Properties

Label 117.8.a.i.1.6
Level $117$
Weight $8$
Character 117.1
Self dual yes
Analytic conductor $36.549$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [117,8,Mod(1,117)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("117.1"); S:= CuspForms(chi, 8); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(117, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([0, 0])) N = Newforms(chi, 8, names="a")
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 117.a (trivial)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [8,0] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(36.5490479816\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 729x^{6} + 138692x^{4} - 8145792x^{2} + 116376832 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{12}\cdot 3^{4} \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.6
Root \(8.37511\) of defining polynomial
Character \(\chi\) \(=\) 117.1

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+8.37511 q^{2} -57.8575 q^{4} -78.0252 q^{5} -1418.83 q^{7} -1556.58 q^{8} -653.469 q^{10} +3976.49 q^{11} -2197.00 q^{13} -11882.9 q^{14} -5630.74 q^{16} +32107.8 q^{17} +34359.9 q^{19} +4514.34 q^{20} +33303.5 q^{22} +65325.6 q^{23} -72037.1 q^{25} -18400.1 q^{26} +82090.2 q^{28} -84814.6 q^{29} -154740. q^{31} +152084. q^{32} +268906. q^{34} +110705. q^{35} +338365. q^{37} +287768. q^{38} +121452. q^{40} +736691. q^{41} +211542. q^{43} -230070. q^{44} +547109. q^{46} -1.33488e6 q^{47} +1.18955e6 q^{49} -603318. q^{50} +127113. q^{52} -1.52669e6 q^{53} -310266. q^{55} +2.20852e6 q^{56} -710331. q^{58} +1.62421e6 q^{59} +492614. q^{61} -1.29597e6 q^{62} +1.99445e6 q^{64} +171421. q^{65} +2.16287e6 q^{67} -1.85768e6 q^{68} +927164. q^{70} -3.27264e6 q^{71} +4.95434e6 q^{73} +2.83384e6 q^{74} -1.98798e6 q^{76} -5.64198e6 q^{77} +7.64247e6 q^{79} +439340. q^{80} +6.16987e6 q^{82} +4.43774e6 q^{83} -2.50521e6 q^{85} +1.77169e6 q^{86} -6.18971e6 q^{88} -2.43479e6 q^{89} +3.11718e6 q^{91} -3.77958e6 q^{92} -1.11798e7 q^{94} -2.68093e6 q^{95} -7.11530e6 q^{97} +9.96258e6 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 434 q^{4} - 72 q^{7} + 13924 q^{10} - 17576 q^{13} + 79314 q^{16} - 11352 q^{19} + 243952 q^{22} + 97224 q^{25} - 28372 q^{28} + 5656 q^{31} - 223920 q^{34} + 603152 q^{37} + 3411964 q^{40} + 2930960 q^{43}+ \cdots + 26916464 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 8.37511 0.740262 0.370131 0.928980i \(-0.379313\pi\)
0.370131 + 0.928980i \(0.379313\pi\)
\(3\) 0 0
\(4\) −57.8575 −0.452012
\(5\) −78.0252 −0.279151 −0.139576 0.990211i \(-0.544574\pi\)
−0.139576 + 0.990211i \(0.544574\pi\)
\(6\) 0 0
\(7\) −1418.83 −1.56347 −0.781733 0.623614i \(-0.785664\pi\)
−0.781733 + 0.623614i \(0.785664\pi\)
\(8\) −1556.58 −1.07487
\(9\) 0 0
\(10\) −653.469 −0.206645
\(11\) 3976.49 0.900794 0.450397 0.892828i \(-0.351282\pi\)
0.450397 + 0.892828i \(0.351282\pi\)
\(12\) 0 0
\(13\) −2197.00 −0.277350
\(14\) −11882.9 −1.15737
\(15\) 0 0
\(16\) −5630.74 −0.343673
\(17\) 32107.8 1.58503 0.792517 0.609850i \(-0.208770\pi\)
0.792517 + 0.609850i \(0.208770\pi\)
\(18\) 0 0
\(19\) 34359.9 1.14925 0.574624 0.818418i \(-0.305148\pi\)
0.574624 + 0.818418i \(0.305148\pi\)
\(20\) 4514.34 0.126180
\(21\) 0 0
\(22\) 33303.5 0.666824
\(23\) 65325.6 1.11953 0.559765 0.828651i \(-0.310891\pi\)
0.559765 + 0.828651i \(0.310891\pi\)
\(24\) 0 0
\(25\) −72037.1 −0.922075
\(26\) −18400.1 −0.205312
\(27\) 0 0
\(28\) 82090.2 0.706705
\(29\) −84814.6 −0.645769 −0.322885 0.946438i \(-0.604653\pi\)
−0.322885 + 0.946438i \(0.604653\pi\)
\(30\) 0 0
\(31\) −154740. −0.932904 −0.466452 0.884547i \(-0.654468\pi\)
−0.466452 + 0.884547i \(0.654468\pi\)
\(32\) 152084. 0.820461
\(33\) 0 0
\(34\) 268906. 1.17334
\(35\) 110705. 0.436443
\(36\) 0 0
\(37\) 338365. 1.09819 0.549097 0.835758i \(-0.314972\pi\)
0.549097 + 0.835758i \(0.314972\pi\)
\(38\) 287768. 0.850745
\(39\) 0 0
\(40\) 121452. 0.300051
\(41\) 736691. 1.66933 0.834664 0.550759i \(-0.185662\pi\)
0.834664 + 0.550759i \(0.185662\pi\)
\(42\) 0 0
\(43\) 211542. 0.405749 0.202874 0.979205i \(-0.434972\pi\)
0.202874 + 0.979205i \(0.434972\pi\)
\(44\) −230070. −0.407170
\(45\) 0 0
\(46\) 547109. 0.828746
\(47\) −1.33488e6 −1.87543 −0.937715 0.347404i \(-0.887063\pi\)
−0.937715 + 0.347404i \(0.887063\pi\)
\(48\) 0 0
\(49\) 1.18955e6 1.44442
\(50\) −603318. −0.682577
\(51\) 0 0
\(52\) 127113. 0.125366
\(53\) −1.52669e6 −1.40859 −0.704295 0.709908i \(-0.748737\pi\)
−0.704295 + 0.709908i \(0.748737\pi\)
\(54\) 0 0
\(55\) −310266. −0.251458
\(56\) 2.20852e6 1.68052
\(57\) 0 0
\(58\) −710331. −0.478039
\(59\) 1.62421e6 1.02958 0.514790 0.857316i \(-0.327870\pi\)
0.514790 + 0.857316i \(0.327870\pi\)
\(60\) 0 0
