Properties

Label 117.8.q.b.10.2
Level $117$
Weight $8$
Character 117.10
Analytic conductor $36.549$
Analytic rank $0$
Dimension $14$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [117,8,Mod(10,117)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("117.10"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(117, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 5])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 117.q (of order \(6\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [14] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(1)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(36.5490479816\)
Analytic rank: \(0\)
Dimension: \(14\)
Relative dimension: \(7\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{14} + \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{14} + 1279 x^{12} + 629380 x^{10} + 148562016 x^{8} + 16872573312 x^{6} + 790180980480 x^{4} + \cdots + 4669637050368 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 2^{10}\cdot 3^{7}\cdot 13^{4} \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 10.2
Root \(-14.7644i\) of defining polynomial
Character \(\chi\) \(=\) 117.10
Dual form 117.8.q.b.82.2

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-12.7863 + 7.38219i) q^{2} +(44.9933 - 77.9308i) q^{4} +248.787i q^{5} +(497.017 + 286.953i) q^{7} -561.243i q^{8} +(-1836.59 - 3181.07i) q^{10} +(-3411.39 + 1969.56i) q^{11} +(2867.43 + 7384.20i) q^{13} -8473.37 q^{14} +(9902.35 + 17151.4i) q^{16} +(7791.62 - 13495.5i) q^{17} +(-1742.44 - 1006.00i) q^{19} +(19388.2 + 11193.8i) q^{20} +(29079.4 - 50367.0i) q^{22} +(33680.6 + 58336.5i) q^{23} +16229.9 q^{25} +(-91175.3 - 73248.9i) q^{26} +(44724.9 - 25822.0i) q^{28} +(94582.0 + 163821. i) q^{29} +281068. i q^{31} +(-191015. - 110282. i) q^{32} +230077. i q^{34} +(-71390.3 + 123652. i) q^{35} +(228285. - 131800. i) q^{37} +29705.8 q^{38} +139630. q^{40} +(125678. - 72560.2i) q^{41} +(-371259. + 643040. i) q^{43} +354469. i q^{44} +(-861302. - 497273. i) q^{46} -1.08055e6i q^{47} +(-247087. - 427968. i) q^{49} +(-207521. + 119812. i) q^{50} +(704471. + 108779. i) q^{52} -1.63799e6 q^{53} +(-490002. - 848709. i) q^{55} +(161050. - 278947. i) q^{56} +(-2.41871e6 - 1.39644e6i) q^{58} +(-778187. - 449287. i) q^{59} +(-254459. + 440737. i) q^{61} +(-2.07490e6 - 3.59383e6i) q^{62} +721500. q^{64} +(-1.83709e6 + 713379. i) q^{65} +(315772. - 182311. i) q^{67} +(-701142. - 1.21441e6i) q^{68} -2.10806e6i q^{70} +(2.46548e6 + 1.42345e6i) q^{71} -4.44132e6i q^{73} +(-1.94595e6 + 3.37048e6i) q^{74} +(-156796. + 90526.4i) q^{76} -2.26069e6 q^{77} -6.66251e6 q^{79} +(-4.26704e6 + 2.46358e6i) q^{80} +(-1.07131e6 + 1.85556e6i) q^{82} +4.05229e6i q^{83} +(3.35750e6 + 1.93846e6i) q^{85} -1.09628e7i q^{86} +(1.10540e6 + 1.91462e6i) q^{88} +(1.01547e6 - 586279. i) q^{89} +(-693759. + 4.49289e6i) q^{91} +6.06161e6 q^{92} +(7.97686e6 + 1.38163e7i) q^{94} +(250279. - 433496. i) q^{95} +(-1.12996e7 - 6.52384e6i) q^{97} +(6.31867e6 + 3.64809e6i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 14 q + 3 q^{2} + 383 q^{4} - 2772 q^{7} - 509 q^{10} - 6516 q^{11} + 5109 q^{13} + 47916 q^{14} - 633 q^{16} + 38403 q^{17} + 43254 q^{19} - 89409 q^{20} - 125882 q^{22} + 68550 q^{23} + 39380 q^{25} - 361959 q^{26}+ \cdots - 16173003 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −12.7863 + 7.38219i −1.13016 + 0.652499i −0.943976 0.330015i \(-0.892946\pi\)
−0.186186 + 0.982514i \(0.559613\pi\)
\(3\) 0 0
\(4\) 44.9933 77.9308i 0.351510 0.608834i
\(5\) 248.787i 0.890088i 0.895509 + 0.445044i \(0.146812\pi\)
−0.895509 + 0.445044i \(0.853188\pi\)
\(6\) 0 0
\(7\) 497.017 + 286.953i 0.547682 + 0.316204i 0.748187 0.663488i \(-0.230925\pi\)
−0.200505 + 0.979693i \(0.564258\pi\)
\(8\) 561.243i 0.387557i
\(9\) 0 0
\(10\) −1836.59 3181.07i −0.580782 1.00594i
\(11\) −3411.39 + 1969.56i −0.772781 + 0.446165i −0.833866 0.551967i \(-0.813877\pi\)
0.0610849 + 0.998133i \(0.480544\pi\)
\(12\) 0 0
\(13\) 2867.43 + 7384.20i 0.361985 + 0.932184i
\(14\) −8473.37 −0.825292
\(15\) 0 0
\(16\) 9902.35 + 17151.4i 0.604391 + 1.04684i
\(17\) 7791.62 13495.5i 0.384642 0.666220i −0.607077 0.794643i \(-0.707658\pi\)
0.991719 + 0.128423i \(0.0409915\pi\)
\(18\) 0 0
\(19\) −1742.44 1006.00i −0.0582800 0.0336480i 0.470577 0.882359i \(-0.344046\pi\)
−0.528857 + 0.848711i \(0.677379\pi\)
\(20\) 19388.2 + 11193.8i 0.541916 + 0.312875i
\(21\) 0 0
\(22\) 29079.4 50367.0i 0.582245 1.00848i
\(23\) 33680.6 + 58336.5i 0.577208 + 0.999753i 0.995798 + 0.0915781i \(0.0291911\pi\)
−0.418590 + 0.908175i \(0.637476\pi\)
\(24\) 0 0
\(25\) 16229.9 0.207743
\(26\) −91175.3 73248.9i −1.01735 0.817324i
\(27\) 0 0
\(28\) 44724.9 25822.0i 0.385032 0.222298i
\(29\) 94582.0 + 163821.i 0.720138 + 1.24732i 0.960944 + 0.276742i \(0.0892547\pi\)
−0.240807 + 0.970573i \(0.577412\pi\)
\(30\) 0 0
\(31\) 281068.i 1.69452i 0.531181 + 0.847258i \(0.321748\pi\)
−0.531181 + 0.847258i \(0.678252\pi\)
\(32\) −191015. 110282.i −1.03049 0.594951i
\(33\) 0 0
\(34\) 230077.i 1.00391i
\(35\) −71390.3 + 123652.i −0.281450 + 0.487485i
\(36\) 0 0
\(37\) 228285. 131800.i 0.740920 0.427770i −0.0814838 0.996675i \(-0.525966\pi\)
0.822404 + 0.568904i \(0.192633\pi\)
\(38\) 29705.8 0.0878212
\(39\) 0 0
\(40\) 139630. 0.344960
\(41\) 125678. 72560.2i 0.284784 0.164420i −0.350803 0.936449i \(-0.614091\pi\)
0.635587 + 0.772029i \(0.280758\pi\)
\(42\) 0 0
\(43\) −371259. + 643040.i −0.712095 + 1.23338i 0.251975 + 0.967734i \(0.418920\pi\)
−0.964069 + 0.265650i \(0.914413\pi\)
\(44\) 354469.i 0.627327i
\(45\) 0 0
\(46\) −861302. 497273.i −1.30468 0.753255i
\(47\) 1.08055e6i 1.51811i −0.651024 0.759057i \(-0.725660\pi\)
0.651024 0.759057i \(-0.274340\pi\)
\(48\) 0 0
\(49\) −247087. 427968.i −0.300030 0.519667i
\(50\) −207521. + 119812.i −0.234784 + 0.135552i
\(51\) 0 0
\(52\) 704471. + 108779.i 0.694787 + 0.107284i
\(53\) −1.63799e6 −1.51128 −0.755642 0.654985i \(-0.772675\pi\)
−0.755642 + 0.654985i \(0.772675\pi\)
\(54\) 0 0
\(55\) −490002. 848709.i −0.397126 0.687843i
\(56\) 161050. 278947.i 0.122547 0.212258i
\(57\) 0 0
\(58\) −2.41871e6 1.39644e6i −1.62774 0.939779i
\(59\) −778187. 449287.i −0.493290 0.284801i 0.232649 0.972561i \(-0.425261\pi\)
−0.725938 + 0.687760i \(0.758594\pi\)
\(60\) 0 0
