Properties

Label 117.5.j.b.73.7
Level $117$
Weight $5$
Character 117.73
Analytic conductor $12.094$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,5,Mod(73,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.73");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 117.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.0942856808\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 5446 x^{16} - 1452 x^{15} + 106320 x^{13} + 8376897 x^{12} - 1643220 x^{11} + 1054152 x^{10} + \cdots + 2103506496 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{22}\cdot 3^{10} \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 73.7
Root \(1.99524 + 1.99524i\) of defining polynomial
Character \(\chi\) \(=\) 117.73
Dual form 117.5.j.b.109.7

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.99524 + 1.99524i) q^{2} -8.03802i q^{4} +(-3.82538 - 3.82538i) q^{5} +(-42.4180 + 42.4180i) q^{7} +(47.9617 - 47.9617i) q^{8} -15.2651i q^{10} +(152.629 - 152.629i) q^{11} +(102.350 - 134.483i) q^{13} -169.268 q^{14} +62.7818 q^{16} -195.803i q^{17} +(-418.159 - 418.159i) q^{19} +(-30.7485 + 30.7485i) q^{20} +609.065 q^{22} +96.2247i q^{23} -595.733i q^{25} +(472.537 - 64.1132i) q^{26} +(340.957 + 340.957i) q^{28} +814.896 q^{29} +(574.293 + 574.293i) q^{31} +(-642.122 - 642.122i) q^{32} +(390.675 - 390.675i) q^{34} +324.530 q^{35} +(-1272.11 + 1272.11i) q^{37} -1668.66i q^{38} -366.943 q^{40} +(1849.48 + 1849.48i) q^{41} +712.995i q^{43} +(-1226.84 - 1226.84i) q^{44} +(-191.991 + 191.991i) q^{46} +(-213.922 + 213.922i) q^{47} -1197.58i q^{49} +(1188.63 - 1188.63i) q^{50} +(-1080.97 - 822.688i) q^{52} -3263.61 q^{53} -1167.73 q^{55} +4068.88i q^{56} +(1625.91 + 1625.91i) q^{58} +(33.4862 - 33.4862i) q^{59} +1396.14 q^{61} +2291.70i q^{62} -3566.88i q^{64} +(-905.972 + 122.921i) q^{65} +(-89.7582 - 89.7582i) q^{67} -1573.87 q^{68} +(647.515 + 647.515i) q^{70} +(-1632.34 - 1632.34i) q^{71} +(3204.47 - 3204.47i) q^{73} -5076.32 q^{74} +(-3361.17 + 3361.17i) q^{76} +12948.5i q^{77} -6995.98 q^{79} +(-240.164 - 240.164i) q^{80} +7380.34i q^{82} +(-161.980 - 161.980i) q^{83} +(-749.022 + 749.022i) q^{85} +(-1422.60 + 1422.60i) q^{86} -14640.7i q^{88} +(10192.7 - 10192.7i) q^{89} +(1363.02 + 10046.0i) q^{91} +773.456 q^{92} -853.652 q^{94} +3199.23i q^{95} +(9961.57 + 9961.57i) q^{97} +(2389.45 - 2389.45i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 24 q^{5} - 24 q^{7} - 372 q^{11} - 224 q^{13} - 480 q^{14} - 2328 q^{16} - 840 q^{19} - 228 q^{20} + 3536 q^{22} + 828 q^{26} - 1984 q^{28} + 5064 q^{29} + 1712 q^{31} + 7260 q^{32} + 8040 q^{34}+ \cdots - 11544 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.99524 + 1.99524i 0.498810 + 0.498810i 0.911068 0.412257i \(-0.135259\pi\)
−0.412257 + 0.911068i \(0.635259\pi\)
\(3\) 0 0
\(4\) 8.03802i 0.502376i
\(5\) −3.82538 3.82538i −0.153015 0.153015i 0.626448 0.779463i \(-0.284508\pi\)
−0.779463 + 0.626448i \(0.784508\pi\)
\(6\) 0 0
\(7\) −42.4180 + 42.4180i −0.865674 + 0.865674i −0.991990 0.126316i \(-0.959685\pi\)
0.126316 + 0.991990i \(0.459685\pi\)
\(8\) 47.9617 47.9617i 0.749401 0.749401i
\(9\) 0 0
\(10\) 15.2651i 0.152651i
\(11\) 152.629 152.629i 1.26140 1.26140i 0.310985 0.950415i \(-0.399341\pi\)
0.950415 0.310985i \(-0.100659\pi\)
\(12\) 0 0
\(13\) 102.350 134.483i 0.605619 0.795755i
\(14\) −169.268 −0.863614
\(15\) 0 0
\(16\) 62.7818 0.245242