\(61\) 492614. 0.277877 0.138939 0.990301i \(-0.455631\pi\)
0.138939 + 0.990301i \(0.455631\pi\)
\(62\) −1.29597e6 −0.690593
\(63\) 0 0
\(64\) 1.99445e6 0.951030
\(65\) 171421. 0.0774226
\(66\) 0 0
\(67\) 2.16287e6 0.878553 0.439276 0.898352i \(-0.355235\pi\)
0.439276 + 0.898352i \(0.355235\pi\)
\(68\) −1.85768e6 −0.716455
\(69\) 0 0
\(70\) 927164. 0.323083
\(71\) −3.27264e6 −1.08516 −0.542581 0.840004i \(-0.682553\pi\)
−0.542581 + 0.840004i \(0.682553\pi\)
\(72\) 0 0
\(73\) 4.95434e6 1.49058 0.745291 0.666739i \(-0.232311\pi\)
0.745291 + 0.666739i \(0.232311\pi\)
\(74\) 2.83384e6 0.812952
\(75\) 0 0
\(76\) −1.98798e6 −0.519474
\(77\) −5.64198e6 −1.40836
\(78\) 0 0
\(79\) 7.64247e6 1.74397 0.871985 0.489532i \(-0.162832\pi\)
0.871985 + 0.489532i \(0.162832\pi\)
\(80\) 439340. 0.0959368
\(81\) 0 0
\(82\) 6.16987e6 1.23574
\(83\) 4.43774e6 0.851899 0.425950 0.904747i \(-0.359940\pi\)
0.425950 + 0.904747i \(0.359940\pi\)
\(84\) 0 0
\(85\) −2.50521e6 −0.442464
\(86\) 1.77169e6 0.300361
\(87\) 0 0
\(88\) −6.18971e6 −0.968236
\(89\) −2.43479e6 −0.366097 −0.183049 0.983104i \(-0.558597\pi\)
−0.183049 + 0.983104i \(0.558597\pi\)
\(90\) 0 0
\(91\) 3.11718e6 0.433627
\(92\) −3.77958e6 −0.506041
\(93\) 0 0
\(94\) −1.11798e7 −1.38831
\(95\) −2.68093e6 −0.320814
\(96\) 0 0
\(97\) −7.11530e6 −0.791575 −0.395787 0.918342i \(-0.629528\pi\)
−0.395787 + 0.918342i \(0.629528\pi\)
\(98\) 9.96258e6 1.06925
\(99\) 0 0
\(100\) 4.16789e6 0.416789
\(101\) 1.15494e7 1.11541 0.557704 0.830040i \(-0.311683\pi\)
0.557704 + 0.830040i \(0.311683\pi\)
\(102\) 0 0
\(103\) 6.81710e6 0.614708 0.307354 0.951595i \(-0.400556\pi\)
0.307354 + 0.951595i \(0.400556\pi\)
\(104\) 3.41980e6 0.298115
\(105\) 0 0
\(106\) −1.27862e7 −1.04273
\(107\) 1.94149e6 0.153212 0.0766059 0.997061i \(-0.475592\pi\)
0.0766059 + 0.997061i \(0.475592\pi\)
\(108\) 0 0
\(109\) −2.62040e7 −1.93809 −0.969046 0.246879i \(-0.920595\pi\)
−0.969046 + 0.246879i \(0.920595\pi\)
\(110\) −2.59851e6 −0.186145
\(111\) 0 0
\(112\) 7.98909e6 0.537321
\(113\) 2.85374e7 1.86054 0.930272 0.366870i \(-0.119571\pi\)
0.930272 + 0.366870i \(0.119571\pi\)
\(114\) 0 0
\(115\) −5.09704e6 −0.312518
\(116\) 4.90716e6 0.291895
\(117\) 0 0
\(118\) 1.36029e7 0.762160
\(119\) −4.55556e7 −2.47815
\(120\) 0 0
\(121\) −3.67471e6 −0.188570
\(122\) 4.12570e6 0.205702
\(123\) 0 0
\(124\) 8.95288e6 0.421684
\(125\) 1.17164e7 0.536550
\(126\) 0 0
\(127\) 4.87796e6 0.211312 0.105656 0.994403i \(-0.466306\pi\)
0.105656 + 0.994403i \(0.466306\pi\)
\(128\) −2.76296e6 −0.116450
\(129\) 0 0
\(130\) 1.43567e6 0.0573130
\(131\) −1.42247e7 −0.552834 −0.276417 0.961038i \(-0.589147\pi\)
−0.276417 + 0.961038i \(0.589147\pi\)
\(132\) 0 0
\(133\) −4.87509e7 −1.79681
\(134\) 1.81142e7 0.650359
\(135\) 0 0
\(136\) −4.99782e7 −1.70371
\(137\) −3.49760e7 −1.16211 −0.581057 0.813863i \(-0.697361\pi\)
−0.581057 + 0.813863i \(0.697361\pi\)
\(138\) 0 0
\(139\) −1.29899e7 −0.410256 −0.205128 0.978735i \(-0.565761\pi\)
−0.205128 + 0.978735i \(0.565761\pi\)
\(140\) −6.40510e6 −0.197278
\(141\) 0 0
\(142\) −2.74087e7 −0.803304
\(143\) −8.73635e6 −0.249835
\(144\) 0 0
\(145\) 6.61767e6 0.180267
\(146\) 4.14931e7 1.10342
\(147\) 0 0
\(148\) −1.95770e7 −0.496397
\(149\) −6.94078e6 −0.171892 −0.0859462 0.996300i \(-0.527391\pi\)
−0.0859462 + 0.996300i \(0.527391\pi\)
\(150\) 0 0
\(151\) 4.70900e7 1.11304 0.556518 0.830836i \(-0.312137\pi\)
0.556518 + 0.830836i \(0.312137\pi\)
\(152\) −5.34838e7 −1.23529
\(153\) 0 0
\(154\) −4.72522e7 −1.04256
\(155\) 1.20736e7 0.260421
\(156\) 0 0
\(157\) 4.00504e7 0.825959 0.412979 0.910740i \(-0.364488\pi\)
0.412979 + 0.910740i \(0.364488\pi\)
\(158\) 6.40066e7 1.29100
\(159\) 0 0
\(160\) −1.18664e7 −0.229033
\(161\) −9.26861e7 −1.75035
\(162\) 0 0
\(163\) −3.03416e7 −0.548760 −0.274380 0.961621i \(-0.588473\pi\)
−0.274380 + 0.961621i \(0.588473\pi\)
\(164\) −4.26231e7 −0.754556
\(165\) 0 0
\(166\) 3.71665e7 0.630629
\(167\) 3.89368e7 0.646922 0.323461 0.946241i \(-0.395154\pi\)
0.323461 + 0.946241i \(0.395154\pi\)
\(168\) 0 0
\(169\) 4.82681e6 0.0769231
\(170\) −2.09814e7 −0.327540
\(171\) 0 0
\(172\) −1.22393e7 −0.183403
\(173\) 4.27780e7 0.628144 0.314072 0.949399i \(-0.398307\pi\)
0.314072 + 0.949399i \(0.398307\pi\)
\(174\) 0 0
\(175\) 1.02209e8 1.44163
\(176\) −2.23906e7 −0.309579
\(177\) 0 0
\(178\) −2.03916e7 −0.271008
\(179\) −7.29707e6 −0.0950961 −0.0475481 0.998869i \(-0.515141\pi\)
−0.0475481 + 0.998869i \(0.515141\pi\)
\(180\) 0 0
\(181\) 6.55707e6 0.0821931 0.0410965 0.999155i \(-0.486915\pi\)
0.0410965 + 0.999155i \(0.486915\pi\)
\(182\) 2.61067e7 0.320998
\(183\) 0 0
\(184\) −1.01684e8 −1.20335
\(185\) −2.64010e7 −0.306562
\(186\) 0 0
\(187\) 1.27676e8 1.42779