\(61\) −254459. + 440737.i −0.143537 + 0.248614i −0.928826 0.370516i \(-0.879181\pi\)
0.785289 + 0.619129i \(0.212514\pi\)
\(62\) −2.07490e6 3.59383e6i −1.10567 1.91508i
\(63\) 0 0
\(64\) 721500. 0.344038
\(65\) −1.83709e6 + 713379.i −0.829726 + 0.322198i
\(66\) 0 0
\(67\) 315772. 182311.i 0.128266 0.0740544i −0.434494 0.900675i \(-0.643073\pi\)
0.562760 + 0.826620i \(0.309739\pi\)
\(68\) −701142. 1.21441e6i −0.270411 0.468366i
\(69\) 0 0
\(70\) 2.10806e6i 0.734583i
\(71\) 2.46548e6 + 1.42345e6i 0.817518 + 0.471994i 0.849560 0.527492i \(-0.176868\pi\)
−0.0320418 + 0.999487i \(0.510201\pi\)
\(72\) 0 0
\(73\) 4.44132e6i 1.33623i −0.744057 0.668116i \(-0.767101\pi\)
0.744057 0.668116i \(-0.232899\pi\)
\(74\) −1.94595e6 + 3.37048e6i −0.558240 + 0.966899i
\(75\) 0 0
\(76\) −156796. + 90526.4i −0.0409721 + 0.0236552i
\(77\) −2.26069e6 −0.564318
\(78\) 0 0
\(79\) −6.66251e6 −1.52035 −0.760174 0.649720i \(-0.774886\pi\)
−0.760174 + 0.649720i \(0.774886\pi\)
\(80\) −4.26704e6 + 2.46358e6i −0.931776 + 0.537961i
\(81\) 0 0
\(82\) −1.07131e6 + 1.85556e6i −0.214568 + 0.371643i
\(83\) 4.05229e6i 0.777906i 0.921258 + 0.388953i \(0.127163\pi\)
−0.921258 + 0.388953i \(0.872837\pi\)
\(84\) 0 0
\(85\) 3.35750e6 + 1.93846e6i 0.592994 + 0.342365i
\(86\) 1.09628e7i 1.85856i
\(87\) 0 0
\(88\) 1.10540e6 + 1.91462e6i 0.172915 + 0.299497i
\(89\) 1.01547e6 586279.i 0.152686 0.0881535i −0.421710 0.906731i \(-0.638570\pi\)
0.574397 + 0.818577i \(0.305237\pi\)
\(90\) 0 0
\(91\) −693759. + 4.49289e6i −0.0965081 + 0.625002i
\(92\) 6.06161e6 0.811578
\(93\) 0 0
\(94\) 7.97686e6 + 1.38163e7i 0.990568 + 1.71571i
\(95\) 250279. 433496.i 0.0299497 0.0518744i
\(96\) 0 0
\(97\) −1.12996e7 6.52384e6i −1.25708 0.725776i −0.284574 0.958654i \(-0.591852\pi\)
−0.972506 + 0.232878i \(0.925186\pi\)
\(98\) 6.31867e6 + 3.64809e6i 0.678164 + 0.391538i
\(99\) 0 0
\(100\) 730240. 1.26481e6i 0.0730240 0.126481i
\(101\) −712550. 1.23417e6i −0.0688162 0.119193i 0.829564 0.558411i \(-0.188589\pi\)
−0.898380 + 0.439218i \(0.855256\pi\)
\(102\) 0 0
\(103\) 3.43743e6 0.309959 0.154979 0.987918i \(-0.450469\pi\)
0.154979 + 0.987918i \(0.450469\pi\)
\(104\) 4.14433e6 1.60932e6i 0.361275 0.140290i
\(105\) 0 0
\(106\) 2.09439e7 1.20920e7i 1.70800 0.986112i
\(107\) −4.55117e6 7.88286e6i −0.359153 0.622072i 0.628666 0.777675i \(-0.283601\pi\)
−0.987820 + 0.155604i \(0.950268\pi\)
\(108\) 0 0
\(109\) 3.25125e6i 0.240468i −0.992746 0.120234i \(-0.961635\pi\)
0.992746 0.120234i \(-0.0383646\pi\)
\(110\) 1.25307e7 + 7.23458e6i 0.897634 + 0.518249i
\(111\) 0 0
\(112\) 1.13660e7i 0.764445i
\(113\) −1.18415e7 + 2.05100e7i −0.772023 + 1.33718i 0.164429 + 0.986389i \(0.447422\pi\)
−0.936452 + 0.350794i \(0.885912\pi\)
\(114\) 0 0
\(115\) −1.45134e7 + 8.37930e6i −0.889868 + 0.513766i
\(116\) 1.70222e7 1.01254
\(117\) 0 0
\(118\) 1.32669e7 0.743329
\(119\) 7.74515e6 4.47166e6i 0.421323 0.243251i
\(120\) 0 0
\(121\) −1.98522e6 + 3.43850e6i −0.101873 + 0.176449i
\(122\) 7.51387e6i 0.374631i
\(123\) 0 0
\(124\) 2.19039e7 + 1.26462e7i 1.03168 + 0.595640i
\(125\) 2.34743e7i 1.07500i
\(126\) 0 0
\(127\) 9.29215e6 + 1.60945e7i 0.402535 + 0.697210i 0.994031 0.109097i \(-0.0347960\pi\)
−0.591497 + 0.806308i \(0.701463\pi\)
\(128\) 1.52246e7 8.78990e6i 0.641667 0.370467i
\(129\) 0 0
\(130\) 1.82234e7 2.26833e7i 0.727490 0.905532i
\(131\) 1.85251e7 0.719964 0.359982 0.932959i \(-0.382783\pi\)
0.359982 + 0.932959i \(0.382783\pi\)
\(132\) 0 0
\(133\) −577348. 999996.i −0.0212793 0.0368568i
\(134\) −2.69171e6 + 4.66217e6i −0.0966409 + 0.167387i
\(135\) 0 0
\(136\) −7.57425e6 4.37299e6i −0.258198 0.149071i
\(137\) 4.37505e6 + 2.52594e6i 0.145366 + 0.0839268i 0.570919 0.821007i \(-0.306587\pi\)
−0.425553 + 0.904933i \(0.639920\pi\)
\(138\) 0 0
\(139\) −7.79200e6 + 1.34961e7i −0.246092 + 0.426244i −0.962438 0.271501i \(-0.912480\pi\)
0.716346 + 0.697745i \(0.245813\pi\)
\(140\) 6.42417e6 + 1.11270e7i 0.197865 + 0.342712i
\(141\) 0 0
\(142\) −4.20326e7 −1.23190
\(143\) −2.43255e7 1.95428e7i −0.695643 0.558869i
\(144\) 0 0
\(145\) −4.07565e7 + 2.35308e7i −1.11022 + 0.640986i
\(146\) 3.27866e7 + 5.67881e7i 0.871890 + 1.51016i
\(147\) 0 0
\(148\) 2.37206e7i 0.601463i
\(149\) −3.21304e7 1.85505e7i −0.795727 0.459413i 0.0462480 0.998930i \(-0.485274\pi\)
−0.841975 + 0.539517i \(0.818607\pi\)
\(150\) 0 0
\(151\) 4.72742e7i 1.11739i −0.829373 0.558695i \(-0.811302\pi\)
0.829373 0.558695i \(-0.188698\pi\)
\(152\) −564609. + 977931.i −0.0130405 + 0.0225869i
\(153\) 0 0
\(154\) 2.89059e7 1.66888e7i 0.637770 0.368217i
\(155\) −6.99262e7 −1.50827
\(156\) 0 0
\(157\) 6.68124e7 1.37787 0.688935 0.724823i \(-0.258078\pi\)
0.688935 + 0.724823i \(0.258078\pi\)
\(158\) 8.51889e7 4.91839e7i 1.71824 0.992025i
\(159\) 0 0
\(160\) 2.74368e7 4.75220e7i 0.529559 0.917223i
\(161\) 3.86590e7i 0.730063i
\(162\) 0 0
\(163\) −4.15217e7 2.39725e7i −0.750962 0.433568i 0.0750793 0.997178i \(-0.476079\pi\)
−0.826041 + 0.563609i \(0.809412\pi\)
\(164\) 1.30589e7i 0.231181i
\(165\) 0 0
\(166\) −2.99148e7 5.18139e7i −0.507583 0.879160i
\(167\) 4.11000e7 2.37291e7i 0.682864 0.394252i −0.118069 0.993005i \(-0.537670\pi\)
0.800933 + 0.598753i \(0.204337\pi\)
\(168\) 0 0
\(169\) −4.63043e7 + 4.23473e7i −0.737934 + 0.674873i
\(170\) −5.72402e7 −0.893572
\(171\) 0 0
\(172\) 3.34084e7 + 5.78650e7i 0.500617 + 0.867095i
\(173\) 5.19255e7 8.99376e7i 0.762464 1.32063i −0.179113 0.983828i \(-0.557323\pi\)
0.941577 0.336798i \(-0.109344\pi\)
\(174\) 0 0
\(175\) 8.06657e6 + 4.65723e6i 0.113777 + 0.0656893i
\(176\) −6.75614e7 3.90066e7i −0.934124 0.539317i
\(177\) 0 0
\(178\) −8.65604e6 + 1.49927e7i −0.115040 + 0.199255i
\(179\) 1.01888e7 + 1.76475e7i 0.132782 + 0.229984i 0.924748 0.380581i \(-0.124276\pi\)
−0.791966 + 0.610565i \(0.790942\pi\)
\(180\) 0 0
\(181\) −5.61052e7 −0.703280 −0.351640 0.936135i \(-0.614376\pi\)
−0.351640 + 0.936135i \(0.614376\pi\)
\(182\) −2.42967e7 6.25690e7i −0.298743 0.769324i
\(183\) 0 0
\(184\) 3.27409e7 1.89030e7i 0.387462 0.223701i
\(185\) 3.27902e7 + 5.67944e7i 0.380753 + 0.659484i
\(186\) 0 0
\(187\) 6.13844e7i 0.686456i
\(188\) −8.42085e7 4.86178e7i −0.924279 0.533633i
\(189\) 0 0
\(190\) 7.39043e6i 0.0781686i
\(191\) −4.54840e7 + 7.87807e7i −0.472326 + 0.818093i −0.999499 0.0316651i \(-0.989919\pi\)