\(17\) 195.803i 0.677521i −0.940873 0.338760i \(-0.889992\pi\)
0.940873 0.338760i \(-0.110008\pi\)
\(18\) 0 0
\(19\) −418.159 418.159i −1.15833 1.15833i −0.984834 0.173501i \(-0.944492\pi\)
−0.173501 0.984834i \(-0.555508\pi\)
\(20\) −30.7485 + 30.7485i −0.0768712 + 0.0768712i
\(21\) 0 0
\(22\) 609.065 1.25840
\(23\) 96.2247i 0.181899i 0.995855 + 0.0909496i \(0.0289902\pi\)
−0.995855 + 0.0909496i \(0.971010\pi\)
\(24\) 0 0
\(25\) 595.733i 0.953173i
\(26\) 472.537 64.1132i 0.699020 0.0948420i
\(27\) 0 0
\(28\) 340.957 + 340.957i 0.434894 + 0.434894i
\(29\) 814.896 0.968961 0.484480 0.874802i \(-0.339009\pi\)
0.484480 + 0.874802i \(0.339009\pi\)
\(30\) 0 0
\(31\) 574.293 + 574.293i 0.597599 + 0.597599i 0.939673 0.342074i \(-0.111129\pi\)
−0.342074 + 0.939673i \(0.611129\pi\)
\(32\) −642.122 642.122i −0.627072 0.627072i
\(33\) 0 0
\(34\) 390.675 390.675i 0.337954 0.337954i
\(35\) 324.530 0.264922
\(36\) 0 0
\(37\) −1272.11 + 1272.11i −0.929223 + 0.929223i −0.997656 0.0684329i \(-0.978200\pi\)
0.0684329 + 0.997656i \(0.478200\pi\)
\(38\) 1668.66i 1.15558i
\(39\) 0 0
\(40\) −366.943 −0.229339
\(41\) 1849.48 + 1849.48i 1.10023 + 1.10023i 0.994383 + 0.105846i \(0.0337551\pi\)
0.105846 + 0.994383i \(0.466245\pi\)
\(42\) 0 0
\(43\) 712.995i 0.385611i 0.981237 + 0.192806i \(0.0617587\pi\)
−0.981237 + 0.192806i \(0.938241\pi\)
\(44\) −1226.84 1226.84i −0.633698 0.633698i
\(45\) 0 0
\(46\) −191.991 + 191.991i −0.0907332 + 0.0907332i
\(47\) −213.922 + 213.922i −0.0968411 + 0.0968411i −0.753868 0.657026i \(-0.771814\pi\)
0.657026 + 0.753868i \(0.271814\pi\)
\(48\) 0 0
\(49\) 1197.58i 0.498782i
\(50\) 1188.63 1188.63i 0.475452 0.475452i
\(51\) 0 0
\(52\) −1080.97 822.688i −0.399769 0.304249i
\(53\) −3263.61 −1.16184 −0.580920 0.813960i \(-0.697307\pi\)
−0.580920 + 0.813960i \(0.697307\pi\)
\(54\) 0 0
\(55\) −1167.73 −0.386026
\(56\) 4068.88i 1.29747i
\(57\) 0 0
\(58\) 1625.91 + 1625.91i 0.483328 + 0.483328i
\(59\) 33.4862 33.4862i 0.00961970 0.00961970i −0.702281 0.711900i \(-0.747835\pi\)
0.711900 + 0.702281i \(0.247835\pi\)
\(60\) 0 0
\(61\) 1396.14 0.375206 0.187603 0.982245i \(-0.439928\pi\)
0.187603 + 0.982245i \(0.439928\pi\)
\(62\) 2291.70i 0.596177i
\(63\) 0 0
\(64\) 3566.88i 0.870821i
\(65\) −905.972 + 122.921i −0.214431 + 0.0290937i
\(66\) 0 0
\(67\) −89.7582 89.7582i −0.0199951 0.0199951i 0.697039 0.717034i \(-0.254501\pi\)
−0.717034 + 0.697039i \(0.754501\pi\)
\(68\) −1573.87 −0.340370
\(69\) 0 0
\(70\) 647.515 + 647.515i 0.132146 + 0.132146i
\(71\) −1632.34 1632.34i −0.323812 0.323812i 0.526416 0.850227i \(-0.323536\pi\)
−0.850227 + 0.526416i \(0.823536\pi\)
\(72\) 0 0
\(73\) 3204.47 3204.47i 0.601327 0.601327i −0.339338 0.940665i \(-0.610203\pi\)
0.940665 + 0.339338i \(0.110203\pi\)
\(74\) −5076.32 −0.927012
\(75\) 0 0
\(76\) −3361.17 + 3361.17i −0.581920 + 0.581920i
\(77\) 12948.5i 2.18392i
\(78\) 0 0
\(79\) −6995.98 −1.12097 −0.560486 0.828164i \(-0.689386\pi\)
−0.560486 + 0.828164i \(0.689386\pi\)
\(80\) −240.164 240.164i −0.0375257 0.0375257i
\(81\) 0 0
\(82\) 7380.34i 1.09761i
\(83\) −161.980 161.980i −0.0235129 0.0235129i 0.695253 0.718765i \(-0.255293\pi\)
−0.718765 + 0.695253i \(0.755293\pi\)
\(84\) 0 0
\(85\) −749.022 + 749.022i −0.103671 + 0.103671i
\(86\) −1422.60 + 1422.60i −0.192347 + 0.192347i
\(87\) 0 0
\(88\) 14640.7i 1.89059i
\(89\) 10192.7 10192.7i 1.28680 1.28680i 0.350078 0.936720i \(-0.386155\pi\)