\(188\) 7.72331e7 0.847717
\(189\) 0 0
\(190\) −2.24531e7 −0.237487
\(191\) −5.38047e7 −0.558731 −0.279366 0.960185i \(-0.590124\pi\)
−0.279366 + 0.960185i \(0.590124\pi\)
\(192\) 0 0
\(193\) 1.04771e8 1.04903 0.524516 0.851400i \(-0.324246\pi\)
0.524516 + 0.851400i \(0.324246\pi\)
\(194\) −5.95914e7 −0.585973
\(195\) 0 0
\(196\) −6.88242e7 −0.652897
\(197\) 5.18935e6 0.0483594 0.0241797 0.999708i \(-0.492303\pi\)
0.0241797 + 0.999708i \(0.492303\pi\)
\(198\) 0 0
\(199\) 8.24241e6 0.0741427 0.0370714 0.999313i \(-0.488197\pi\)
0.0370714 + 0.999313i \(0.488197\pi\)
\(200\) 1.12131e8 0.991110
\(201\) 0 0
\(202\) 9.67273e7 0.825694
\(203\) 1.20338e8 1.00964
\(204\) 0 0
\(205\) −5.74804e7 −0.465995
\(206\) 5.70939e7 0.455045
\(207\) 0 0
\(208\) 1.23707e7 0.0953178
\(209\) 1.36632e8 1.03524
\(210\) 0 0
\(211\) 2.33974e8 1.71466 0.857332 0.514764i \(-0.172121\pi\)
0.857332 + 0.514764i \(0.172121\pi\)
\(212\) 8.83303e7 0.636699
\(213\) 0 0
\(214\) 1.62602e7 0.113417
\(215\) −1.65056e7 −0.113265
\(216\) 0 0
\(217\) 2.19550e8 1.45856
\(218\) −2.19461e8 −1.43470
\(219\) 0 0
\(220\) 1.79512e7 0.113662
\(221\) −7.05407e7 −0.439609
\(222\) 0 0
\(223\) 3.81145e7 0.230157 0.115078 0.993356i \(-0.463288\pi\)
0.115078 + 0.993356i \(0.463288\pi\)
\(224\) −2.15782e8 −1.28276
\(225\) 0 0
\(226\) 2.39004e8 1.37729
\(227\) 3.40570e8 1.93249 0.966243 0.257632i \(-0.0829421\pi\)
0.966243 + 0.257632i \(0.0829421\pi\)
\(228\) 0 0
\(229\) −8.73986e7 −0.480928 −0.240464 0.970658i \(-0.577300\pi\)
−0.240464 + 0.970658i \(0.577300\pi\)
\(230\) −4.26882e7 −0.231345
\(231\) 0 0
\(232\) 1.32020e8 0.694118
\(233\) −8.55257e7 −0.442946 −0.221473 0.975167i \(-0.571086\pi\)
−0.221473 + 0.975167i \(0.571086\pi\)
\(234\) 0 0
\(235\) 1.04155e8 0.523529
\(236\) −9.39728e7 −0.465383
\(237\) 0 0
\(238\) −3.81533e8 −1.83448
\(239\) 1.31646e8 0.623757 0.311878 0.950122i \(-0.399042\pi\)
0.311878 + 0.950122i \(0.399042\pi\)
\(240\) 0 0
\(241\) 7.89647e7 0.363390 0.181695 0.983355i \(-0.441842\pi\)
0.181695 + 0.983355i \(0.441842\pi\)
\(242\) −3.07761e7 −0.139592
\(243\) 0 0
\(244\) −2.85015e7 −0.125604
\(245\) −9.28145e7 −0.403213
\(246\) 0 0
\(247\) −7.54886e7 −0.318744
\(248\) 2.40865e8 1.00275
\(249\) 0 0
\(250\) 9.81263e7 0.397187
\(251\) −1.42569e8 −0.569073 −0.284537 0.958665i \(-0.591840\pi\)
−0.284537 + 0.958665i \(0.591840\pi\)
\(252\) 0 0
\(253\) 2.59766e8 1.00847
\(254\) 4.08534e7 0.156427
\(255\) 0 0
\(256\) −2.78430e8 −1.03723
\(257\) 6.04174e7 0.222022 0.111011 0.993819i \(-0.464591\pi\)
0.111011 + 0.993819i \(0.464591\pi\)
\(258\) 0 0
\(259\) −4.80084e8 −1.71699
\(260\) −9.91801e6 −0.0349960
\(261\) 0 0
\(262\) −1.19134e8 −0.409242
\(263\) −1.26963e8 −0.430361 −0.215180 0.976574i \(-0.569034\pi\)
−0.215180 + 0.976574i \(0.569034\pi\)
\(264\) 0 0
\(265\) 1.19120e8 0.393210
\(266\) −4.08294e8 −1.33011
\(267\) 0 0
\(268\) −1.25138e8 −0.397116
\(269\) 2.68950e8 0.842439 0.421219 0.906959i \(-0.361602\pi\)
0.421219 + 0.906959i \(0.361602\pi\)
\(270\) 0 0
\(271\) −1.95379e8 −0.596328 −0.298164 0.954515i \(-0.596374\pi\)
−0.298164 + 0.954515i \(0.596374\pi\)
\(272\) −1.80790e8 −0.544734
\(273\) 0 0
\(274\) −2.92928e8 −0.860269
\(275\) −2.86455e8 −0.830599
\(276\) 0 0
\(277\) 1.23578e8 0.349350 0.174675 0.984626i \(-0.444113\pi\)
0.174675 + 0.984626i \(0.444113\pi\)
\(278\) −1.08792e8 −0.303697
\(279\) 0 0
\(280\) −1.72320e8 −0.469120
\(281\) 6.53613e8 1.75731 0.878656 0.477456i \(-0.158441\pi\)
0.878656 + 0.477456i \(0.158441\pi\)
\(282\) 0 0
\(283\) 3.62432e8 0.950548 0.475274 0.879838i \(-0.342349\pi\)
0.475274 + 0.879838i \(0.342349\pi\)
\(284\) 1.89347e8 0.490506
\(285\) 0 0
\(286\) −7.31679e7 −0.184944
\(287\) −1.04524e9 −2.60994
\(288\) 0 0
\(289\) 6.20569e8 1.51233
\(290\) 5.54237e7 0.133445
\(291\) 0 0
\(292\) −2.86646e8 −0.673761
\(293\) −1.45058e8 −0.336903 −0.168452 0.985710i \(-0.553877\pi\)
−0.168452 + 0.985710i \(0.553877\pi\)
\(294\) 0 0
\(295\) −1.26729e8 −0.287409
\(296\) −5.26691e8 −1.18042
\(297\) 0 0
\(298\) −5.81298e7 −0.127245
\(299\) −1.43520e8 −0.310502
\(300\) 0 0
\(301\) −3.00143e8 −0.634374
\(302\) 3.94384e8 0.823938
\(303\) 0 0
\(304\) −1.93471e8 −0.394966
\(305\) −3.84363e7 −0.0775697
\(306\) 0 0
\(307\) 4.12640e8 0.813929 0.406965 0.913444i \(-0.366587\pi\)
0.406965 + 0.913444i \(0.366587\pi\)
\(308\) 3.26431e8 0.636596
\(309\) 0 0
\(310\) 1.01118e8 0.192780
\(311\) 5.64006e8 1.06322 0.531609 0.846990i \(-0.321588\pi\)
0.531609 + 0.846990i \(0.321588\pi\)
\(312\) 0 0
\(313\) −5.65784e8 −1.04291 −0.521453 0.853280i \(-0.674610\pi\)
−0.521453 + 0.853280i \(0.674610\pi\)
\(314\) 3.35427e8 0.611426
\(315\) 0 0
\(316\) −4.42175e8 −0.788296
\(317\) −7.79510e7 −0.137440 −0.0687201 0.997636i \(-0.521892\pi\)