0.527172 + 0.849759i \(0.323252\pi\)
\(192\) 0 0
\(193\) −5.70124e7 + 3.29162e7i −0.570846 + 0.329578i −0.757487 0.652850i \(-0.773573\pi\)
0.186641 + 0.982428i \(0.440240\pi\)
\(194\) 1.92641e8 1.89427
\(195\) 0 0
\(196\) −4.44691e7 −0.421854
\(197\) −1.26253e8 + 7.28923e7i −1.17655 + 0.679281i −0.955214 0.295916i \(-0.904375\pi\)
−0.221336 + 0.975198i \(0.571042\pi\)
\(198\) 0 0
\(199\) 4.88672e7 8.46405e7i 0.439574 0.761364i −0.558083 0.829785i \(-0.688463\pi\)
0.997657 + 0.0684210i \(0.0217961\pi\)
\(200\) 9.10894e6i 0.0805124i
\(201\) 0 0
\(202\) 1.82218e7 + 1.05204e7i 0.155547 + 0.0898050i
\(203\) 1.08562e8i 0.910843i
\(204\) 0 0
\(205\) 1.80520e7 + 3.12670e7i 0.146348 + 0.253483i
\(206\) −4.39521e7 + 2.53758e7i −0.350304 + 0.202248i
\(207\) 0 0
\(208\) −9.82549e7 + 1.22301e8i −0.757064 + 0.942343i
\(209\) 7.92551e6 0.0600503
\(210\) 0 0
\(211\) 6.34096e7 + 1.09829e8i 0.464693 + 0.804872i 0.999188 0.0402998i \(-0.0128313\pi\)
−0.534494 + 0.845172i \(0.679498\pi\)
\(212\) −7.36987e7 + 1.27650e8i −0.531232 + 0.920121i
\(213\) 0 0
\(214\) 1.16385e8 + 6.71951e7i 0.811802 + 0.468694i
\(215\) −1.59980e8 9.23645e7i −1.09782 0.633827i
\(216\) 0 0
\(217\) −8.06534e7 + 1.39696e8i −0.535813 + 0.928056i
\(218\) 2.40014e7 + 4.15716e7i 0.156905 + 0.271768i
\(219\) 0 0
\(220\) −8.81874e7 −0.558376
\(221\) 1.21995e8 + 1.88376e7i 0.760274 + 0.117396i
\(222\) 0 0
\(223\) 1.54510e8 8.92066e7i 0.933019 0.538679i 0.0452542 0.998976i \(-0.485590\pi\)
0.887765 + 0.460296i \(0.152257\pi\)
\(224\) −6.32918e7 1.09625e8i −0.376252 0.651688i
\(225\) 0 0
\(226\) 3.49663e8i 2.01498i
\(227\) −9.00440e7 5.19869e7i −0.510934 0.294988i 0.222284 0.974982i \(-0.428649\pi\)
−0.733217 + 0.679994i \(0.761982\pi\)
\(228\) 0 0
\(229\) 4.93769e7i 0.271706i −0.990729 0.135853i \(-0.956622\pi\)
0.990729 0.135853i \(-0.0433776\pi\)
\(230\) 1.23715e8 2.14281e8i 0.670464 1.16128i
\(231\) 0 0
\(232\) 9.19433e7 5.30835e7i 0.483406 0.279095i
\(233\) −2.49971e8 −1.29462 −0.647312 0.762225i \(-0.724107\pi\)
−0.647312 + 0.762225i \(0.724107\pi\)
\(234\) 0 0
\(235\) 2.68828e8 1.35126
\(236\) −7.00265e7 + 4.04298e7i −0.346793 + 0.200221i
\(237\) 0 0
\(238\) −6.60213e7 + 1.14352e8i −0.317442 + 0.549826i
\(239\) 3.95989e7i 0.187625i −0.995590 0.0938124i \(-0.970095\pi\)
0.995590 0.0938124i \(-0.0299054\pi\)
\(240\) 0 0
\(241\) −1.70708e8 9.85581e7i −0.785585 0.453558i 0.0528210 0.998604i \(-0.483179\pi\)
−0.838406 + 0.545046i \(0.816512\pi\)
\(242\) 5.86210e7i 0.265889i
\(243\) 0 0
\(244\) 2.28980e7 + 3.96604e7i 0.100910 + 0.174781i
\(245\) 1.06473e8 6.14721e7i 0.462549 0.267053i
\(246\) 0 0
\(247\) 2.43217e6 1.57511e7i 0.0102696 0.0665078i
\(248\) 1.57747e8 0.656722
\(249\) 0 0
\(250\) −1.73292e8 3.00150e8i −0.701435 1.21492i
\(251\) −1.40289e7 + 2.42988e7i −0.0559972 + 0.0969900i −0.892665 0.450720i \(-0.851167\pi\)
0.836668 + 0.547710i \(0.184500\pi\)
\(252\) 0 0
\(253\) −2.29795e8 1.32672e8i −0.892110 0.515060i
\(254\) −2.37625e8 1.37193e8i −0.909858 0.525307i
\(255\) 0 0
\(256\) −1.75953e8 + 3.04760e8i −0.655477 + 1.13532i
\(257\) −5.58401e7 9.67178e7i −0.205201 0.355419i 0.744996 0.667069i \(-0.232452\pi\)
−0.950197 + 0.311650i \(0.899118\pi\)
\(258\) 0 0
\(259\) 1.51282e8 0.541051
\(260\) −2.70629e7 + 1.75263e8i −0.0954920 + 0.618421i
\(261\) 0 0
\(262\) −2.36868e8 + 1.36756e8i −0.813676 + 0.469776i
\(263\) 1.61308e8 + 2.79393e8i 0.546776 + 0.947044i 0.998493 + 0.0548828i \(0.0174785\pi\)
−0.451717 + 0.892162i \(0.649188\pi\)
\(264\) 0 0
\(265\) 4.07511e8i 1.34518i
\(266\) 1.47643e7 + 8.52418e6i 0.0480981 + 0.0277694i
\(267\) 0 0
\(268\) 3.28111e7i 0.104124i
\(269\) −2.11106e8 + 3.65647e8i −0.661254 + 1.14532i 0.319033 + 0.947744i \(0.396642\pi\)
−0.980287 + 0.197581i \(0.936691\pi\)
\(270\) 0 0
\(271\) −1.37631e8 + 7.94615e7i −0.420073 + 0.242529i −0.695108 0.718905i \(-0.744644\pi\)
0.275036 + 0.961434i \(0.411310\pi\)
\(272\) 3.08621e8 0.929897
\(273\) 0 0
\(274\) −7.45878e7 −0.219049
\(275\) −5.53666e7 + 3.19659e7i −0.160540 + 0.0926879i
\(276\) 0 0
\(277\) −1.43949e8 + 2.49327e8i −0.406940 + 0.704840i −0.994545 0.104307i \(-0.966737\pi\)
0.587605 + 0.809148i \(0.300071\pi\)
\(278\) 2.30088e8i 0.642299i
\(279\) 0 0
\(280\) 6.93985e7 + 4.00673e7i 0.188928 + 0.109078i
\(281\) 6.26146e8i 1.68346i −0.539897 0.841731i \(-0.681537\pi\)
0.539897 0.841731i \(-0.318463\pi\)
\(282\) 0 0
\(283\) 2.36259e7 + 4.09212e7i 0.0619634 + 0.107324i 0.895343 0.445377i \(-0.146930\pi\)
−0.833380 + 0.552701i \(0.813597\pi\)
\(284\) 2.21860e8 1.28091e8i 0.574732 0.331822i
\(285\) 0 0
\(286\) 4.55303e8 + 7.03044e7i 1.15085 + 0.177706i
\(287\) 8.32855e7 0.207961
\(288\) 0 0
\(289\) 8.37505e7 + 1.45060e8i 0.204101 + 0.353513i
\(290\) 3.47417e8 6.01745e8i 0.836486 1.44884i
\(291\) 0 0
\(292\) −3.46115e8 1.99830e8i −0.813543 0.469700i
\(293\) 6.60540e8 + 3.81363e8i 1.53413 + 0.885730i 0.999165 + 0.0408560i \(0.0130085\pi\)
0.534965 + 0.844874i \(0.320325\pi\)
\(294\) 0 0
\(295\) 1.11777e8 1.93603e8i 0.253498 0.439071i
\(296\) −7.39720e7 1.28123e8i −0.165785 0.287149i
\(297\) 0 0
\(298\) 5.47772e8 1.19907
\(299\) −3.34192e8 + 4.15980e8i −0.723014 + 0.899959i
\(300\) 0 0
\(301\) −3.69045e8 + 2.13068e8i −0.780003 + 0.450335i
\(302\) 3.48987e8 + 6.04463e8i 0.729096 + 1.26283i
\(303\) 0 0
\(304\) 3.98469e7i 0.0813462i
\(305\) −1.09650e8 6.33063e7i −0.221288 0.127761i
\(306\) 0 0
\(307\) 4.52948e8i 0.893436i 0.894675 + 0.446718i \(0.147407\pi\)
−0.894675 + 0.446718i \(0.852593\pi\)
\(308\) −1.01716e8 + 1.76177e8i −0.198364 + 0.343576i
\(309\) 0 0
\(310\) 8.94098e8 5.16208e8i 1.70459 0.984144i
\(311\) 4.98788e8 0.940274 0.470137 0.882594i \(-0.344205\pi\)
0.470137 + 0.882594i \(0.344205\pi\)
\(312\) 0 0
\(313\) 9.49928e8 1.75100 0.875498 0.483221i \(-0.160533\pi\)
0.875498 + 0.483221i \(0.160533\pi\)
\(314\) −8.54285e8 + 4.93222e8i −1.55722 + 0.899059i
\(315\) 0 0
\(316\) −2.99768e8 + 5.19214e8i −0.534418 + 0.925639i
\(317\) 8.74259e8i 1.54146i 0.637161 + 0.770731i \(0.280109\pi\)
−0.637161 + 0.770731i \(0.719891\pi\)
\(318\) 0 0
\(319\) −6.45311e8 3.72571e8i −1.11302 0.642601i
\(320\) 1.79500e8i 0.306224i
\(321\) 0 0
\(322\) −2.85388e8 4.94306e8i −0.476365 0.825089i
\(323\) −2.71529e7 + 1.56767e7i −0.0448339 + 0.0258849i
\(324\) 0 0