0.936720 0.350078i \(-0.113845\pi\)
\(90\) 0 0
\(91\) 1363.02 + 10046.0i 0.164596 + 1.21313i
\(92\) 773.456 0.0913819
\(93\) 0 0
\(94\) −853.652 −0.0966107
\(95\) 3199.23i 0.354485i
\(96\) 0 0
\(97\) 9961.57 + 9961.57i 1.05873 + 1.05873i 0.998164 + 0.0605636i \(0.0192898\pi\)
0.0605636 + 0.998164i \(0.480710\pi\)
\(98\) 2389.45 2389.45i 0.248798 0.248798i
\(99\) 0 0
\(100\) −4788.52 −0.478852
\(101\) 923.540i 0.0905343i −0.998975 0.0452671i \(-0.985586\pi\)
0.998975 0.0452671i \(-0.0144139\pi\)
\(102\) 0 0
\(103\) 11272.8i 1.06257i 0.847192 + 0.531286i \(0.178291\pi\)
−0.847192 + 0.531286i \(0.821709\pi\)
\(104\) −1541.15 11358.9i −0.142488 1.05019i
\(105\) 0 0
\(106\) −6511.69 6511.69i −0.579538 0.579538i
\(107\) 6063.17 0.529580 0.264790 0.964306i \(-0.414697\pi\)
0.264790 + 0.964306i \(0.414697\pi\)
\(108\) 0 0
\(109\) 5709.40 + 5709.40i 0.480549 + 0.480549i 0.905307 0.424758i \(-0.139641\pi\)
−0.424758 + 0.905307i \(0.639641\pi\)
\(110\) −2329.90 2329.90i −0.192554 0.192554i
\(111\) 0 0
\(112\) −2663.08 + 2663.08i −0.212299 + 0.212299i
\(113\) −9695.94 −0.759335 −0.379667 0.925123i \(-0.623962\pi\)
−0.379667 + 0.925123i \(0.623962\pi\)
\(114\) 0 0
\(115\) 368.096 368.096i 0.0278333 0.0278333i
\(116\) 6550.15i 0.486783i
\(117\) 0 0
\(118\) 133.626 0.00959681
\(119\) 8305.59 + 8305.59i 0.586512 + 0.586512i
\(120\) 0 0
\(121\) 31950.5i 2.18226i
\(122\) 2785.64 + 2785.64i 0.187157 + 0.187157i
\(123\) 0 0
\(124\) 4616.18 4616.18i 0.300220 0.300220i
\(125\) −4669.76 + 4669.76i −0.298865 + 0.298865i
\(126\) 0 0
\(127\) 12871.5i 0.798036i −0.916943 0.399018i \(-0.869351\pi\)
0.916943 0.399018i \(-0.130649\pi\)
\(128\) −3157.15 + 3157.15i −0.192697 + 0.192697i
\(129\) 0 0
\(130\) −2052.89 1562.38i −0.121473 0.0924483i
\(131\) 19409.4 1.13102 0.565508 0.824743i \(-0.308680\pi\)
0.565508 + 0.824743i \(0.308680\pi\)
\(132\) 0 0
\(133\) 35474.9 2.00548
\(134\) 358.179i 0.0199476i
\(135\) 0 0
\(136\) −9391.06 9391.06i −0.507735 0.507735i
\(137\) 8904.59 8904.59i 0.474431 0.474431i −0.428914 0.903345i \(-0.641104\pi\)
0.903345 + 0.428914i \(0.141104\pi\)
\(138\) 0 0
\(139\) 6138.32 0.317702 0.158851 0.987303i \(-0.449221\pi\)
0.158851 + 0.987303i \(0.449221\pi\)
\(140\) 2608.58i 0.133091i
\(141\) 0 0
\(142\) 6513.81i 0.323041i
\(143\) −4904.45 36147.5i −0.239838 1.76769i
\(144\) 0 0
\(145\) −3117.28 3117.28i −0.148266 0.148266i
\(146\) 12787.4 0.599896
\(147\) 0 0
\(148\) 10225.2 + 10225.2i 0.466820 + 0.466820i
\(149\) 17824.9 + 17824.9i 0.802887 + 0.802887i 0.983546 0.180659i \(-0.0578231\pi\)
−0.180659 + 0.983546i \(0.557823\pi\)
\(150\) 0 0
\(151\) 17720.1 17720.1i 0.777162 0.777162i −0.202185 0.979347i \(-0.564804\pi\)
0.979347 + 0.202185i \(0.0648043\pi\)
\(152\) −40111.2 −1.73611
\(153\) 0 0
\(154\) −25835.3 + 25835.3i −1.08936 + 1.08936i
\(155\) 4393.77i 0.182883i
\(156\) 0 0
\(157\) −43199.0 −1.75256 −0.876282 0.481798i \(-0.839984\pi\)
−0.876282 + 0.481798i \(0.839984\pi\)
\(158\) −13958.7 13958.7i −0.559152 0.559152i
\(159\) 0 0
\(160\) 4912.72i 0.191903i
\(161\) −4081.66 4081.66i −0.157465 0.157465i
\(162\) 0 0
\(163\) −29545.3 + 29545.3i −1.11202 + 1.11202i −0.119144 + 0.992877i \(0.538015\pi\)
−0.992877 + 0.119144i \(0.961985\pi\)
\(164\) 14866.2 14866.2i 0.552729 0.552729i
\(165\) 0 0
\(166\) 646.380i 0.0234569i
\(167\) −6360.18 + 6360.18i −0.228054 + 0.228054i −0.811879 0.583826i \(-0.801555\pi\)
0.583826 + 0.811879i \(0.301555\pi\)
