes 14 39.23 odd 6
117.8.q.b.10.2 14 13.10 even 6 inner
117.8.q.b.82.2 14 1.1 even 1 trivial
169.8.a.g.1.4 14 39.32 even 12
169.8.a.g.1.11 14 39.20 even 12
169.8.b.d.168.4 14 39.35 odd 6
169.8.b.d.168.11 14 39.17 odd 6
208.8.w.a.17.6 14 12.11 even 2
208.8.w.a.49.6 14 156.23 even 6