\(325\) 4.65382e7 + 1.19845e8i 0.0751999 + 0.193655i
\(326\) 7.07879e8 1.13161
\(327\) 0 0
\(328\) −4.07239e7 7.05358e7i −0.0637222 0.110370i
\(329\) 3.10069e8 5.37055e8i 0.480034 0.831444i
\(330\) 0 0
\(331\) 7.98662e8 + 4.61108e8i 1.21050 + 0.698883i 0.962868 0.269971i \(-0.0870142\pi\)
0.247632 + 0.968854i \(0.420348\pi\)
\(332\) 3.15798e8 + 1.82326e8i 0.473616 + 0.273442i
\(333\) 0 0
\(334\) −3.50345e8 + 6.06816e8i −0.514498 + 0.891137i
\(335\) 4.53566e7 + 7.85600e7i 0.0659150 + 0.114168i
\(336\) 0 0
\(337\) 1.85249e8 0.263664 0.131832 0.991272i \(-0.457914\pi\)
0.131832 + 0.991272i \(0.457914\pi\)
\(338\) 2.79446e8 8.83293e8i 0.393631 1.24422i
\(339\) 0 0
\(340\) 3.02131e8 1.74435e8i 0.416887 0.240690i
\(341\) −5.53582e8 9.58832e8i −0.756034 1.30949i
\(342\) 0 0
\(343\) 7.56246e8i 1.01189i
\(344\) 3.60902e8 + 2.08367e8i 0.478007 + 0.275977i
\(345\) 0 0
\(346\) 1.53329e9i 1.99003i
\(347\) 7.10332e7 1.23033e8i 0.0912658 0.158077i −0.816778 0.576952i \(-0.804242\pi\)
0.908044 + 0.418875i \(0.137575\pi\)
\(348\) 0 0
\(349\) 4.07258e8 2.35130e8i 0.512838 0.296087i −0.221161 0.975237i \(-0.570985\pi\)
0.734000 + 0.679150i \(0.237651\pi\)
\(350\) −1.37522e8 −0.171449
\(351\) 0 0
\(352\) 8.68833e8 1.06179
\(353\) −3.93517e8 + 2.27197e8i −0.476159 + 0.274911i −0.718814 0.695202i \(-0.755315\pi\)
0.242655 + 0.970113i \(0.421982\pi\)
\(354\) 0 0
\(355\) −3.54135e8 + 6.13380e8i −0.420116 + 0.727663i
\(356\) 1.05515e8i 0.123947i
\(357\) 0 0
\(358\) −2.60555e8 1.50431e8i −0.300129 0.173280i
\(359\) 1.21160e9i 1.38207i 0.722821 + 0.691035i \(0.242845\pi\)
−0.722821 + 0.691035i \(0.757155\pi\)
\(360\) 0 0
\(361\) −4.44912e8 7.70610e8i −0.497736 0.862103i
\(362\) 7.17379e8 4.14179e8i 0.794820 0.458890i
\(363\) 0 0
\(364\) 3.18920e8 + 2.56215e8i 0.346599 + 0.278452i
\(365\) 1.10494e9 1.18936
\(366\) 0 0
\(367\) 6.89733e8 + 1.19465e9i 0.728366 + 1.26157i 0.957574 + 0.288189i \(0.0930531\pi\)
−0.229208 + 0.973377i \(0.573614\pi\)
\(368\) −6.67034e8 + 1.15534e9i −0.697719 + 1.20848i
\(369\) 0 0
\(370\) −8.38533e8 4.84127e8i −0.860626 0.496882i
\(371\) −8.14110e8 4.70027e8i −0.827703 0.477875i
\(372\) 0 0
\(373\) −7.04597e7 + 1.22040e8i −0.0703007 + 0.121764i −0.899033 0.437881i \(-0.855729\pi\)
0.828732 + 0.559645i \(0.189063\pi\)
\(374\) −4.53151e8 7.84881e8i −0.447912 0.775806i
\(375\) 0 0
\(376\) −6.06454e8 −0.588356
\(377\) −9.38479e8 + 1.16816e9i −0.902048 + 1.12281i
\(378\) 0 0
\(379\) −1.25855e9 + 7.26626e8i −1.18750 + 0.685604i −0.957738 0.287642i \(-0.907129\pi\)
−0.229763 + 0.973247i \(0.573795\pi\)
\(380\) −2.25218e7 3.90089e7i −0.0210553 0.0364688i
\(381\) 0 0
\(382\) 1.34309e9i 1.23277i
\(383\) −8.94535e8 5.16460e8i −0.813583 0.469722i 0.0346157 0.999401i \(-0.488979\pi\)
−0.848199 + 0.529678i \(0.822313\pi\)
\(384\) 0 0
\(385\) 5.62431e8i 0.502292i
\(386\) 4.85986e8 8.41753e8i 0.430099 0.744953i
\(387\) 0 0
\(388\) −1.01682e9 + 5.87059e8i −0.883754 + 0.510235i
\(389\) 3.93410e8 0.338861 0.169431 0.985542i \(-0.445807\pi\)
0.169431 + 0.985542i \(0.445807\pi\)
\(390\) 0 0
\(391\) 1.04971e9 0.888074
\(392\) −2.40194e8 + 1.38676e8i −0.201401 + 0.116279i
\(393\) 0 0
\(394\) 1.07621e9 1.86405e9i 0.886461 1.53540i
\(395\) 1.65755e9i 1.35324i
\(396\) 0 0
\(397\) 9.23207e8 + 5.33014e8i 0.740512 + 0.427535i 0.822255 0.569119i \(-0.192715\pi\)
−0.0817434 + 0.996653i \(0.526049\pi\)
\(398\) 1.44299e9i 1.14729i
\(399\) 0 0
\(400\) 1.60715e8 + 2.78366e8i 0.125558 + 0.217473i
\(401\) −6.63509e8 + 3.83077e8i −0.513856 + 0.296675i −0.734417 0.678698i \(-0.762545\pi\)
0.220561 + 0.975373i \(0.429211\pi\)
\(402\) 0 0
\(403\) −2.07546e9 + 8.05942e8i −1.57960 + 0.613389i
\(404\) −1.28240e8 −0.0967584
\(405\) 0 0
\(406\) −8.01428e8 1.38811e9i −0.594324 1.02940i
\(407\) −5.19179e8 + 8.99244e8i −0.381712 + 0.661145i
\(408\) 0 0
\(409\) −1.94247e9 1.12148e9i −1.40386 0.810516i −0.409069 0.912503i \(-0.634147\pi\)
−0.994786 + 0.101987i \(0.967480\pi\)
\(410\) −4.61638e8 2.66527e8i −0.330795 0.190984i
\(411\) 0 0
\(412\) 1.54662e8 2.67882e8i 0.108954 0.188714i
\(413\) −2.57848e8 4.46606e8i −0.180111 0.311961i
\(414\) 0 0
\(415\) −1.00816e9 −0.692405
\(416\) 2.66627e8 1.72672e9i 0.181584 1.17597i
\(417\) 0 0
\(418\) −1.01338e8 + 5.85076e7i −0.0678665 + 0.0391828i
\(419\) −7.01906e8 1.21574e9i −0.466154 0.807403i 0.533098 0.846053i \(-0.321028\pi\)
−0.999253 + 0.0386502i \(0.987694\pi\)
\(420\) 0 0
\(421\) 1.81487e9i 1.18538i −0.805429 0.592692i \(-0.798065\pi\)
0.805429 0.592692i \(-0.201935\pi\)
\(422\) −1.62155e9 9.36203e8i −1.05036 0.606424i
\(423\) 0 0
\(424\) 9.19311e8i 0.585709i
\(425\) 1.26458e8 2.19031e8i 0.0799068 0.138403i
\(426\) 0 0
\(427\) −2.52942e8 + 1.46036e8i −0.157225 + 0.0907741i
\(428\) −8.19089e8 −0.504984
\(429\) 0 0
\(430\) 2.72741e9 1.65429
\(431\) 1.54287e9 8.90776e8i 0.928237 0.535918i 0.0419833 0.999118i \(-0.486632\pi\)
0.886254 + 0.463201i \(0.153299\pi\)
\(432\) 0 0
\(433\) −7.17382e8 + 1.24254e9i −0.424662 + 0.735536i −0.996389 0.0849082i \(-0.972940\pi\)
0.571727 + 0.820444i \(0.306274\pi\)
\(434\) 2.38159e9i 1.39847i
\(435\) 0 0
\(436\) −2.53373e8 1.46285e8i −0.146405 0.0845272i
\(437\) 1.35530e8i 0.0776876i
\(438\) 0 0
\(439\) −1.57839e9 2.73385e9i −0.890406 1.54223i −0.839389 0.543530i \(-0.817087\pi\)
−0.0510165 0.998698i \(-0.516246\pi\)
\(440\) −4.76332e8 + 2.75010e8i −0.266579 + 0.153909i
\(441\) 0 0
\(442\) −1.69893e9 + 6.59728e8i −0.935833 + 0.363402i
\(443\) −8.24759e8 −0.450727 −0.225364 0.974275i \(-0.572357\pi\)
−0.225364 + 0.974275i \(0.572357\pi\)
\(444\) 0 0
\(445\) 1.45859e8 + 2.52635e8i 0.0784643 + 0.135904i
\(446\) −1.31708e9 + 2.28125e9i −0.702975 + 1.21759i
\(447\) 0 0
\(448\) 3.58598e8 + 2.07037e8i 0.188423 + 0.108786i
\(449\) 1.94207e9 + 1.12126e9i 1.01252 + 0.584578i 0.911928 0.410350i \(-0.134593\pi\)
0.100591 + 0.994928i \(0.467927\pi\)
\(450\) 0 0
\(451\) −2.85824e8 + 4.95061e8i −0.146717 + 0.254121i
\(452\) 1.06557e9 + 1.84563e9i 0.542748 + 0.940068i
\(453\) 0 0
\(454\) 1.53511e9 0.769917
\(455\) −1.11777e9 1.72598e8i −0.556306 0.0859007i
\(456\) 0 0
\(457\) −9.49936e8 + 5.48446e8i −0.465573 + 0.268799i −0.714385 0.699753i \(-0.753293\pi\)
0.248812 + 0.968552i \(0.419960\pi\)
\(458\) 3.64510e8 + 6.31349e8i 0.177288 + 0.307072i
\(459\) 0 0
\(460\) 1.50805e9i 0.722376i