\(168\) 0 0
\(169\) −7610.14 27528.5i −0.266452 0.963848i
\(170\) −2988.96 −0.103424
\(171\) 0 0
\(172\) 5731.07 0.193722
\(173\) 19966.6i 0.667132i 0.942727 + 0.333566i \(0.108252\pi\)
−0.942727 + 0.333566i \(0.891748\pi\)
\(174\) 0 0
\(175\) 25269.8 + 25269.8i 0.825137 + 0.825137i
\(176\) 9582.35 9582.35i 0.309348 0.309348i
\(177\) 0 0
\(178\) 40673.9 1.28374
\(179\) 21028.1i 0.656287i 0.944628 + 0.328144i \(0.106423\pi\)
−0.944628 + 0.328144i \(0.893577\pi\)
\(180\) 0 0
\(181\) 38363.4i 1.17101i 0.810669 + 0.585504i \(0.199104\pi\)
−0.810669 + 0.585504i \(0.800896\pi\)
\(182\) −17324.5 + 22763.7i −0.523021 + 0.687225i
\(183\) 0 0
\(184\) 4615.10 + 4615.10i 0.136315 + 0.136315i
\(185\) 9732.57 0.284370
\(186\) 0 0
\(187\) −29885.4 29885.4i −0.854624 0.854624i
\(188\) 1719.51 + 1719.51i 0.0486507 + 0.0486507i
\(189\) 0 0
\(190\) −6383.24 + 6383.24i −0.176821 + 0.176821i
\(191\) 50333.2 1.37971 0.689855 0.723947i \(-0.257674\pi\)
0.689855 + 0.723947i \(0.257674\pi\)
\(192\) 0 0
\(193\) 12651.4 12651.4i 0.339643 0.339643i −0.516590 0.856233i \(-0.672799\pi\)
0.856233 + 0.516590i \(0.172799\pi\)
\(194\) 39751.5i 1.05621i
\(195\) 0 0
\(196\) −9626.15 −0.250577
\(197\) 29465.8 + 29465.8i 0.759251 + 0.759251i 0.976186 0.216935i \(-0.0696059\pi\)
−0.216935 + 0.976186i \(0.569606\pi\)
\(198\) 0 0
\(199\) 51188.8i 1.29261i 0.763077 + 0.646307i \(0.223687\pi\)
−0.763077 + 0.646307i \(0.776313\pi\)
\(200\) −28572.3 28572.3i −0.714309 0.714309i
\(201\) 0 0
\(202\) 1842.69 1842.69i 0.0451594 0.0451594i
\(203\) −34566.3 + 34566.3i −0.838804 + 0.838804i
\(204\) 0 0
\(205\) 14150.0i 0.336703i
\(206\) −22492.0 + 22492.0i −0.530022 + 0.530022i
\(207\) 0 0
\(208\) 6425.69 8443.06i 0.148523 0.195152i
\(209\) −127647. −2.92225
\(210\) 0 0
\(211\) −11413.1 −0.256353 −0.128176 0.991751i \(-0.540912\pi\)
−0.128176 + 0.991751i \(0.540912\pi\)
\(212\) 26233.0i 0.583681i
\(213\) 0 0
\(214\) 12097.5 + 12097.5i 0.264160 + 0.264160i
\(215\) 2727.48 2727.48i 0.0590043 0.0590043i
\(216\) 0 0
\(217\) −48720.7 −1.03465
\(218\) 22783.3i 0.479406i
\(219\) 0 0
\(220\) 9386.24i 0.193931i
\(221\) −26332.2 20040.4i −0.539140 0.410319i
\(222\) 0 0
\(223\) 27797.2 + 27797.2i 0.558974 + 0.558974i 0.929015 0.370041i \(-0.120657\pi\)
−0.370041 + 0.929015i \(0.620657\pi\)
\(224\) 54475.1 1.08568
\(225\) 0 0
\(226\) −19345.7 19345.7i −0.378764 0.378764i
\(227\) 23277.0 + 23277.0i 0.451727 + 0.451727i 0.895927 0.444201i \(-0.146512\pi\)
−0.444201 + 0.895927i \(0.646512\pi\)
\(228\) 0 0
\(229\) 28256.2 28256.2i 0.538818 0.538818i −0.384363 0.923182i \(-0.625579\pi\)
0.923182 + 0.384363i \(0.125579\pi\)
\(230\) 1468.88 0.0277671
\(231\) 0 0
\(232\) 39083.8 39083.8i 0.726140 0.726140i
\(233\) 28942.7i 0.533123i −0.963818 0.266561i \(-0.914112\pi\)
0.963818 0.266561i \(-0.0858875\pi\)
\(234\) 0 0
\(235\) 1636.66 0.0296363
\(236\) −269.163 269.163i −0.00483271 0.00483271i
\(237\) 0 0
\(238\) 33143.3i 0.585116i
\(239\) −46271.6 46271.6i −0.810064 0.810064i 0.174580 0.984643i \(-0.444143\pi\)
−0.984643 + 0.174580i \(0.944143\pi\)
\(240\) 0 0
\(241\) 36808.4 36808.4i 0.633742 0.633742i −0.315263 0.949004i \(-0.602093\pi\)
0.949004 + 0.315263i \(0.102093\pi\)
\(242\) 63748.9 63748.9i 1.08853 1.08853i
\(243\) 0 0
\(244\) 11222.2i 0.188495i
\(245\) −4581.18 + 4581.18i −0.0763212 + 0.0763212i
\(246\) 0 0
\(247\) −99033.5 + 13436.7i −1.62326 + 0.220242i