−0.0687201 + 0.997636i \(0.521892\pi\)
\(318\) 0 0
\(319\) −3.37264e8 −0.581705
\(320\) −1.55618e8 −0.265481
\(321\) 0 0
\(322\) −7.76256e8 −1.29572
\(323\) 1.10322e9 1.82160
\(324\) 0 0
\(325\) 1.58265e8 0.255737
\(326\) −2.54115e8 −0.406226
\(327\) 0 0
\(328\) −1.14672e9 −1.79431
\(329\) 1.89398e9 2.93217
\(330\) 0 0
\(331\) −5.05965e8 −0.766872 −0.383436 0.923567i \(-0.625259\pi\)
−0.383436 + 0.923567i \(0.625259\pi\)
\(332\) −2.56756e8 −0.385069
\(333\) 0 0
\(334\) 3.26100e8 0.478892
\(335\) −1.68758e8 −0.245249
\(336\) 0 0
\(337\) 4.83484e8 0.688141 0.344070 0.938944i \(-0.388194\pi\)
0.344070 + 0.938944i \(0.388194\pi\)
\(338\) 4.04251e7 0.0569432
\(339\) 0 0
\(340\) 1.44945e8 0.199999
\(341\) −6.15322e8 −0.840354
\(342\) 0 0
\(343\) −5.19297e8 −0.694842
\(344\) −3.29282e8 −0.436127
\(345\) 0 0
\(346\) 3.58270e8 0.464991
\(347\) −9.52859e8 −1.22427 −0.612133 0.790755i \(-0.709688\pi\)
−0.612133 + 0.790755i \(0.709688\pi\)
\(348\) 0 0
\(349\) −5.80675e8 −0.731213 −0.365607 0.930769i \(-0.619138\pi\)
−0.365607 + 0.930769i \(0.619138\pi\)
\(350\) 8.56008e8 1.06719
\(351\) 0 0
\(352\) 6.04760e8 0.739066
\(353\) −1.55889e9 −1.88627 −0.943134 0.332412i \(-0.892137\pi\)
−0.943134 + 0.332412i \(0.892137\pi\)
\(354\) 0 0
\(355\) 2.55348e8 0.302924
\(356\) 1.40871e8 0.165480
\(357\) 0 0
\(358\) −6.11138e7 −0.0703961
\(359\) −3.14671e8 −0.358944 −0.179472 0.983763i \(-0.557439\pi\)
−0.179472 + 0.983763i \(0.557439\pi\)
\(360\) 0 0
\(361\) 2.86728e8 0.320771
\(362\) 5.49162e7 0.0608444
\(363\) 0 0
\(364\) −1.80352e8 −0.196005
\(365\) −3.86563e8 −0.416098
\(366\) 0 0
\(367\) −3.05352e8 −0.322456 −0.161228 0.986917i \(-0.551545\pi\)
−0.161228 + 0.986917i \(0.551545\pi\)
\(368\) −3.67831e8 −0.384752
\(369\) 0 0
\(370\) −2.21111e8 −0.226937
\(371\) 2.16611e9 2.20228
\(372\) 0 0
\(373\) 1.64657e9 1.64285 0.821425 0.570316i \(-0.193179\pi\)
0.821425 + 0.570316i \(0.193179\pi\)
\(374\) 1.06930e9 1.05694
\(375\) 0 0
\(376\) 2.07785e9 2.01584
\(377\) 1.86338e8 0.179104
\(378\) 0 0
\(379\) 8.88173e7 0.0838032 0.0419016 0.999122i \(-0.486658\pi\)
0.0419016 + 0.999122i \(0.486658\pi\)
\(380\) 1.55112e8 0.145012
\(381\) 0 0
\(382\) −4.50620e8 −0.413608
\(383\) 3.36278e8 0.305846 0.152923 0.988238i \(-0.451131\pi\)
0.152923 + 0.988238i \(0.451131\pi\)
\(384\) 0 0
\(385\) 4.40216e8 0.393146
\(386\) 8.77465e8 0.776559
\(387\) 0 0
\(388\) 4.11673e8 0.357801
\(389\) −1.70532e9 −1.46887 −0.734434 0.678680i \(-0.762552\pi\)
−0.734434 + 0.678680i \(0.762552\pi\)
\(390\) 0 0
\(391\) 2.09746e9 1.77449
\(392\) −1.85162e9 −1.55257
\(393\) 0 0
\(394\) 4.34614e7 0.0357986
\(395\) −5.96305e8 −0.486832
\(396\) 0 0
\(397\) −2.16516e9 −1.73670 −0.868348 0.495955i \(-0.834818\pi\)
−0.868348 + 0.495955i \(0.834818\pi\)
\(398\) 6.90311e7 0.0548850
\(399\) 0 0
\(400\) 4.05622e8 0.316892
\(401\) 1.40199e9 1.08578 0.542889 0.839804i \(-0.317330\pi\)
0.542889 + 0.839804i \(0.317330\pi\)
\(402\) 0 0
\(403\) 3.39964e8 0.258741
\(404\) −6.68218e8 −0.504178
\(405\) 0 0
\(406\) 1.00784e9 0.747397
\(407\) 1.34550e9 0.989247
\(408\) 0 0
\(409\) −5.58196e8 −0.403418 −0.201709 0.979445i \(-0.564650\pi\)
−0.201709 + 0.979445i \(0.564650\pi\)
\(410\) −4.81405e8 −0.344959
\(411\) 0 0
\(412\) −3.94420e8 −0.277856
\(413\) −2.30449e9 −1.60971
\(414\) 0 0
\(415\) −3.46255e8 −0.237809
\(416\) −3.34128e8 −0.227555
\(417\) 0 0
\(418\) 1.14430e9 0.766346
\(419\) −2.56173e9 −1.70132 −0.850658 0.525720i \(-0.823796\pi\)
−0.850658 + 0.525720i \(0.823796\pi\)
\(420\) 0 0
\(421\) −1.97138e9 −1.28761 −0.643803 0.765191i \(-0.722645\pi\)
−0.643803 + 0.765191i \(0.722645\pi\)
\(422\) 1.95956e9 1.26930
\(423\) 0 0
\(424\) 2.37641e9 1.51405
\(425\) −2.31295e9 −1.46152
\(426\) 0 0
\(427\) −6.98938e8 −0.434451
\(428\) −1.12330e8 −0.0692536
\(429\) 0 0
\(430\) −1.38236e8 −0.0838460
\(431\) 1.14235e8 0.0687272 0.0343636 0.999409i \(-0.489060\pi\)
0.0343636 + 0.999409i \(0.489060\pi\)
\(432\) 0 0
\(433\) 2.90458e9 1.71940 0.859698 0.510803i \(-0.170652\pi\)
0.859698 + 0.510803i \(0.170652\pi\)
\(434\) 1.83876e9 1.07972
\(435\) 0 0
\(436\) 1.51610e9 0.876041
\(437\) 2.24458e9 1.28662
\(438\) 0 0
\(439\) 1.23076e9 0.694300 0.347150 0.937810i \(-0.387150\pi\)
0.347150 + 0.937810i \(0.387150\pi\)
\(440\) 4.82953e8 0.270284
\(441\) 0 0
\(442\) −5.90786e8 −0.325426
\(443\) 4.98361e8 0.272352 0.136176 0.990685i \(-0.456519\pi\)
0.136176 + 0.990685i \(0.456519\pi\)
\(444\) 0 0
\(445\) 1.89975e8 0.102196
\(446\) 3.19213e8 0.170376
\(447\) 0 0
\(448\) −2.82980e9 −1.48690
\(449\) −1.74332e9 −0.908898 −0.454449 0.890773i \(-0.650164\pi\)
−0.454449 + 0.890773i \(0.650164\pi\)
\(450\) 0 0
\(451\) 2.92944e9 1.50372
\(452\) −1.65110e9 −0.840988