\(461\) −1.37164e9 7.91917e8i −0.652059 0.376467i 0.137186 0.990545i \(-0.456194\pi\)
−0.789245 + 0.614079i \(0.789528\pi\)
\(462\) 0 0
\(463\) 2.25948e9i 1.05798i −0.848629 0.528988i \(-0.822572\pi\)
0.848629 0.528988i \(-0.177428\pi\)
\(464\) −1.87317e9 + 3.24442e9i −0.870490 + 1.50773i
\(465\) 0 0
\(466\) 3.19621e9 1.84533e9i 1.46314 0.844742i
\(467\) 2.17106e9 0.986421 0.493211 0.869910i \(-0.335823\pi\)
0.493211 + 0.869910i \(0.335823\pi\)
\(468\) 0 0
\(469\) 2.09259e8 0.0936653
\(470\) −3.43732e9 + 1.98454e9i −1.52714 + 0.881693i
\(471\) 0 0
\(472\) −2.52159e8 + 4.36752e8i −0.110377 + 0.191178i
\(473\) 2.92488e9i 1.27085i
\(474\) 0 0
\(475\) −2.82797e7 1.63273e7i −0.0121073 0.00699015i
\(476\) 8.04780e8i 0.342021i
\(477\) 0 0
\(478\) 2.92326e8 + 5.06324e8i 0.122425 + 0.212046i
\(479\) 5.66356e8 3.26986e8i 0.235459 0.135942i −0.377629 0.925957i \(-0.623261\pi\)
0.613088 + 0.790015i \(0.289927\pi\)
\(480\) 0 0
\(481\) 1.62783e9 + 1.30777e9i 0.666962 + 0.535827i
\(482\) 2.91030e9 1.18378
\(483\) 0 0
\(484\) 1.78643e8 + 3.09419e8i 0.0716190 + 0.124048i
\(485\) 1.62305e9 2.81120e9i 0.646004 1.11891i
\(486\) 0 0
\(487\) 2.35359e9 + 1.35885e9i 0.923377 + 0.533112i 0.884711 0.466140i \(-0.154356\pi\)
0.0386663 + 0.999252i \(0.487689\pi\)
\(488\) 2.47360e8 + 1.42814e8i 0.0963520 + 0.0556288i
\(489\) 0 0
\(490\) −9.07598e8 + 1.57201e9i −0.348503 + 0.603626i
\(491\) −1.39241e8 2.41173e8i −0.0530864 0.0919483i 0.838261 0.545269i \(-0.183573\pi\)
−0.891347 + 0.453321i \(0.850239\pi\)
\(492\) 0 0
\(493\) 2.94779e9 1.10798
\(494\) 8.51793e7 + 2.19354e8i 0.0317899 + 0.0818655i
\(495\) 0 0
\(496\) −4.82070e9 + 2.78323e9i −1.77388 + 1.02415i
\(497\) 8.16924e8 + 1.41495e9i 0.298493 + 0.517006i
\(498\) 0 0
\(499\) 1.57082e9i 0.565947i 0.959128 + 0.282973i \(0.0913208\pi\)
−0.959128 + 0.282973i \(0.908679\pi\)
\(500\) 1.82937e9 + 1.05619e9i 0.654495 + 0.377873i
\(501\) 0 0
\(502\) 4.14257e8i 0.146153i
\(503\) −1.85784e9 + 3.21787e9i −0.650909 + 1.12741i 0.331993 + 0.943282i \(0.392279\pi\)
−0.982903 + 0.184126i \(0.941055\pi\)
\(504\) 0 0
\(505\) 3.07046e8 1.77273e8i 0.106092 0.0612525i
\(506\) 3.91764e9 1.34431
\(507\) 0 0
\(508\) 1.67234e9 0.565980
\(509\) −4.81978e8 + 2.78270e8i −0.162000 + 0.0935308i −0.578808 0.815464i \(-0.696482\pi\)
0.416808 + 0.908994i \(0.363149\pi\)
\(510\) 0 0
\(511\) 1.27445e9 2.20741e9i 0.422522 0.731830i
\(512\) 2.94547e9i 0.969860i
\(513\) 0 0
\(514\) 1.42798e9 + 8.24443e8i 0.463821 + 0.267787i
\(515\) 8.55189e8i 0.275891i
\(516\) 0 0
\(517\) 2.12822e9 + 3.68619e9i 0.677330 + 1.17317i
\(518\) −1.93434e9 + 1.11679e9i −0.611476 + 0.353036i
\(519\) 0 0
\(520\) 4.00379e8 + 1.03106e9i 0.124870 + 0.321566i
\(521\) 1.65430e9 0.512486 0.256243 0.966612i \(-0.417515\pi\)
0.256243 + 0.966612i \(0.417515\pi\)
\(522\) 0 0
\(523\) 9.42609e8 + 1.63265e9i 0.288122 + 0.499041i 0.973361 0.229276i \(-0.0736359\pi\)
−0.685240 + 0.728318i \(0.740303\pi\)
\(524\) 8.33506e8 1.44367e9i 0.253075 0.438339i
\(525\) 0 0
\(526\) −4.12506e9 2.38161e9i −1.23589 0.713542i
\(527\) 3.79315e9 + 2.18998e9i 1.12892 + 0.651782i
\(528\) 0 0
\(529\) −5.66351e8 + 9.80949e8i −0.166338 + 0.288106i
\(530\) 3.00832e9 + 5.21057e9i 0.877726 + 1.52027i
\(531\) 0 0
\(532\) −1.03907e8 −0.0299196
\(533\) 8.96171e8 + 7.19970e8i 0.256357 + 0.205953i
\(534\) 0 0
\(535\) 1.96115e9 1.13227e9i 0.553698 0.319678i
\(536\) −1.02321e8 1.77225e8i −0.0287003 0.0497104i
\(537\) 0 0
\(538\) 6.23370e9i 1.72587i
\(539\) 1.68582e9 + 9.73309e8i 0.463714 + 0.267726i
\(540\) 0 0
\(541\) 4.62326e7i 0.0125533i 0.999980 + 0.00627665i \(0.00199793\pi\)
−0.999980 + 0.00627665i \(0.998002\pi\)
\(542\) 1.17320e9 2.03204e9i 0.316500 0.548194i
\(543\) 0 0
\(544\) −2.97663e9 + 1.71856e9i −0.792736 + 0.457686i
\(545\) 8.08870e8 0.214038
\(546\) 0 0
\(547\) 5.53529e9 1.44605 0.723027 0.690819i \(-0.242750\pi\)
0.723027 + 0.690819i \(0.242750\pi\)
\(548\) 3.93697e8 2.27301e8i 0.102195 0.0590023i
\(549\) 0 0
\(550\) 4.71957e8 8.17453e8i 0.120958 0.209505i
\(551\) 3.80597e8i 0.0969248i
\(552\) 0 0
\(553\) −3.31138e9 1.91183e9i −0.832667 0.480740i
\(554\) 4.25064e9i 1.06211i
\(555\) 0 0
\(556\) 7.01176e8 + 1.21447e9i 0.173008 + 0.299658i
\(557\) 4.15944e9 2.40146e9i 1.01986 0.588819i 0.105799 0.994387i \(-0.466260\pi\)
0.914065 + 0.405569i \(0.132927\pi\)
\(558\) 0 0
\(559\) −5.81289e9 8.97583e8i −1.40751 0.217337i
\(560\) −2.82772e9 −0.680423
\(561\) 0 0
\(562\) 4.62232e9 + 8.00610e9i 1.09846 + 1.90258i
\(563\) −2.91491e8 + 5.04878e8i −0.0688409 + 0.119236i −0.898391 0.439196i \(-0.855263\pi\)
0.829550 + 0.558432i \(0.188597\pi\)
\(564\) 0 0
\(565\) −5.10262e9 2.94600e9i −1.19021 0.687169i
\(566\) −6.04176e8 3.48821e8i −0.140057 0.0808621i
\(567\) 0 0
\(568\) 7.98899e8 1.38373e9i 0.182925 0.316835i
\(569\) −1.09595e9 1.89824e9i −0.249401 0.431975i 0.713959 0.700188i \(-0.246900\pi\)
−0.963360 + 0.268213i \(0.913567\pi\)
\(570\) 0 0
\(571\) 3.96943e9 0.892281 0.446140 0.894963i \(-0.352798\pi\)
0.446140 + 0.894963i \(0.352798\pi\)
\(572\) −2.61747e9 + 1.01641e9i −0.584784 + 0.227083i
\(573\) 0 0
\(574\) −1.06491e9 + 6.14829e8i −0.235030 + 0.135695i
\(575\) 5.46634e8 + 9.46798e8i 0.119911 + 0.207692i
\(576\) 0 0
\(577\) 5.01942e9i 1.08777i −0.839159 0.543886i \(-0.816952\pi\)
0.839159 0.543886i \(-0.183048\pi\)
\(578\) −2.14172e9 1.23652e9i −0.461334 0.266351i
\(579\) 0 0
\(580\) 4.23492e9i 0.901253i
\(581\) −1.16282e9 + 2.01406e9i −0.245977 + 0.426045i
\(582\) 0 0
\(583\) 5.58782e9 3.22613e9i 1.16789 0.674282i
\(584\) −2.49266e9 −0.517866
\(585\) 0 0
\(586\) −1.12612e10 −2.31175
\(587\) −3.33458e9 + 1.92522e9i −0.680468 + 0.392868i −0.800031 0.599958i \(-0.795184\pi\)
0.119563 + 0.992827i \(0.461851\pi\)
\(588\) 0 0
\(589\) 2.82754e8 4.89744e8i 0.0570171 0.0987565i
\(590\) 3.30063e9i 0.661629i
\(591\) 0 0
\(592\) 4.52111e9 + 2.61027e9i 0.895611 + 0.517081i
\(593\) 3.30871e9i 0.651580i −0.945442 0.325790i \(-0.894370\pi\)
0.945442 0.325790i \(-0.105630\pi\)
\(594\) 0 0
\(595\) 1.11249e9 + 1.92689e9i 0.216515 + 0.375015i
\(596\) −2.89131e9 + 1.66930e9i −0.559413 + 0.322977i
\(597\) 0 0
\(598\) 1.20224e9 7.78591e9i 0.229899 1.48887i
\(599\) 1.42968e9 0.271797 0.135899 0.990723i \(-0.456608\pi\)
0.135899 + 0.990723i \(0.456608\pi\)
\(600\) 0 0