\(248\) 55088.1 0.895682
\(249\) 0 0
\(250\) −18634.6 −0.298154
\(251\) 51658.9i 0.819969i 0.912092 + 0.409984i \(0.134466\pi\)
−0.912092 + 0.409984i \(0.865534\pi\)
\(252\) 0 0
\(253\) 14686.7 + 14686.7i 0.229448 + 0.229448i
\(254\) 25681.8 25681.8i 0.398069 0.398069i
\(255\) 0 0
\(256\) −69668.7 −1.06306
\(257\) 120472.i 1.82397i −0.410221 0.911986i \(-0.634548\pi\)
0.410221 0.911986i \(-0.365452\pi\)
\(258\) 0 0
\(259\) 107920.i 1.60881i
\(260\) 988.042 + 7282.23i 0.0146160 + 0.107725i
\(261\) 0 0
\(262\) 38726.4 + 38726.4i 0.564163 + 0.564163i
\(263\) −33541.8 −0.484926 −0.242463 0.970161i \(-0.577955\pi\)
−0.242463 + 0.970161i \(0.577955\pi\)
\(264\) 0 0
\(265\) 12484.5 + 12484.5i 0.177779 + 0.177779i
\(266\) 70781.1 + 70781.1i 1.00035 + 1.00035i
\(267\) 0 0
\(268\) −721.478 + 721.478i −0.0100451 + 0.0100451i
\(269\) 60299.3 0.833313 0.416656 0.909064i \(-0.363202\pi\)
0.416656 + 0.909064i \(0.363202\pi\)
\(270\) 0 0
\(271\) −16273.7 + 16273.7i −0.221588 + 0.221588i −0.809167 0.587579i \(-0.800081\pi\)
0.587579 + 0.809167i \(0.300081\pi\)
\(272\) 12292.9i 0.166156i
\(273\) 0 0
\(274\) 35533.6 0.473302
\(275\) −90926.4 90926.4i −1.20233 1.20233i
\(276\) 0 0
\(277\) 22320.4i 0.290899i −0.989366 0.145450i \(-0.953537\pi\)
0.989366 0.145450i \(-0.0464629\pi\)
\(278\) 12247.4 + 12247.4i 0.158473 + 0.158473i
\(279\) 0 0
\(280\) 15565.0 15565.0i 0.198533 0.198533i
\(281\) 102684. 102684.i 1.30044 1.30044i 0.372343 0.928095i \(-0.378554\pi\)
0.928095 0.372343i \(-0.121446\pi\)
\(282\) 0 0
\(283\) 108180.i 1.35075i 0.737473 + 0.675377i \(0.236019\pi\)
−0.737473 + 0.675377i \(0.763981\pi\)
\(284\) −13120.7 + 13120.7i −0.162675 + 0.162675i
\(285\) 0 0
\(286\) 62337.5 81908.6i 0.762110 1.00138i
\(287\) −156903. −1.90488
\(288\) 0 0
\(289\) 45182.0 0.540966
\(290\) 12439.5i 0.147913i
\(291\) 0 0
\(292\) −25757.6 25757.6i −0.302093 0.302093i
\(293\) 74282.2 74282.2i 0.865266 0.865266i −0.126678 0.991944i \(-0.540431\pi\)
0.991944 + 0.126678i \(0.0404314\pi\)
\(294\) 0 0
\(295\) −256.195 −0.00294392
\(296\) 122025.i 1.39272i
\(297\) 0 0
\(298\) 71129.9i 0.800976i
\(299\) 12940.5 + 9848.55i 0.144747 + 0.110162i
\(300\) 0 0
\(301\) −30243.8 30243.8i −0.333814 0.333814i
\(302\) 70711.6 0.775313
\(303\) 0 0
\(304\) −26252.8 26252.8i −0.284072 0.284072i
\(305\) −5340.77 5340.77i −0.0574122 0.0574122i
\(306\) 0 0
\(307\) −41201.1 + 41201.1i −0.437151 + 0.437151i −0.891052 0.453901i \(-0.850032\pi\)
0.453901 + 0.891052i \(0.350032\pi\)
\(308\) 104080. 1.09715
\(309\) 0 0
\(310\) 8766.64 8766.64i 0.0912241 0.0912241i
\(311\) 102377.i 1.05848i 0.848472 + 0.529240i \(0.177523\pi\)
−0.848472 + 0.529240i \(0.822477\pi\)
\(312\) 0 0
\(313\) 91169.7 0.930598 0.465299 0.885154i \(-0.345947\pi\)
0.465299 + 0.885154i \(0.345947\pi\)
\(314\) −86192.3 86192.3i −0.874197 0.874197i
\(315\) 0 0
\(316\) 56233.9i 0.563150i
\(317\) 46694.5 + 46694.5i 0.464673 + 0.464673i 0.900184 0.435511i \(-0.143432\pi\)
−0.435511 + 0.900184i \(0.643432\pi\)
\(318\) 0 0
\(319\) 124377. 124377.i 1.22225 1.22225i
\(320\) −13644.7 + 13644.7i −0.133249 + 0.133249i
\(321\) 0 0
\(322\) 16287.8i 0.157091i
\(323\) −81876.9 + 81876.9i −0.784796 + 0.784796i
\(324\) 0 0
\(325\) −80115.7 60973.0i −0.758492 0.577259i
\(326\) −117900. −1.10938
\(327\) 0 0
\(328\) 177409. 1.64902
\(329\) 18148.3i 0.167666i
\(330\) 0 0
\(331\) −41823.3 41823.3i −0.381735 0.381735i 0.489992 0.871727i \(-0.337000\pi\)