\(453\) 0 0
\(454\) 2.85231e9 1.43055
\(455\) −2.43218e8 −0.121048
\(456\) 0 0
\(457\) −2.32029e9 −1.13720 −0.568599 0.822615i \(-0.692514\pi\)
−0.568599 + 0.822615i \(0.692514\pi\)
\(458\) −7.31973e8 −0.356013
\(459\) 0 0
\(460\) 2.94902e8 0.141262
\(461\) −6.51561e8 −0.309743 −0.154872 0.987935i \(-0.549496\pi\)
−0.154872 + 0.987935i \(0.549496\pi\)
\(462\) 0 0
\(463\) 3.11159e9 1.45697 0.728483 0.685064i \(-0.240226\pi\)
0.728483 + 0.685064i \(0.240226\pi\)
\(464\) 4.77569e8 0.221934
\(465\) 0 0
\(466\) −7.16287e8 −0.327896
\(467\) −1.41396e9 −0.642431 −0.321216 0.947006i \(-0.604091\pi\)
−0.321216 + 0.947006i \(0.604091\pi\)
\(468\) 0 0
\(469\) −3.06875e9 −1.37359
\(470\) 8.72306e8 0.387549
\(471\) 0 0
\(472\) −2.52821e9 −1.10666
\(473\) 8.41195e8 0.365496
\(474\) 0 0
\(475\) −2.47518e9 −1.05969
\(476\) 2.63573e9 1.12015
\(477\) 0 0
\(478\) 1.10255e9 0.461744
\(479\) 1.91626e9 0.796675 0.398337 0.917239i \(-0.369587\pi\)
0.398337 + 0.917239i \(0.369587\pi\)
\(480\) 0 0
\(481\) −7.43388e8 −0.304584
\(482\) 6.61338e8 0.269004
\(483\) 0 0
\(484\) 2.12609e8 0.0852361
\(485\) 5.55172e8 0.220969
\(486\) 0 0
\(487\) 2.40543e9 0.943716 0.471858 0.881675i \(-0.343584\pi\)
0.471858 + 0.881675i \(0.343584\pi\)
\(488\) −7.66792e8 −0.298682
\(489\) 0 0
\(490\) −7.77332e8 −0.298483
\(491\) −2.43715e9 −0.929175 −0.464587 0.885527i \(-0.653797\pi\)
−0.464587 + 0.885527i \(0.653797\pi\)
\(492\) 0 0
\(493\) −2.72321e9 −1.02357
\(494\) −6.32225e8 −0.235954
\(495\) 0 0
\(496\) 8.71301e8 0.320614
\(497\) 4.64333e9 1.69661
\(498\) 0 0
\(499\) −1.07161e8 −0.0386086 −0.0193043 0.999814i \(-0.506145\pi\)
−0.0193043 + 0.999814i \(0.506145\pi\)
\(500\) −6.77883e8 −0.242527
\(501\) 0 0
\(502\) −1.19403e9 −0.421263
\(503\) 5.20439e9 1.82340 0.911700 0.410857i \(-0.134771\pi\)
0.911700 + 0.410857i \(0.134771\pi\)
\(504\) 0 0
\(505\) −9.01142e8 −0.311367
\(506\) 2.17557e9 0.746529
\(507\) 0 0
\(508\) −2.82227e8 −0.0955158
\(509\) 2.30372e9 0.774316 0.387158 0.922013i \(-0.373457\pi\)
0.387158 + 0.922013i \(0.373457\pi\)
\(510\) 0 0
\(511\) −7.02938e9 −2.33047
\(512\) −1.97822e9 −0.651374
\(513\) 0 0
\(514\) 5.06003e8 0.164355
\(515\) −5.31905e8 −0.171597
\(516\) 0 0
\(517\) −5.30815e9 −1.68938
\(518\) −4.02075e9 −1.27102
\(519\) 0 0
\(520\) −2.66830e8 −0.0832192
\(521\) −1.12710e9 −0.349165 −0.174582 0.984643i \(-0.555858\pi\)
−0.174582 + 0.984643i \(0.555858\pi\)
\(522\) 0 0
\(523\) 5.63804e9 1.72335 0.861673 0.507464i \(-0.169417\pi\)
0.861673 + 0.507464i \(0.169417\pi\)
\(524\) 8.23008e8 0.249888
\(525\) 0 0
\(526\) −1.06333e9 −0.318580
\(527\) −4.96836e9 −1.47868
\(528\) 0 0
\(529\) 8.62603e8 0.253347
\(530\) 9.97643e8 0.291078
\(531\) 0 0
\(532\) 2.82061e9 0.812179
\(533\) −1.61851e9 −0.462988
\(534\) 0 0
\(535\) −1.51485e8 −0.0427693
\(536\) −3.36667e9 −0.944329
\(537\) 0 0
\(538\) 2.25248e9 0.623626
\(539\) 4.73022e9 1.30113
\(540\) 0 0
\(541\) −7.75692e7 −0.0210620 −0.0105310 0.999945i \(-0.503352\pi\)
−0.0105310 + 0.999945i \(0.503352\pi\)
\(542\) −1.63632e9 −0.441439
\(543\) 0 0
\(544\) 4.88307e9 1.30046
\(545\) 2.04457e9 0.541021
\(546\) 0 0
\(547\) −4.43025e9 −1.15737 −0.578686 0.815551i \(-0.696434\pi\)
−0.578686 + 0.815551i \(0.696434\pi\)
\(548\) 2.02363e9 0.525289
\(549\) 0 0
\(550\) −2.39909e9 −0.614861
\(551\) −2.91422e9 −0.742149
\(552\) 0 0
\(553\) −1.08434e10 −2.72664
\(554\) 1.03498e9 0.258610
\(555\) 0 0
\(556\) 7.51566e8 0.185441
\(557\) 3.18990e9 0.782138 0.391069 0.920361i \(-0.372105\pi\)
0.391069 + 0.920361i \(0.372105\pi\)
\(558\) 0 0
\(559\) −4.64758e8 −0.112535
\(560\) −6.23350e8 −0.149994
\(561\) 0 0
\(562\) 5.47408e9 1.30087
\(563\) 3.82449e9 0.903221 0.451610 0.892215i \(-0.350850\pi\)
0.451610 + 0.892215i \(0.350850\pi\)
\(564\) 0 0
\(565\) −2.22664e9 −0.519373
\(566\) 3.03541e9 0.703654
\(567\) 0 0
\(568\) 5.09412e9 1.16641
\(569\) −3.39322e9 −0.772181 −0.386091 0.922461i \(-0.626175\pi\)
−0.386091 + 0.922461i \(0.626175\pi\)
\(570\) 0 0
\(571\) −4.74973e9 −1.06768 −0.533842 0.845584i \(-0.679252\pi\)
−0.533842 + 0.845584i \(0.679252\pi\)
\(572\) 5.05463e8 0.112929
\(573\) 0 0
\(574\) −8.75402e9 −1.93204
\(575\) −4.70586e9 −1.03229
\(576\) 0 0
\(577\) 1.63294e9 0.353880 0.176940 0.984222i \(-0.443380\pi\)
0.176940 + 0.984222i \(0.443380\pi\)
\(578\) 5.19733e9 1.11952
\(579\) 0 0
\(580\) −3.82882e8 −0.0814830
\(581\) −6.29641e9 −1.33191
\(582\) 0 0
\(583\) −6.07085e9 −1.26885
\(584\) −7.71181e9 −1.60218
\(585\) 0 0
\(586\) −1.21488e9 −0.249397
\(587\) −8.86642e9 −1.80932 −0.904659 0.426137i \(-0.859874\pi\)
−0.904659 + 0.426137i \(0.859874\pi\)
\(588\) 0 0
\(589\) −5.31685e9 −1.07214
\(590\) −1.06137e9 −0.212758
\(591\) 0 0
\(592\) −1.90525e9 −0.377420
