Defining parameters
Level: | \( N \) | \(=\) | \( 117 = 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 8 \) |
Character orbit: | \([\chi]\) | \(=\) | 117.g (of order \(3\) and degree \(2\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q(\zeta_{3})\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(112\) | ||
Trace bound: | \(2\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{8}(117, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 204 | 84 | 120 |
Cusp forms | 188 | 80 | 108 |
Eisenstein series | 16 | 4 | 12 |
Trace form
Decomposition of \(S_{8}^{\mathrm{new}}(117, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
117.8.g.a | $2$ | $36.549$ | \(\Q(\sqrt{-3}) \) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(-1763\) | \(q+2^{7}\zeta_{6}q^{4}-1763\zeta_{6}q^{7}+(3532+5541\zeta_{6})q^{13}+\cdots\) |
117.8.g.b | $14$ | $36.549$ | \(\mathbb{Q}[x]/(x^{14} - \cdots)\) | None | \(-8\) | \(0\) | \(642\) | \(-688\) | \(q+(-1-\beta _{1}+\beta _{4})q^{2}+(-66\beta _{4}+\beta _{10}+\cdots)q^{4}+\cdots\) |
117.8.g.c | $16$ | $36.549$ | \(\mathbb{Q}[x]/(x^{16} + \cdots)\) | None | \(-8\) | \(0\) | \(134\) | \(325\) | \(q+(\beta _{1}-\beta _{3})q^{2}+(-38+3\beta _{2}+38\beta _{3}+\cdots)q^{4}+\cdots\) |
117.8.g.d | $16$ | $36.549$ | \(\mathbb{Q}[x]/(x^{16} - \cdots)\) | None | \(9\) | \(0\) | \(-384\) | \(196\) | \(q+(1+\beta _{1}+\beta _{2})q^{2}+(72\beta _{2}+2\beta _{3}+\beta _{5}+\cdots)q^{4}+\cdots\) |
117.8.g.e | $32$ | $36.549$ | None | \(0\) | \(0\) | \(0\) | \(1400\) |
Decomposition of \(S_{8}^{\mathrm{old}}(117, [\chi])\) into lower level spaces
\( S_{8}^{\mathrm{old}}(117, [\chi]) \simeq \) \(S_{8}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{8}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 2}\)