Properties

Label 117.8.g
Level $117$
Weight $8$
Character orbit 117.g
Rep. character $\chi_{117}(55,\cdot)$
Character field $\Q(\zeta_{3})$
Dimension $80$
Newform subspaces $5$
Sturm bound $112$
Trace bound $2$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 117.g (of order \(3\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 13 \)
Character field: \(\Q(\zeta_{3})\)
Newform subspaces: \( 5 \)
Sturm bound: \(112\)
Trace bound: \(2\)
Distinguishing \(T_p\): \(2\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{8}(117, [\chi])\).

Total New Old
Modular forms 204 84 120
Cusp forms 188 80 108
Eisenstein series 16 4 12

Trace form

\( 80 q - 7 q^{2} - 2497 q^{4} + 392 q^{5} - 530 q^{7} + 222 q^{8} - 1893 q^{10} - 6762 q^{11} - 10276 q^{13} - 29924 q^{14} - 167305 q^{16} + 16482 q^{17} - 19964 q^{19} - 89713 q^{20} - 49458 q^{22} + 71242 q^{23}+ \cdots - 13670273 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{8}^{\mathrm{new}}(117, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
117.8.g.a 117.g 13.c $2$ $36.549$ \(\Q(\sqrt{-3}) \) \(\Q(\sqrt{-3}) \) 117.8.g.a \(0\) \(0\) \(0\) \(-1763\) $\mathrm{U}(1)[D_{3}]$ \(q+2^{7}\zeta_{6}q^{4}-1763\zeta_{6}q^{7}+(3532+5541\zeta_{6})q^{13}+\cdots\)
117.8.g.b 117.g 13.c $14$ $36.549$ \(\mathbb{Q}[x]/(x^{14} - \cdots)\) None 39.8.e.a \(-8\) \(0\) \(642\) \(-688\) $\mathrm{SU}(2)[C_{3}]$ \(q+(-1-\beta _{1}+\beta _{4})q^{2}+(-66\beta _{4}+\beta _{10}+\cdots)q^{4}+\cdots\)
117.8.g.c 117.g 13.c $16$ $36.549$ \(\mathbb{Q}[x]/(x^{16} + \cdots)\) None 39.8.e.b \(-8\) \(0\) \(134\) \(325\) $\mathrm{SU}(2)[C_{3}]$ \(q+(\beta _{1}-\beta _{3})q^{2}+(-38+3\beta _{2}+38\beta _{3}+\cdots)q^{4}+\cdots\)
117.8.g.d 117.g 13.c $16$ $36.549$ \(\mathbb{Q}[x]/(x^{16} - \cdots)\) None 13.8.c.a \(9\) \(0\) \(-384\) \(196\) $\mathrm{SU}(2)[C_{3}]$ \(q+(1+\beta _{1}+\beta _{2})q^{2}+(72\beta _{2}+2\beta _{3}+\beta _{5}+\cdots)q^{4}+\cdots\)
117.8.g.e 117.g 13.c $32$ $36.549$ None 117.8.g.e \(0\) \(0\) \(0\) \(1400\) $\mathrm{SU}(2)[C_{3}]$

Decomposition of \(S_{8}^{\mathrm{old}}(117, [\chi])\) into lower level spaces

\( S_{8}^{\mathrm{old}}(117, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 2}\)