\(593\) 1.84381e9 0.363098 0.181549 0.983382i \(-0.441889\pi\)
0.181549 + 0.983382i \(0.441889\pi\)
\(594\) 0 0
\(595\) 3.55448e9 0.691778
\(596\) 4.01577e8 0.0776974
\(597\) 0 0
\(598\) −1.20200e9 −0.229853
\(599\) 1.78692e9 0.339711 0.169856 0.985469i \(-0.445670\pi\)
0.169856 + 0.985469i \(0.445670\pi\)
\(600\) 0 0
\(601\) 6.42068e9 1.20648 0.603240 0.797559i \(-0.293876\pi\)
0.603240 + 0.797559i \(0.293876\pi\)
\(602\) −2.51373e9 −0.469603
\(603\) 0 0
\(604\) −2.72451e9 −0.503105
\(605\) 2.86719e8 0.0526397
\(606\) 0 0
\(607\) 3.78234e9 0.686437 0.343218 0.939256i \(-0.388483\pi\)
0.343218 + 0.939256i \(0.388483\pi\)
\(608\) 5.22558e9 0.942913
\(609\) 0 0
\(610\) −3.21908e8 −0.0574219
\(611\) 2.93274e9 0.520151
\(612\) 0 0
\(613\) −4.75053e9 −0.832972 −0.416486 0.909142i \(-0.636739\pi\)
−0.416486 + 0.909142i \(0.636739\pi\)
\(614\) 3.45590e9 0.602521
\(615\) 0 0
\(616\) 8.78217e9 1.51380
\(617\) −9.17034e9 −1.57176 −0.785882 0.618376i \(-0.787791\pi\)
−0.785882 + 0.618376i \(0.787791\pi\)
\(618\) 0 0
\(619\) 4.61570e9 0.782204 0.391102 0.920347i \(-0.372094\pi\)
0.391102 + 0.920347i \(0.372094\pi\)
\(620\) −6.98550e8 −0.117714
\(621\) 0 0
\(622\) 4.72361e9 0.787060
\(623\) 3.45456e9 0.572380
\(624\) 0 0
\(625\) 4.71372e9 0.772296
\(626\) −4.73850e9 −0.772024
\(627\) 0 0
\(628\) −2.31722e9 −0.373343
\(629\) 1.08641e10 1.74068
\(630\) 0 0
\(631\) 3.44532e9 0.545918 0.272959 0.962026i \(-0.411998\pi\)
0.272959 + 0.962026i \(0.411998\pi\)
\(632\) −1.18961e10 −1.87454
\(633\) 0 0
\(634\) −6.52848e8 −0.101742
\(635\) −3.80604e8 −0.0589882
\(636\) 0 0
\(637\) −2.61343e9 −0.400611
\(638\) −2.82462e9 −0.430614
\(639\) 0 0
\(640\) 2.15580e8 0.0325072
\(641\) −9.82463e7 −0.0147337 −0.00736687 0.999973i \(-0.502345\pi\)
−0.00736687 + 0.999973i \(0.502345\pi\)
\(642\) 0 0
\(643\) 4.07562e9 0.604583 0.302291 0.953216i \(-0.402248\pi\)
0.302291 + 0.953216i \(0.402248\pi\)
\(644\) 5.36259e9 0.791178
\(645\) 0 0
\(646\) 9.23957e9 1.34846
\(647\) 7.00089e9 1.01622 0.508111 0.861292i \(-0.330344\pi\)
0.508111 + 0.861292i \(0.330344\pi\)
\(648\) 0 0
\(649\) 6.45866e9 0.927440
\(650\) 1.32549e9 0.189313
\(651\) 0 0
\(652\) 1.75549e9 0.248046
\(653\) 6.97942e9 0.980897 0.490448 0.871470i \(-0.336833\pi\)
0.490448 + 0.871470i \(0.336833\pi\)
\(654\) 0 0
\(655\) 1.10989e9 0.154324
\(656\) −4.14812e9 −0.573703
\(657\) 0 0
\(658\) 1.58623e10 2.17058
\(659\) 6.20737e9 0.844907 0.422453 0.906385i \(-0.361169\pi\)
0.422453 + 0.906385i \(0.361169\pi\)
\(660\) 0 0
\(661\) 7.75251e8 0.104409 0.0522044 0.998636i \(-0.483375\pi\)
0.0522044 + 0.998636i \(0.483375\pi\)
\(662\) −4.23752e9 −0.567686
\(663\) 0 0
\(664\) −6.90768e9 −0.915680
\(665\) 3.80380e9 0.501582
\(666\) 0 0
\(667\) −5.54056e9 −0.722958
\(668\) −2.25278e9 −0.292417
\(669\) 0 0
\(670\) −1.41337e9 −0.181549
\(671\) 1.95888e9 0.250310
\(672\) 0 0
\(673\) 3.89012e9 0.491937 0.245969 0.969278i \(-0.420894\pi\)
0.245969 + 0.969278i \(0.420894\pi\)
\(674\) 4.04923e9 0.509404
\(675\) 0 0
\(676\) −2.79267e8 −0.0347702
\(677\) 1.20651e9 0.149442 0.0747208 0.997204i \(-0.476193\pi\)
0.0747208 + 0.997204i \(0.476193\pi\)
\(678\) 0 0
\(679\) 1.00954e10 1.23760
\(680\) 3.89956e9 0.475591
\(681\) 0 0
\(682\) −5.15339e9 −0.622082
\(683\) 6.45534e9 0.775259 0.387629 0.921815i \(-0.373294\pi\)
0.387629 + 0.921815i \(0.373294\pi\)
\(684\) 0 0
\(685\) 2.72901e9 0.324405
\(686\) −4.34917e9 −0.514366
\(687\) 0 0
\(688\) −1.19114e9 −0.139445
\(689\) 3.35413e9 0.390672
\(690\) 0 0
\(691\) −8.05007e9 −0.928167 −0.464084 0.885791i \(-0.653616\pi\)
−0.464084 + 0.885791i \(0.653616\pi\)
\(692\) −2.47503e9 −0.283928
\(693\) 0 0
\(694\) −7.98030e9 −0.906277
\(695\) 1.01354e9 0.114524
\(696\) 0 0
\(697\) 2.36535e10 2.64594
\(698\) −4.86322e9 −0.541290
\(699\) 0 0
\(700\) −5.91354e9 −0.651635
\(701\) 4.44290e9 0.487140 0.243570 0.969883i \(-0.421681\pi\)
0.243570 + 0.969883i \(0.421681\pi\)
\(702\) 0 0
\(703\) 1.16262e10 1.26210
\(704\) 7.93092e9 0.856682
\(705\) 0 0
\(706\) −1.30559e10 −1.39633
\(707\) −1.63866e10 −1.74390
\(708\) 0 0
\(709\) −7.64450e9 −0.805541 −0.402770 0.915301i \(-0.631953\pi\)
−0.402770 + 0.915301i \(0.631953\pi\)
\(710\) 2.13857e9 0.224243
\(711\) 0 0
\(712\) 3.78994e9 0.393507
\(713\) −1.01085e10 −1.04441
\(714\) 0 0
\(715\) 6.81655e8 0.0697418
\(716\) 4.22190e8 0.0429846
\(717\) 0 0
\(718\) −2.63541e9 −0.265712
\(719\) −9.16074e9 −0.919135 −0.459567 0.888143i \(-0.651996\pi\)
−0.459567 + 0.888143i \(0.651996\pi\)
\(720\) 0 0
\(721\) −9.67232e9 −0.961075
\(722\) 2.40138e9 0.237455
\(723\) 0 0
\(724\) −3.79376e8 −0.0371522
\(725\) 6.10979e9 0.595448
\(726\) 0 0
\(727\) 1.39651e10 1.34795 0.673974 0.738755i \(-0.264586\pi\)
0.673974 + 0.738755i \(0.264586\pi\)