−0.871727 + 0.489992i \(0.837000\pi\)
\(332\) −1302.00 + 1302.00i −0.0118123 + 0.0118123i
\(333\) 0 0
\(334\) −25380.2 −0.227511
\(335\) 686.718i 0.00611912i
\(336\) 0 0
\(337\) 97325.0i 0.856968i 0.903549 + 0.428484i \(0.140952\pi\)
−0.903549 + 0.428484i \(0.859048\pi\)
\(338\) 39741.9 70110.0i 0.347868 0.613687i
\(339\) 0 0
\(340\) 6020.66 + 6020.66i 0.0520818 + 0.0520818i
\(341\) 175308. 1.50762
\(342\) 0 0
\(343\) −51046.8 51046.8i −0.433891 0.433891i
\(344\) 34196.4 + 34196.4i 0.288977 + 0.288977i
\(345\) 0 0
\(346\) −39838.2 + 39838.2i −0.332773 + 0.332773i
\(347\) −114507. −0.950981 −0.475490 0.879721i \(-0.657729\pi\)
−0.475490 + 0.879721i \(0.657729\pi\)
\(348\) 0 0
\(349\) −28924.8 + 28924.8i −0.237476 + 0.237476i −0.815804 0.578328i \(-0.803705\pi\)
0.578328 + 0.815804i \(0.303705\pi\)
\(350\) 100839.i 0.823174i
\(351\) 0 0
\(352\) −196013. −1.58198
\(353\) −56172.5 56172.5i −0.450790 0.450790i 0.444826 0.895617i \(-0.353265\pi\)
−0.895617 + 0.444826i \(0.853265\pi\)
\(354\) 0 0
\(355\) 12488.6i 0.0990962i
\(356\) −81929.4 81929.4i −0.646457 0.646457i
\(357\) 0 0
\(358\) −41956.1 + 41956.1i −0.327363 + 0.327363i
\(359\) −136938. + 136938.i −1.06252 + 1.06252i −0.0646065 + 0.997911i \(0.520579\pi\)
−0.997911 + 0.0646065i \(0.979421\pi\)
\(360\) 0 0
\(361\) 219393.i 1.68348i
\(362\) −76544.3 + 76544.3i −0.584111 + 0.584111i
\(363\) 0 0
\(364\) 80749.6 10956.0i 0.609449 0.0826892i
\(365\) −24516.6 −0.184024
\(366\) 0 0
\(367\) −40440.2 −0.300249 −0.150124 0.988667i \(-0.547967\pi\)
−0.150124 + 0.988667i \(0.547967\pi\)
\(368\) 6041.16i 0.0446092i
\(369\) 0 0
\(370\) 19418.8 + 19418.8i 0.141847 + 0.141847i
\(371\) 138436. 138436.i 1.00578 1.00578i
\(372\) 0 0
\(373\) −198442. −1.42632 −0.713158 0.701003i \(-0.752736\pi\)
−0.713158 + 0.701003i \(0.752736\pi\)
\(374\) 119257.i 0.852591i
\(375\) 0 0
\(376\) 20520.1i 0.145146i
\(377\) 83404.2 109589.i 0.586821 0.771055i
\(378\) 0 0
\(379\) −33116.9 33116.9i −0.230554 0.230554i 0.582370 0.812924i \(-0.302125\pi\)
−0.812924 + 0.582370i \(0.802125\pi\)
\(380\) 25715.5 0.178085
\(381\) 0 0
\(382\) 100427. + 100427.i 0.688214 + 0.688214i
\(383\) 205260. + 205260.i 1.39929 + 1.39929i 0.802101 + 0.597189i \(0.203716\pi\)
0.597189 + 0.802101i \(0.296284\pi\)
\(384\) 0 0
\(385\) 49532.8 49532.8i 0.334173 0.334173i
\(386\) 50485.0 0.338835
\(387\) 0 0
\(388\) 80071.3 80071.3i 0.531880 0.531880i
\(389\) 93857.4i 0.620254i −0.950695 0.310127i \(-0.899628\pi\)
0.950695 0.310127i \(-0.100372\pi\)
\(390\) 0 0
\(391\) 18841.1 0.123240
\(392\) −57437.8 57437.8i −0.373788 0.373788i
\(393\) 0 0
\(394\) 117583.i 0.757445i
\(395\) 26762.3 + 26762.3i 0.171526 + 0.171526i
\(396\) 0 0
\(397\) 125978. 125978.i 0.799305 0.799305i −0.183681 0.982986i \(-0.558801\pi\)
0.982986 + 0.183681i \(0.0588015\pi\)
\(398\) −102134. + 102134.i −0.644769 + 0.644769i
\(399\) 0 0
\(400\) 37401.2i 0.233758i
\(401\) −71867.1 + 71867.1i −0.446932 + 0.446932i −0.894333 0.447401i \(-0.852350\pi\)
0.447401 + 0.894333i \(0.352350\pi\)
\(402\) 0 0
\(403\) 136011. 18453.8i 0.837459 0.113625i
\(404\) −7423.44 −0.0454823
\(405\) 0 0
\(406\) −137936. −0.836808
\(407\) 388322.i 2.34424i
\(408\) 0 0
\(409\) −9218.59 9218.59i −0.0551084 0.0551084i 0.679015 0.734124i \(-0.262407\pi\)
−0.734124 + 0.679015i \(0.762407\pi\)
\(410\) 28232.6 28232.6i 0.167951 0.167951i
\(411\) 0 0
\(412\) 90611.3 0.533812