\(601\) −9.80155e8 1.69768e9i −0.184176 0.319003i 0.759122 0.650948i \(-0.225628\pi\)
−0.943299 + 0.331945i \(0.892295\pi\)
\(602\) 3.14582e9 5.44871e9i 0.587686 1.01790i
\(603\) 0 0
\(604\) −3.68411e9 2.12702e9i −0.680305 0.392774i
\(605\) −8.55455e8 4.93897e8i −0.157056 0.0906761i
\(606\) 0 0
\(607\) −2.47671e9 + 4.28978e9i −0.449484 + 0.778529i −0.998352 0.0573795i \(-0.981726\pi\)
0.548868 + 0.835909i \(0.315059\pi\)
\(608\) 2.21888e8 + 3.84321e8i 0.0400378 + 0.0693475i
\(609\) 0 0
\(610\) 1.86935e9 0.333455
\(611\) 7.97903e9 3.09841e9i 1.41516 0.549534i
\(612\) 0 0
\(613\) 5.81190e9 3.35550e9i 1.01908 0.588363i 0.105239 0.994447i \(-0.466439\pi\)
0.913836 + 0.406084i \(0.133106\pi\)
\(614\) −3.34374e9 5.79153e9i −0.582967 1.00973i
\(615\) 0 0
\(616\) 1.26880e9i 0.218705i
\(617\) −2.06965e9 1.19491e9i −0.354730 0.204804i 0.312036 0.950070i \(-0.398989\pi\)
−0.666767 + 0.745267i \(0.732322\pi\)
\(618\) 0 0
\(619\) 3.61543e9i 0.612693i −0.951920 0.306346i \(-0.900893\pi\)
0.951920 0.306346i \(-0.0991066\pi\)
\(620\) −3.14621e9 + 5.44940e9i −0.530172 + 0.918285i
\(621\) 0 0
\(622\) −6.37766e9 + 3.68214e9i −1.06266 + 0.613528i
\(623\) 6.72938e8 0.111498
\(624\) 0 0
\(625\) −4.57214e9 −0.749099
\(626\) −1.21461e10 + 7.01254e9i −1.97891 + 1.14252i
\(627\) 0 0
\(628\) 3.00611e9 5.20674e9i 0.484336 0.838894i
\(629\) 4.10776e9i 0.658154i
\(630\) 0 0
\(631\) 5.59855e7 + 3.23232e7i 0.00887100 + 0.00512167i 0.504429 0.863453i \(-0.331703\pi\)
−0.495558 + 0.868575i \(0.665036\pi\)
\(632\) 3.73928e9i 0.589221i
\(633\) 0 0
\(634\) −6.45394e9 1.11786e10i −1.00580 1.74210i
\(635\) −4.00410e9 + 2.31177e9i −0.620578 + 0.358291i
\(636\) 0 0
\(637\) 2.45169e9 3.05171e9i 0.375819 0.467794i
\(638\) 1.10015e10 1.67719
\(639\) 0 0
\(640\) 2.18681e9 + 3.78767e9i 0.329748 + 0.571140i
\(641\) 2.88121e9 4.99039e9i 0.432087 0.748397i −0.564966 0.825114i \(-0.691111\pi\)
0.997053 + 0.0767177i \(0.0244440\pi\)
\(642\) 0 0
\(643\) −1.98357e9 1.14522e9i −0.294245 0.169883i 0.345610 0.938378i \(-0.387672\pi\)
−0.639855 + 0.768496i \(0.721005\pi\)
\(644\) 3.01273e9 + 1.73940e9i 0.444487 + 0.256625i
\(645\) 0 0
\(646\) 2.31457e8 4.00895e8i 0.0337797 0.0585082i
\(647\) 4.23115e9 + 7.32857e9i 0.614177 + 1.06379i 0.990528 + 0.137308i \(0.0438452\pi\)
−0.376352 + 0.926477i \(0.622822\pi\)
\(648\) 0 0
\(649\) 3.53959e9 0.508273
\(650\) −1.47977e9 1.18883e9i −0.211348 0.169794i
\(651\) 0 0
\(652\) −3.73640e9 + 2.15721e9i −0.527942 + 0.304808i
\(653\) −1.94059e9 3.36119e9i −0.272732 0.472386i 0.696828 0.717238i \(-0.254594\pi\)
−0.969560 + 0.244852i \(0.921261\pi\)
\(654\) 0 0
\(655\) 4.60880e9i 0.640831i
\(656\) 2.48901e9 + 1.43703e9i 0.344242 + 0.198748i
\(657\) 0 0
\(658\) 9.15594e9i 1.25289i
\(659\) 6.98230e8 1.20937e9i 0.0950385 0.164612i −0.814586 0.580043i \(-0.803036\pi\)
0.909625 + 0.415431i \(0.136369\pi\)
\(660\) 0 0
\(661\) 4.16961e9 2.40733e9i 0.561552 0.324212i −0.192216 0.981353i \(-0.561567\pi\)
0.753768 + 0.657140i \(0.228234\pi\)
\(662\) −1.36159e10 −1.82408
\(663\) 0 0
\(664\) 2.27432e9 0.301483
\(665\) 2.48786e8 1.43637e8i 0.0328058 0.0189404i
\(666\) 0 0
\(667\) −6.37116e9 + 1.10352e10i −0.831338 + 1.43992i
\(668\) 4.27061e9i 0.554335i
\(669\) 0 0
\(670\) −1.15989e9 6.69662e8i −0.148989 0.0860189i
\(671\) 2.00470e9i 0.256165i
\(672\) 0 0
\(673\) 7.05428e9 + 1.22184e10i 0.892072 + 1.54511i 0.837387 + 0.546610i \(0.184082\pi\)
0.0546842 + 0.998504i \(0.482585\pi\)
\(674\) −2.36865e9 + 1.36754e9i −0.297983 + 0.172040i
\(675\) 0 0
\(676\) 1.21677e9 + 5.51387e9i 0.151494 + 0.686504i
\(677\) −6.91643e8 −0.0856686 −0.0428343 0.999082i \(-0.513639\pi\)
−0.0428343 + 0.999082i \(0.513639\pi\)
\(678\) 0 0
\(679\) −3.74407e9 6.48493e9i −0.458987 0.794988i
\(680\) 1.08794e9 1.88438e9i 0.132686 0.229819i
\(681\) 0 0
\(682\) 1.41565e10 + 8.17329e9i 1.70888 + 0.986624i
\(683\) −2.97479e8 1.71750e8i −0.0357260 0.0206264i 0.482031 0.876154i \(-0.339899\pi\)
−0.517757 + 0.855528i \(0.673233\pi\)
\(684\) 0 0
\(685\) −6.28421e8 + 1.08846e9i −0.0747023 + 0.129388i
\(686\) 5.58275e9 + 9.66961e9i 0.660258 + 1.14360i
\(687\) 0 0
\(688\) −1.47054e10 −1.72154
\(689\) −4.69682e9 1.20953e10i −0.547062 1.40879i
\(690\) 0 0
\(691\) 3.75457e7 2.16770e7i 0.00432899 0.00249935i −0.497834 0.867272i \(-0.665871\pi\)
0.502163 + 0.864773i \(0.332538\pi\)
\(692\) −4.67260e9 8.09318e9i −0.536028 0.928428i
\(693\) 0 0
\(694\) 2.09752e9i 0.238204i
\(695\) −3.35767e9 1.93855e9i −0.379394 0.219043i
\(696\) 0 0
\(697\) 2.26145e9i 0.252971i
\(698\) −3.47155e9 + 6.01291e9i −0.386394 + 0.669253i
\(699\) 0 0
\(700\) 7.25884e8 4.19089e8i 0.0799878 0.0461810i
\(701\) 3.13161e9 0.343364 0.171682 0.985152i \(-0.445080\pi\)
0.171682 + 0.985152i \(0.445080\pi\)
\(702\) 0 0
\(703\) −5.30363e8 −0.0575745
\(704\) −2.46131e9 + 1.42104e9i −0.265866 + 0.153498i
\(705\) 0 0
\(706\) 3.35442e9 5.81003e9i 0.358758 0.621387i
\(707\) 8.17874e8i 0.0870399i
\(708\) 0 0
\(709\) −1.36402e8 7.87519e7i −0.0143734 0.00829850i 0.492796 0.870145i \(-0.335975\pi\)
−0.507169 + 0.861846i \(0.669308\pi\)
\(710\) 1.04572e10i 1.09650i
\(711\) 0 0
\(712\) −3.29045e8 5.69922e8i −0.0341645 0.0591747i
\(713\) −1.63965e10 + 9.46654e9i −1.69410 + 0.978088i
\(714\) 0 0
\(715\) 4.86199e9 6.05188e9i 0.497443 0.619184i
\(716\) 1.83371e9 0.186696
\(717\) 0 0
\(718\) −8.94429e9 1.54920e10i −0.901800 1.56196i
\(719\) −6.01180e9 + 1.04127e10i −0.603189 + 1.04475i 0.389146 + 0.921176i \(0.372770\pi\)
−0.992335 + 0.123578i \(0.960563\pi\)
\(720\) 0 0
\(721\) 1.70846e9 + 9.86383e8i 0.169759 + 0.0980104i
\(722\) 1.13776e10 + 6.56884e9i 1.12504 + 0.649544i
\(723\) 0 0
\(724\) −2.52436e9 + 4.37232e9i −0.247210 + 0.428181i
\(725\) 1.53506e9 + 2.65880e9i 0.149604 + 0.259121i
\(726\) 0 0
\(727\) 2.27511e9 0.219600 0.109800 0.993954i \(-0.464979\pi\)
0.109800 + 0.993954i \(0.464979\pi\)
\(728\) 2.52160e9 + 3.89367e8i 0.242224 + 0.0374024i
\(729\) 0 0
\(730\) −1.41282e10 + 8.15689e9i −1.34417 + 0.776059i
\(731\) 5.78543e9 + 1.00207e10i 0.547803 + 0.948823i
\(732\) 0 0
\(733\) 1.24052e10i 1.16343i 0.813394 + 0.581713i \(0.197617\pi\)
−0.813394 + 0.581713i \(0.802383\pi\)
\(734\) −1.76383e10 1.01835e10i −1.64634 0.950516i
\(735\) 0 0
\(736\) 1.48575e10i 1.37364i
\(737\) −7.18146e8 + 1.24387e9i −0.0660810 + 0.114456i
\(738\) 0 0