\(728\) −4.85213e9 −0.466093
\(729\) 0 0
\(730\) −3.23751e9 −0.308021
\(731\) 6.79214e9 0.643126
\(732\) 0 0
\(733\) −1.22423e10 −1.14815 −0.574074 0.818803i \(-0.694638\pi\)
−0.574074 + 0.818803i \(0.694638\pi\)
\(734\) −2.55736e9 −0.238702
\(735\) 0 0
\(736\) 9.93496e9 0.918531
\(737\) 8.60061e9 0.791395
\(738\) 0 0
\(739\) −3.72415e9 −0.339447 −0.169723 0.985492i \(-0.554287\pi\)
−0.169723 + 0.985492i \(0.554287\pi\)
\(740\) 1.52750e9 0.138570
\(741\) 0 0
\(742\) 1.81414e10 1.63027
\(743\) −8.70451e9 −0.778545 −0.389272 0.921123i \(-0.627274\pi\)
−0.389272 + 0.921123i \(0.627274\pi\)
\(744\) 0 0
\(745\) 5.41556e8 0.0479840
\(746\) 1.37902e10 1.21614
\(747\) 0 0
\(748\) −7.38703e9 −0.645378
\(749\) −2.75465e9 −0.239541
\(750\) 0 0
\(751\) 4.77226e9 0.411135 0.205567 0.978643i \(-0.434096\pi\)
0.205567 + 0.978643i \(0.434096\pi\)
\(752\) 7.51639e9 0.644535
\(753\) 0 0
\(754\) 1.56060e9 0.132584
\(755\) −3.67420e9 −0.310705
\(756\) 0 0
\(757\) −5.66163e9 −0.474358 −0.237179 0.971466i \(-0.576223\pi\)
−0.237179 + 0.971466i \(0.576223\pi\)
\(758\) 7.43855e8 0.0620363
\(759\) 0 0
\(760\) 4.17308e9 0.344833
\(761\) −1.03908e10 −0.854682 −0.427341 0.904091i \(-0.640550\pi\)
−0.427341 + 0.904091i \(0.640550\pi\)
\(762\) 0 0
\(763\) 3.71791e10 3.03014
\(764\) 3.11300e9 0.252553
\(765\) 0 0
\(766\) 2.81637e9 0.226407
\(767\) −3.56839e9 −0.285554
\(768\) 0 0
\(769\) −1.61920e10 −1.28398 −0.641990 0.766713i \(-0.721891\pi\)
−0.641990 + 0.766713i \(0.721891\pi\)
\(770\) 3.68686e9 0.291031
\(771\) 0 0
\(772\) −6.06177e9 −0.474175
\(773\) −1.30852e10 −1.01894 −0.509472 0.860487i \(-0.670159\pi\)
−0.509472 + 0.860487i \(0.670159\pi\)
\(774\) 0 0
\(775\) 1.11470e10 0.860207
\(776\) 1.10755e10 0.850839
\(777\) 0 0
\(778\) −1.42823e10 −1.08735
\(779\) 2.53126e10 1.91847
\(780\) 0 0
\(781\) −1.30136e10 −0.977506
\(782\) 1.75664e10 1.31359
\(783\) 0 0
\(784\) −6.69802e9 −0.496410
\(785\) −3.12494e9 −0.230567
\(786\) 0 0
\(787\) −2.43918e10 −1.78374 −0.891872 0.452288i \(-0.850608\pi\)
−0.891872 + 0.452288i \(0.850608\pi\)
\(788\) −3.00243e8 −0.0218590
\(789\) 0 0
\(790\) −4.99412e9 −0.360383
\(791\) −4.04898e10 −2.90890
\(792\) 0 0
\(793\) −1.08227e9 −0.0770692
\(794\) −1.81335e10 −1.28561
\(795\) 0 0
\(796\) −4.76886e8 −0.0335134
\(797\) −2.78830e10 −1.95090 −0.975450 0.220219i \(-0.929323\pi\)
−0.975450 + 0.220219i \(0.929323\pi\)
\(798\) 0 0
\(799\) −4.28601e10 −2.97262
\(800\) −1.09557e10 −0.756526
\(801\) 0 0
\(802\) 1.17419e10 0.803760
\(803\) 1.97009e10 1.34271
\(804\) 0 0
\(805\) 7.23185e9 0.488611
\(806\) 2.84724e9 0.191536
\(807\) 0 0
\(808\) −1.79775e10 −1.19892
\(809\) −1.50237e10 −0.997600 −0.498800 0.866717i \(-0.666226\pi\)
−0.498800 + 0.866717i \(0.666226\pi\)
\(810\) 0 0
\(811\) 1.90447e10 1.25372 0.626861 0.779131i \(-0.284339\pi\)
0.626861 + 0.779131i \(0.284339\pi\)
\(812\) −6.96245e9 −0.456369
\(813\) 0 0
\(814\) 1.12687e10 0.732302
\(815\) 2.36741e9 0.153187
\(816\) 0 0
\(817\) 7.26856e9 0.466306
\(818\) −4.67496e9 −0.298635
\(819\) 0 0
\(820\) 3.32568e9 0.210635
\(821\) 2.56581e10 1.61817 0.809084 0.587693i \(-0.199964\pi\)
0.809084 + 0.587693i \(0.199964\pi\)
\(822\) 0 0
\(823\) −9.13563e9 −0.571267 −0.285633 0.958339i \(-0.592204\pi\)
−0.285633 + 0.958339i \(0.592204\pi\)
\(824\) −1.06113e10 −0.660731
\(825\) 0 0
\(826\) −1.93003e10 −1.19161
\(827\) −2.87638e10 −1.76839 −0.884194 0.467120i \(-0.845292\pi\)
−0.884194 + 0.467120i \(0.845292\pi\)
\(828\) 0 0
\(829\) −9.59018e9 −0.584636 −0.292318 0.956321i \(-0.594427\pi\)
−0.292318 + 0.956321i \(0.594427\pi\)
\(830\) −2.89992e9 −0.176041
\(831\) 0 0
\(832\) −4.38181e9 −0.263768
\(833\) 3.81936e10 2.28946
\(834\) 0 0
\(835\) −3.03805e9 −0.180589
\(836\) −7.90517e9 −0.467939
\(837\) 0 0
\(838\) −2.14548e10 −1.25942
\(839\) 2.31118e9 0.135103 0.0675517 0.997716i \(-0.478481\pi\)
0.0675517 + 0.997716i \(0.478481\pi\)
\(840\) 0 0
\(841\) −1.00564e10 −0.582982
\(842\) −1.65105e10 −0.953167
\(843\) 0 0
\(844\) −1.35372e10 −0.775048
\(845\) −3.76613e8 −0.0214732
\(846\) 0 0
\(847\) 5.21380e9 0.294823
\(848\) 8.59638e9 0.484094
\(849\) 0 0
\(850\) −1.93712e10 −1.08191
\(851\) 2.21039e10 1.22946
\(852\) 0 0
\(853\) 2.49072e10 1.37405 0.687025 0.726633i \(-0.258916\pi\)
0.687025 + 0.726633i \(0.258916\pi\)
\(854\) −5.85368e9 −0.321608
\(855\) 0 0
\(856\) −3.02208e9 −0.164683
\(857\) −2.80959e10 −1.52479 −0.762396 0.647110i \(-0.775977\pi\)
−0.762396 + 0.647110i \(0.775977\pi\)
\(858\) 0 0
\(859\) 1.10331e10 0.593910 0.296955 0.954892i \(-0.404029\pi\)
0.296955 + 0.954892i \(0.404029\pi\)
\(860\) 9.54974e8 0.0511973
\(861\) 0 0
\(862\) 9.56731e8 0.0508762
\(863\) 1.99198e10 1.05499 0.527494 0.849559i \(-0.323132\pi\)