\(413\) 2840.83i 0.0166550i
\(414\) 0 0
\(415\) 1239.27i 0.00719565i
\(416\) −152075. + 20633.3i −0.878762 + 0.119229i
\(417\) 0 0
\(418\) −254686. 254686.i −1.45765 1.45765i
\(419\) −327438. −1.86510 −0.932548 0.361046i \(-0.882420\pi\)
−0.932548 + 0.361046i \(0.882420\pi\)
\(420\) 0 0
\(421\) −148423. 148423.i −0.837407 0.837407i 0.151110 0.988517i \(-0.451715\pi\)
−0.988517 + 0.151110i \(0.951715\pi\)
\(422\) −22771.8 22771.8i −0.127871 0.127871i
\(423\) 0 0
\(424\) −156528. + 156528.i −0.870685 + 0.870685i
\(425\) −116647. −0.645794
\(426\) 0 0
\(427\) −59221.6 + 59221.6i −0.324806 + 0.324806i
\(428\) 48735.9i 0.266049i
\(429\) 0 0
\(430\) 10883.9 0.0588639
\(431\) 111444. + 111444.i 0.599933 + 0.599933i 0.940295 0.340362i \(-0.110549\pi\)
−0.340362 + 0.940295i \(0.610549\pi\)
\(432\) 0 0
\(433\) 27383.4i 0.146054i 0.997330 + 0.0730268i \(0.0232659\pi\)
−0.997330 + 0.0730268i \(0.976734\pi\)
\(434\) −97209.6 97209.6i −0.516095 0.516095i
\(435\) 0 0
\(436\) 45892.3 45892.3i 0.241417 0.241417i
\(437\) 40237.2 40237.2i 0.210700 0.210700i
\(438\) 0 0
\(439\) 31599.3i 0.163964i 0.996634 + 0.0819819i \(0.0261250\pi\)
−0.996634 + 0.0819819i \(0.973875\pi\)
\(440\) −56006.3 + 56006.3i −0.289289 + 0.289289i
\(441\) 0 0
\(442\) −12553.6 92524.4i −0.0642574 0.473600i
\(443\) 24320.0 0.123924 0.0619620 0.998079i \(-0.480264\pi\)
0.0619620 + 0.998079i \(0.480264\pi\)
\(444\) 0 0
\(445\) −77982.1 −0.393799
\(446\) 110924.i 0.557644i
\(447\) 0 0
\(448\) 151300. + 151300.i 0.753847 + 0.753847i
\(449\) 214520. 214520.i 1.06408 1.06408i 0.0662794 0.997801i \(-0.478887\pi\)
0.997801 0.0662794i \(-0.0211129\pi\)
\(450\) 0 0
\(451\) 564571. 2.77566
\(452\) 77936.2i 0.381472i
\(453\) 0 0
\(454\) 92886.6i 0.450652i
\(455\) 33215.5 43643.6i 0.160442 0.210813i
\(456\) 0 0
\(457\) 84912.2 + 84912.2i 0.406572 + 0.406572i 0.880541 0.473969i \(-0.157179\pi\)
−0.473969 + 0.880541i \(0.657179\pi\)
\(458\) 112756. 0.537536
\(459\) 0 0
\(460\) −2958.76 2958.76i −0.0139828 0.0139828i
\(461\) −106364. 106364.i −0.500487 0.500487i 0.411102 0.911589i \(-0.365144\pi\)
−0.911589 + 0.411102i \(0.865144\pi\)
\(462\) 0 0
\(463\) 155075. 155075.i 0.723404 0.723404i −0.245893 0.969297i \(-0.579081\pi\)
0.969297 + 0.245893i \(0.0790811\pi\)
\(464\) 51160.7 0.237629
\(465\) 0 0
\(466\) 57747.7 57747.7i 0.265927 0.265927i
\(467\) 39999.2i 0.183408i −0.995786 0.0917039i \(-0.970769\pi\)
0.995786 0.0917039i \(-0.0292313\pi\)
\(468\) 0 0
\(469\) 7614.73 0.0346185
\(470\) 3265.54 + 3265.54i 0.0147829 + 0.0147829i
\(471\) 0 0
\(472\) 3212.11i 0.0144180i
\(473\) 108824. + 108824.i 0.486410 + 0.486410i
\(474\) 0 0
\(475\) −249111. + 249111.i −1.10409 + 1.10409i
\(476\) 66760.6 66760.6i 0.294650 0.294650i
\(477\) 0 0
\(478\) 184646.i 0.808136i
\(479\) 252164. 252164.i 1.09904 1.09904i 0.104515 0.994523i \(-0.466671\pi\)
0.994523 0.104515i \(-0.0333290\pi\)
\(480\) 0 0
\(481\) 40876.7 + 301276.i 0.176679 + 1.30219i
\(482\) 146883. 0.632234
\(483\) 0 0
\(484\) −256818. −1.09632
\(485\) 76213.5i 0.324003i
\(486\) 0 0
\(487\) 49095.0 + 49095.0i 0.207004 + 0.207004i 0.802993 0.595989i \(-0.203240\pi\)
−0.595989 + 0.802993i \(0.703240\pi\)
\(488\) 66961.3 66961.3i 0.281180 0.281180i
\(489\) 0 0
\(490\) −18281.1 −0.0761397
\(491\) 179257.i 0.743555i 0.928322 + 0.371778i \(0.121252\pi\)
−0.928322 + 0.371778i \(0.878748\pi\)
\(492\) 0 0
\(493\) 159559.i 0.656491i