\(739\) −1.03072e10 + 5.95087e9i −0.939475 + 0.542406i −0.889796 0.456359i \(-0.849153\pi\)
−0.0496793 + 0.998765i \(0.515820\pi\)
\(740\) 5.90137e9 0.535355
\(741\) 0 0
\(742\) 1.38793e10 1.24725
\(743\) 7.70983e9 4.45127e9i 0.689579 0.398128i −0.113876 0.993495i \(-0.536327\pi\)
0.803454 + 0.595367i \(0.202993\pi\)
\(744\) 0 0
\(745\) 4.61512e9 7.99363e9i 0.408918 0.708267i
\(746\) 2.08059e9i 0.183485i
\(747\) 0 0
\(748\) 4.78373e9 + 2.76189e9i 0.417938 + 0.241296i
\(749\) 5.22389e9i 0.454263i
\(750\) 0 0
\(751\) 9.35730e9 + 1.62073e10i 0.806141 + 1.39628i 0.915518 + 0.402276i \(0.131781\pi\)
−0.109378 + 0.994000i \(0.534886\pi\)
\(752\) 1.85330e10 1.07000e10i 1.58922 0.917535i
\(753\) 0 0
\(754\) 3.37614e9 2.18644e10i 0.286828 1.85754i
\(755\) 1.17612e10 0.994575
\(756\) 0 0
\(757\) −1.12646e10 1.95108e10i −0.943799 1.63471i −0.758139 0.652093i \(-0.773891\pi\)
−0.185660 0.982614i \(-0.559442\pi\)
\(758\) 1.07282e10 1.85817e10i 0.894712 1.54969i
\(759\) 0 0
\(760\) −2.43297e8 1.40467e8i −0.0201043 0.0116072i
\(761\) −6.90340e9 3.98568e9i −0.567828 0.327835i 0.188454 0.982082i \(-0.439652\pi\)
−0.756281 + 0.654247i \(0.772986\pi\)
\(762\) 0 0
\(763\) 9.32957e8 1.61593e9i 0.0760372 0.131700i
\(764\) 4.09296e9 + 7.08921e9i 0.332055 + 0.575137i
\(765\) 0 0
\(766\) 1.52504e10 1.22597
\(767\) 1.08623e9 7.03458e9i 0.0869235 0.562930i
\(768\) 0 0
\(769\) −5.04153e9 + 2.91073e9i −0.399779 + 0.230813i −0.686389 0.727235i \(-0.740805\pi\)
0.286610 + 0.958047i \(0.407472\pi\)
\(770\) 4.15197e9 + 7.19142e9i 0.327745 + 0.567672i
\(771\) 0 0
\(772\) 5.92403e9i 0.463401i
\(773\) −1.74452e10 1.00720e10i −1.35846 0.784308i −0.369045 0.929412i \(-0.620315\pi\)
−0.989416 + 0.145104i \(0.953648\pi\)
\(774\) 0 0
\(775\) 4.56172e9i 0.352024i
\(776\) −3.66146e9 + 6.34183e9i −0.281280 + 0.487191i
\(777\) 0 0
\(778\) −5.03027e9 + 2.90423e9i −0.382968 + 0.221107i
\(779\) −2.91981e8 −0.0221296
\(780\) 0 0
\(781\) −1.12143e10 −0.842350
\(782\) −1.34219e10 + 7.74913e9i −1.00367 + 0.579467i
\(783\) 0 0
\(784\) 4.89349e9 8.47577e9i 0.362671 0.628164i
\(785\) 1.66221e10i 1.22643i
\(786\) 0 0
\(787\) 7.31133e8 + 4.22120e8i 0.0534669 + 0.0308691i 0.526495 0.850178i \(-0.323506\pi\)
−0.473028 + 0.881047i \(0.656839\pi\)
\(788\) 1.31187e10i 0.955098i
\(789\) 0 0
\(790\) 1.22363e10 + 2.11939e10i 0.882990 + 1.52938i
\(791\) −1.17708e10 + 6.79588e9i −0.845646 + 0.488234i
\(792\) 0 0
\(793\) −3.98413e9 6.15200e8i −0.283712 0.0438087i
\(794\) −1.57392e10 −1.11586
\(795\) 0 0
\(796\) −4.39740e9 7.61652e9i −0.309030 0.535255i
\(797\) −8.84381e9 + 1.53179e10i −0.618779 + 1.07176i 0.370930 + 0.928661i \(0.379039\pi\)
−0.989709 + 0.143095i \(0.954294\pi\)
\(798\) 0 0
\(799\) −1.45826e10 8.41928e9i −1.01140 0.583931i
\(800\) −3.10016e9 1.78988e9i −0.214076 0.123597i
\(801\) 0 0
\(802\) 5.65590e9 9.79630e9i 0.387161 0.670582i
\(803\) 8.74746e9 + 1.51510e10i 0.596180 + 1.03261i
\(804\) 0 0
\(805\) −9.61786e9 −0.649820
\(806\) 2.05879e10 2.56265e10i 1.38497 1.72392i
\(807\) 0 0
\(808\) −6.92671e8 + 3.99914e8i −0.0461942 + 0.0266702i
\(809\) −6.07311e9 1.05189e10i −0.403266 0.698477i 0.590852 0.806780i \(-0.298792\pi\)
−0.994118 + 0.108303i \(0.965458\pi\)
\(810\) 0 0
\(811\) 9.76645e9i 0.642930i 0.946921 + 0.321465i \(0.104175\pi\)
−0.946921 + 0.321465i \(0.895825\pi\)
\(812\) 8.46035e9 + 4.88459e9i 0.554552 + 0.320171i
\(813\) 0 0
\(814\) 1.53307e10i 0.996268i
\(815\) 5.96406e9 1.03301e10i 0.385914 0.668422i
\(816\) 0 0
\(817\) 1.29379e9 7.46972e8i 0.0830018 0.0479211i
\(818\) 3.31160e10 2.11544
\(819\) 0 0
\(820\) 3.24889e9 0.205772
\(821\) −7.00087e9 + 4.04196e9i −0.441521 + 0.254912i −0.704243 0.709959i \(-0.748713\pi\)
0.262722 + 0.964872i \(0.415380\pi\)
\(822\) 0 0
\(823\) 5.48917e9 9.50753e9i 0.343248 0.594522i −0.641786 0.766884i \(-0.721806\pi\)
0.985034 + 0.172361i \(0.0551397\pi\)
\(824\) 1.92924e9i 0.120127i
\(825\) 0 0
\(826\) 6.59386e9 + 3.80697e9i 0.407108 + 0.235044i
\(827\) 1.39129e10i 0.855357i 0.903931 + 0.427678i \(0.140668\pi\)
−0.903931 + 0.427678i \(0.859332\pi\)
\(828\) 0 0
\(829\) −1.31171e10 2.27195e10i −0.799646 1.38503i −0.919847 0.392278i \(-0.871687\pi\)
0.120200 0.992750i \(-0.461646\pi\)
\(830\) 1.28906e10 7.44241e9i 0.782530 0.451794i
\(831\) 0 0
\(832\) 2.06885e9 + 5.32770e9i 0.124536 + 0.320707i
\(833\) −7.70085e9 −0.461616
\(834\) 0 0
\(835\) 5.90350e9 + 1.02252e10i 0.350919 + 0.607809i
\(836\) 3.56595e8 6.17641e8i 0.0211083 0.0365606i
\(837\) 0 0
\(838\) 1.79496e10 + 1.03632e10i 1.05366 + 0.608331i
\(839\) 1.04861e10 + 6.05413e9i 0.612979 + 0.353904i 0.774130 0.633026i \(-0.218187\pi\)
−0.161151 + 0.986930i \(0.551521\pi\)
\(840\) 0 0
\(841\) −9.26658e9 + 1.60502e10i −0.537197 + 0.930452i
\(842\) 1.33977e10 + 2.32056e10i 0.773462 + 1.33968i
\(843\) 0 0
\(844\) 1.14120e10 0.653378
\(845\) −1.05355e10 1.15199e10i −0.600696 0.656826i
\(846\) 0 0
\(847\) −1.97338e9 + 1.13933e9i −0.111588 + 0.0644255i
\(848\) −1.62200e10 2.80938e10i −0.913407 1.58207i
\(849\) 0 0
\(850\) 3.73414e9i 0.208557i
\(851\) 1.53775e10 + 8.87823e9i 0.855330 + 0.493825i
\(852\) 0 0
\(853\) 1.60323e10i 0.884453i −0.896903 0.442227i \(-0.854189\pi\)
0.896903 0.442227i \(-0.145811\pi\)
\(854\) 2.15613e9 3.73452e9i 0.118460 0.205179i
\(855\) 0 0
\(856\) −4.42420e9 + 2.55431e9i −0.241088 + 0.139192i
\(857\) 2.24463e10 1.21818 0.609092 0.793100i \(-0.291534\pi\)
0.609092 + 0.793100i \(0.291534\pi\)
\(858\) 0 0
\(859\) −1.36041e10 −0.732310 −0.366155 0.930554i \(-0.619326\pi\)
−0.366155 + 0.930554i \(0.619326\pi\)
\(860\) −1.43961e10 + 8.31158e9i −0.771791 + 0.445594i
\(861\) 0 0
\(862\) −1.31518e10 + 2.27795e10i −0.699372 + 1.21135i
\(863\) 1.13911e10i 0.603290i 0.953420 + 0.301645i \(0.0975358\pi\)
−0.953420 + 0.301645i \(0.902464\pi\)
\(864\) 0 0
\(865\) 2.23753e10 + 1.29184e10i 1.17547 + 0.678660i
\(866\) 2.11834e10i 1.10837i
\(867\) 0 0
\(868\) 7.25773e9 + 1.25708e10i 0.376688 + 0.652443i
\(869\) 2.27284e10 1.31222e10i 1.17490 0.678326i
\(870\) 0 0
\(871\) 2.25167e9 + 1.80896e9i 0.115463 + 0.0927610i
\(872\) −1.82474e9 −0.0931953
\(873\) 0 0
\(874\) 1.00051e9 + 1.73293e9i 0.0506911 + 0.0877995i
\(875\) −6.73602e9 + 1.16671e10i −0.339919 + 0.588757i
\(876\) 0 0
\(877\) 2.38991e10 + 1.37981e10i 1.19642 + 0.690752i 0.959755 0.280840i \(-0.0906131\pi\)