0.527494 + 0.849559i \(0.323132\pi\)
\(864\) 0 0
\(865\) −3.33776e9 −0.175347
\(866\) 2.43262e10 1.27280
\(867\) 0 0
\(868\) −1.27026e10 −0.659288
\(869\) 3.03902e10 1.57096
\(870\) 0 0
\(871\) −4.75182e9 −0.243667
\(872\) 4.07885e10 2.08320
\(873\) 0 0
\(874\) 1.87986e10 0.952434
\(875\) −1.66236e10 −0.838877
\(876\) 0 0
\(877\) 1.25041e10 0.625971 0.312985 0.949758i \(-0.398671\pi\)
0.312985 + 0.949758i \(0.398671\pi\)
\(878\) 1.03077e10 0.513964
\(879\) 0 0
\(880\) 1.74703e9 0.0864193
\(881\) −1.47457e10 −0.726521 −0.363261 0.931688i \(-0.618337\pi\)
−0.363261 + 0.931688i \(0.618337\pi\)
\(882\) 0 0
\(883\) 3.78289e10 1.84910 0.924552 0.381057i \(-0.124440\pi\)
0.924552 + 0.381057i \(0.124440\pi\)
\(884\) 4.08131e9 0.198709
\(885\) 0 0
\(886\) 4.17383e9 0.201612
\(887\) −4.41598e9 −0.212469 −0.106234 0.994341i \(-0.533879\pi\)
−0.106234 + 0.994341i \(0.533879\pi\)
\(888\) 0 0
\(889\) −6.92101e9 −0.330380
\(890\) 1.59106e9 0.0756522
\(891\) 0 0
\(892\) −2.20521e9 −0.104034
\(893\) −4.58664e10 −2.15534
\(894\) 0 0
\(895\) 5.69355e8 0.0265462
\(896\) 3.92018e9 0.182066
\(897\) 0 0
\(898\) −1.46005e10 −0.672822
\(899\) 1.31242e10 0.602441
\(900\) 0 0
\(901\) −4.90185e10 −2.23266
\(902\) 2.45344e10 1.11315
\(903\) 0 0
\(904\) −4.44207e10 −1.99984
\(905\) −5.11617e8 −0.0229443
\(906\) 0 0
\(907\) 2.68010e10 1.19269 0.596343 0.802730i \(-0.296620\pi\)
0.596343 + 0.802730i \(0.296620\pi\)
\(908\) −1.97046e10 −0.873507
\(909\) 0 0
\(910\) −2.03698e9 −0.0896070
\(911\) 4.22204e9 0.185015 0.0925077 0.995712i \(-0.470512\pi\)
0.0925077 + 0.995712i \(0.470512\pi\)
\(912\) 0 0
\(913\) 1.76466e10 0.767385
\(914\) −1.94327e10 −0.841824
\(915\) 0 0
\(916\) 5.05667e9 0.217385
\(917\) 2.01825e10 0.864337
\(918\) 0 0
\(919\) 3.31907e10 1.41063 0.705313 0.708896i \(-0.250806\pi\)
0.705313 + 0.708896i \(0.250806\pi\)
\(920\) 7.93393e9 0.335916
\(921\) 0 0
\(922\) −5.45690e9 −0.229291
\(923\) 7.18999e9 0.300970
\(924\) 0 0
\(925\) −2.43748e10 −1.01262
\(926\) 2.60599e10 1.07854
\(927\) 0 0
\(928\) −1.28989e10 −0.529829
\(929\) 6.90493e9 0.282556 0.141278 0.989970i \(-0.454879\pi\)
0.141278 + 0.989970i \(0.454879\pi\)
\(930\) 0 0
\(931\) 4.08726e10 1.66000
\(932\) 4.94830e9 0.200217
\(933\) 0 0
\(934\) −1.18420e10 −0.475568
\(935\) −9.96195e9 −0.398569
\(936\) 0 0
\(937\) −4.46363e10 −1.77256 −0.886278 0.463154i \(-0.846718\pi\)
−0.886278 + 0.463154i \(0.846718\pi\)
\(938\) −2.57011e10 −1.01681
\(939\) 0 0
\(940\) −6.02612e9 −0.236641
\(941\) −4.46604e10 −1.74727 −0.873633 0.486585i \(-0.838243\pi\)
−0.873633 + 0.486585i \(0.838243\pi\)
\(942\) 0 0
\(943\) 4.81247e10 1.86886
\(944\) −9.14551e9 −0.353839
\(945\) 0 0
\(946\) 7.04510e9 0.270563
\(947\) 9.94621e9 0.380568 0.190284 0.981729i \(-0.439059\pi\)
0.190284 + 0.981729i \(0.439059\pi\)
\(948\) 0 0
\(949\) −1.08847e10 −0.413413
\(950\) −2.07299e10 −0.784450
\(951\) 0 0
\(952\) 7.09107e10 2.66368
\(953\) 2.94139e10 1.10085 0.550423 0.834886i \(-0.314466\pi\)
0.550423 + 0.834886i \(0.314466\pi\)
\(954\) 0 0
\(955\) 4.19812e9 0.155971
\(956\) −7.61672e9 −0.281946
\(957\) 0 0
\(958\) 1.60489e10 0.589748
\(959\) 4.96252e10 1.81692
\(960\) 0 0
\(961\) −3.56812e9 −0.129690
\(962\) −6.22595e9 −0.225472
\(963\) 0 0
\(964\) −4.56870e9 −0.164257
\(965\) −8.17474e9 −0.292839
\(966\) 0 0
\(967\) 2.80836e10 0.998757 0.499379 0.866384i \(-0.333562\pi\)
0.499379 + 0.866384i \(0.333562\pi\)
\(968\) 5.71996e9 0.202689
\(969\) 0 0
\(970\) 4.64963e9 0.163575
\(971\) −5.91936e9 −0.207495 −0.103747 0.994604i \(-0.533083\pi\)
−0.103747 + 0.994604i \(0.533083\pi\)
\(972\) 0 0
\(973\) 1.84306e10 0.641422
\(974\) 2.01457e10 0.698597
\(975\) 0 0
\(976\) −2.77378e9 −0.0954989
\(977\) 3.36951e10 1.15594 0.577970 0.816058i \(-0.303845\pi\)
0.577970 + 0.816058i \(0.303845\pi\)
\(978\) 0 0
\(979\) −9.68191e9 −0.329778
\(980\) 5.37002e9 0.182257
\(981\) 0 0
\(982\) −2.04114e10 −0.687833
\(983\) −2.08403e10 −0.699789 −0.349895 0.936789i \(-0.613783\pi\)
−0.349895 + 0.936789i \(0.613783\pi\)
\(984\) 0 0
\(985\) −4.04900e8 −0.0134996
\(986\) −2.28071e10 −0.757708
\(987\) 0 0
\(988\) 4.36758e9 0.144076
\(989\) 1.38191e10 0.454248
\(990\) 0 0
\(991\) 4.91301e10 1.60358 0.801788 0.597609i \(-0.203882\pi\)
0.801788 + 0.597609i \(0.203882\pi\)
\(992\) −2.35335e10 −0.765411
\(993\) 0 0
\(994\) 3.88884e10 1.25594
\(995\) −6.43115e8 −0.0206970
\(996\) 0 0
\(997\) 2.36829e10 0.756837 0.378419 0.925635i \(-0.376468\pi\)
0.378419 + 0.925635i \(0.376468\pi\)
\(998\) −8.97484e8 −0.0285805
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.8.a.i.1.6 yes 8
3.2 odd 2 inner 117.8.a.i.1.3 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
117.8.a.i.1.3 8 3.2 odd 2 inner
117.8.a.i.1.6 yes 8 1.1 even 1 trivial