0.236662 + 0.971592i \(0.423946\pi\)
\(878\) 4.03636e10 + 2.33039e10i 2.01261 + 1.16198i
\(879\) 0 0
\(880\) 9.70434e9 1.68084e10i 0.480039 0.831453i
\(881\) −5.80856e9 1.00607e10i −0.286189 0.495694i 0.686708 0.726934i \(-0.259055\pi\)
−0.972897 + 0.231240i \(0.925722\pi\)
\(882\) 0 0
\(883\) −2.60345e10 −1.27258 −0.636292 0.771449i \(-0.719532\pi\)
−0.636292 + 0.771449i \(0.719532\pi\)
\(884\) 6.95700e9 8.65962e9i 0.338719 0.421615i
\(885\) 0 0
\(886\) 1.05456e10 6.08852e9i 0.509395 0.294099i
\(887\) −1.36152e10 2.35823e10i −0.655078 1.13463i −0.981874 0.189533i \(-0.939302\pi\)
0.326796 0.945095i \(-0.394031\pi\)
\(888\) 0 0
\(889\) 1.06656e10i 0.509133i
\(890\) −3.72999e9 2.15351e9i −0.177355 0.102396i
\(891\) 0 0
\(892\) 1.60548e10i 0.757405i
\(893\) −1.08704e9 + 1.88280e9i −0.0510815 + 0.0884757i
\(894\) 0 0
\(895\) −4.39048e9 + 2.53484e9i −0.204706 + 0.118187i
\(896\) 1.00892e10 0.468573
\(897\) 0 0
\(898\) −3.31093e10 −1.52575
\(899\) −4.60448e10 + 2.65840e10i −2.11360 + 1.22029i
\(900\) 0 0
\(901\) −1.27626e10 + 2.21055e10i −0.581303 + 1.00685i
\(902\) 8.44002e9i 0.382931i
\(903\) 0 0
\(904\) 1.15111e10 + 6.64593e9i 0.518235 + 0.299203i
\(905\) 1.39583e10i 0.625981i
\(906\) 0 0
\(907\) 1.45545e10 + 2.52092e10i 0.647698 + 1.12185i 0.983671 + 0.179974i \(0.0576013\pi\)
−0.335974 + 0.941871i \(0.609065\pi\)
\(908\) −8.10276e9 + 4.67813e9i −0.359197 + 0.207382i
\(909\) 0 0
\(910\) 1.55664e10 6.04472e9i 0.684766 0.265908i
\(911\) 1.86121e9 0.0815606 0.0407803 0.999168i \(-0.487016\pi\)
0.0407803 + 0.999168i \(0.487016\pi\)
\(912\) 0 0
\(913\) −7.98125e9 1.38239e10i −0.347075 0.601151i
\(914\) 8.09745e9 1.40252e10i 0.350782 0.607572i
\(915\) 0 0
\(916\) −3.84798e9 2.22163e9i −0.165424 0.0955077i
\(917\) 9.20729e9 + 5.31583e9i 0.394311 + 0.227656i
\(918\) 0 0
\(919\) 1.67606e10 2.90302e10i 0.712336 1.23380i −0.251642 0.967820i \(-0.580970\pi\)
0.963978 0.265982i \(-0.0856962\pi\)
\(920\) 4.70282e9 + 8.14552e9i 0.199114 + 0.344875i
\(921\) 0 0
\(922\) 2.33843e10 0.982576
\(923\) −3.44143e9 + 2.22872e10i −0.144056 + 0.932932i
\(924\) 0 0
\(925\) 3.70505e9 2.13911e9i 0.153921 0.0888664i
\(926\) 1.66799e10 + 2.88905e10i 0.690328 + 1.19568i
\(927\) 0 0
\(928\) 4.17229e10i 1.71379i
\(929\) 1.54742e10 + 8.93401e9i 0.633216 + 0.365588i 0.781997 0.623283i \(-0.214201\pi\)
−0.148780 + 0.988870i \(0.547535\pi\)
\(930\) 0 0
\(931\) 9.94277e8i 0.0403816i
\(932\) −1.12470e10 + 1.94804e10i −0.455074 + 0.788211i
\(933\) 0 0
\(934\) −2.77599e10 + 1.60272e10i −1.11482 + 0.643639i
\(935\) −1.52717e10 −0.611006
\(936\) 0 0
\(937\) 2.15006e10 0.853811 0.426905 0.904296i \(-0.359604\pi\)
0.426905 + 0.904296i \(0.359604\pi\)
\(938\) −2.67565e9 + 1.54479e9i −0.105857 + 0.0611166i
\(939\) 0 0
\(940\) 1.20955e10 2.09500e10i 0.474980 0.822690i
\(941\) 1.20772e10i 0.472502i −0.971692 0.236251i \(-0.924081\pi\)
0.971692 0.236251i \(-0.0759188\pi\)
\(942\) 0 0
\(943\) 8.46581e9 + 4.88774e9i 0.328759 + 0.189809i
\(944\) 1.77960e10i 0.688525i
\(945\) 0 0
\(946\) 2.15920e10 + 3.73984e10i 0.829227 + 1.43626i
\(947\) −3.63894e10 + 2.10094e10i −1.39235 + 0.803876i −0.993576 0.113171i \(-0.963899\pi\)
−0.398779 + 0.917047i \(0.630566\pi\)
\(948\) 0 0
\(949\) 3.27956e10 1.27351e10i 1.24561 0.483696i
\(950\) 4.82124e8 0.0182443
\(951\) 0 0
\(952\) −2.50969e9 4.34691e9i −0.0942737 0.163287i
\(953\) 1.06091e10 1.83754e10i 0.397056 0.687722i −0.596305 0.802758i \(-0.703365\pi\)
0.993361 + 0.115036i \(0.0366984\pi\)
\(954\) 0 0
\(955\) −1.95996e10 1.13158e10i −0.728175 0.420412i
\(956\) −3.08597e9 1.78169e9i −0.114232 0.0659521i
\(957\) 0 0
\(958\) −4.82774e9 + 8.36188e9i −0.177404 + 0.307273i
\(959\) 1.44965e9 + 2.51087e9i 0.0530761 + 0.0919304i
\(960\) 0 0
\(961\) −5.14867e10 −1.87139
\(962\) −3.04682e10 4.70467e9i −1.10340 0.170379i
\(963\) 0 0
\(964\) −1.53614e10 + 8.86891e9i −0.552283 + 0.318861i
\(965\) −8.18912e9 1.41840e10i −0.293354 0.508103i
\(966\) 0 0
\(967\) 2.68721e10i 0.955671i 0.878449 + 0.477836i \(0.158579\pi\)
−0.878449 + 0.477836i \(0.841421\pi\)
\(968\) 1.92983e9 + 1.11419e9i 0.0683843 + 0.0394817i
\(969\) 0 0
\(970\) 4.79266e10i 1.68607i
\(971\) −1.52953e10 + 2.64923e10i −0.536157 + 0.928651i 0.462949 + 0.886385i \(0.346791\pi\)
−0.999106 + 0.0422666i \(0.986542\pi\)
\(972\) 0 0
\(973\) −7.74552e9 + 4.47188e9i −0.269560 + 0.155631i
\(974\) −4.01250e10 −1.39142
\(975\) 0 0
\(976\) −1.00790e10 −0.347010
\(977\) 2.41063e10 1.39178e10i 0.826990 0.477463i −0.0258312 0.999666i \(-0.508223\pi\)
0.852821 + 0.522204i \(0.174890\pi\)
\(978\) 0 0
\(979\) −2.30943e9 + 4.00005e9i −0.0786620 + 0.136247i
\(980\) 1.10633e10i 0.375487i
\(981\) 0 0
\(982\) 3.56077e9 + 2.05581e9i 0.119992 + 0.0692777i
\(983\) 2.17619e8i 0.00730735i 0.999993 + 0.00365368i \(0.00116300\pi\)
−0.999993 + 0.00365368i \(0.998837\pi\)
\(984\) 0 0
\(985\) −1.81347e10 3.14101e10i −0.604620 1.04723i
\(986\) −3.76914e10 + 2.17611e10i −1.25220 + 0.722957i
\(987\) 0 0
\(988\) −1.11807e9 8.98237e8i −0.0368823 0.0296307i
\(989\) −5.00169e10 −1.64411
\(990\) 0 0
\(991\) −1.81782e9 3.14855e9i −0.0593325 0.102767i 0.834833 0.550503i \(-0.185564\pi\)
−0.894166 + 0.447736i \(0.852231\pi\)
\(992\) 3.09969e10 5.36882e10i 1.00815 1.74617i
\(993\) 0 0
\(994\) −2.08909e10 1.20614e10i −0.674691 0.389533i
\(995\) 2.10575e10 + 1.21575e10i 0.677681 + 0.391259i
\(996\) 0 0
\(997\) 2.88782e9 5.00185e9i 0.0922862 0.159844i −0.816187 0.577788i \(-0.803916\pi\)
0.908473 + 0.417944i \(0.137249\pi\)
\(998\) −1.15961e10 2.00851e10i −0.369280 0.639612i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.8.q.b.10.2 14
3.2 odd 2 13.8.e.a.10.6 yes 14
12.11 even 2 208.8.w.a.49.6 14
13.4 even 6 inner 117.8.q.b.82.2 14
39.2 even 12 169.8.a.g.1.11 14
39.11 even 12 169.8.a.g.1.4 14
39.17 odd 6 13.8.e.a.4.6 14
39.23 odd 6 169.8.b.d.168.4 14
39.29 odd 6 169.8.b.d.168.11 14
156.95 even 6 208.8.w.a.17.6 14
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
13.8.e.a.4.6 14 39.17 odd 6
13.8.e.a.10.6 yes 14 3.2 odd 2
117.8.q.b.10.2 14 1.1 even 1 trivial
117.8.q.b.82.2 14 13.4 even 6 inner
169.8.a.g.1.4 14 39.11 even 12
169.8.a.g.1.11 14 39.2 even 12
169.8.b.d.168.4 14 39.23 odd 6
169.8.b.d.168.11 14 39.29 odd 6
208.8.w.a.17.6 14 156.95 even 6
208.8.w.a.49.6 14 12.11 even 2