\(494\) −224405. 170786.i −0.919558 0.699840i
\(495\) 0 0
\(496\) 36055.1 + 36055.1i 0.146556 + 0.146556i
\(497\) 138481. 0.560631
\(498\) 0 0
\(499\) −215997. 215997.i −0.867455 0.867455i 0.124735 0.992190i \(-0.460192\pi\)
−0.992190 + 0.124735i \(0.960192\pi\)
\(500\) 37535.7 + 37535.7i 0.150143 + 0.150143i
\(501\) 0 0
\(502\) −103072. + 103072.i −0.409009 + 0.409009i
\(503\) 32799.4 0.129637 0.0648186 0.997897i \(-0.479353\pi\)
0.0648186 + 0.997897i \(0.479353\pi\)
\(504\) 0 0
\(505\) −3532.89 + 3532.89i −0.0138531 + 0.0138531i
\(506\) 58607.1i 0.228902i
\(507\) 0 0
\(508\) −103462. −0.400915
\(509\) 58817.8 + 58817.8i 0.227025 + 0.227025i 0.811448 0.584424i \(-0.198679\pi\)
−0.584424 + 0.811448i \(0.698679\pi\)
\(510\) 0 0
\(511\) 271855.i 1.04111i
\(512\) −88491.5 88491.5i −0.337568 0.337568i
\(513\) 0 0
\(514\) 240370. 240370.i 0.909816 0.909816i
\(515\) 43122.9 43122.9i 0.162590 0.162590i
\(516\) 0 0
\(517\) 65301.6i 0.244311i
\(518\) 215327. 215327.i 0.802490 0.802490i
\(519\) 0 0
\(520\) −37556.4 + 49347.4i −0.138892 + 0.182498i
\(521\) −287522. −1.05924 −0.529622 0.848234i \(-0.677666\pi\)
−0.529622 + 0.848234i \(0.677666\pi\)
\(522\) 0 0
\(523\) 32066.9 0.117234 0.0586170 0.998281i \(-0.481331\pi\)
0.0586170 + 0.998281i \(0.481331\pi\)
\(524\) 156013.i 0.568196i
\(525\) 0 0
\(526\) −66924.1 66924.1i −0.241886 0.241886i
\(527\) 112448. 112448.i 0.404886 0.404886i
\(528\) 0 0
\(529\) 270582. 0.966913
\(530\) 49819.4i 0.177356i
\(531\) 0 0
\(532\) 285148.i 1.00751i
\(533\) 438017. 59429.6i 1.54183 0.209194i
\(534\) 0 0
\(535\) −23193.9 23193.9i −0.0810338 0.0810338i
\(536\) −8609.90 −0.0299688
\(537\) 0 0
\(538\) 120312. + 120312.i 0.415665 + 0.415665i
\(539\) −182785. 182785.i −0.629164 0.629164i
\(540\) 0 0
\(541\) 118440. 118440.i 0.404674 0.404674i −0.475202 0.879877i \(-0.657625\pi\)
0.879877 + 0.475202i \(0.157625\pi\)
\(542\) −64939.8 −0.221061
\(543\) 0 0
\(544\) −125730. + 125730.i −0.424854 + 0.424854i
\(545\) 43681.2i 0.147063i
\(546\) 0 0
\(547\) −401196. −1.34086 −0.670428 0.741975i \(-0.733889\pi\)
−0.670428 + 0.741975i \(0.733889\pi\)
\(548\) −71575.3 71575.3i −0.238343 0.238343i
\(549\) 0 0
\(550\) 362840.i 1.19947i
\(551\) −340756. 340756.i −1.12238 1.12238i
\(552\) 0 0
\(553\) 296756. 296756.i 0.970396 0.970396i
\(554\) 44534.6 44534.6i 0.145104 0.145104i
\(555\) 0 0
\(556\) 49339.9i 0.159606i
\(557\) 6502.04 6502.04i 0.0209575 0.0209575i −0.696550 0.717508i \(-0.745283\pi\)
0.717508 + 0.696550i \(0.245283\pi\)
\(558\) 0 0
\(559\) 95885.4 + 72974.7i 0.306852 + 0.233533i
\(560\) 20374.6 0.0649700
\(561\) 0 0
\(562\) 409758. 1.29734
\(563\) 495416.i 1.56298i 0.623918 + 0.781490i \(0.285540\pi\)
−0.623918 + 0.781490i \(0.714460\pi\)
\(564\) 0 0
\(565\) 37090.6 + 37090.6i 0.116190 + 0.116190i
\(566\) −215846. + 215846.i −0.673770 + 0.673770i
\(567\) 0 0
\(568\) −156579. −0.485330
\(569\) 486731.i 1.50336i 0.659525 + 0.751682i \(0.270757\pi\)
−0.659525 + 0.751682i \(0.729243\pi\)
\(570\) 0 0
\(571\) 32584.1i 0.0999387i −0.998751 0.0499694i \(-0.984088\pi\)
0.998751 0.0499694i \(-0.0159124\pi\)
\(572\) −290555. + 39422.1i −0.888047 + 0.120489i
\(573\) 0 0
\(574\) −313059. 313059.i −0.950173 0.950173i
\(575\) 57324.2 0.173381
\(576\) 0 0
\(577\) 98903.1 + 98903.1i 0.297070 + 0.297070i 0.839865 0.542795i \(-0.182634\pi\)
−0.542795 + 0.839865i \(0.682634\pi\)
\(578\) 90149.0 + 90149.0i 0.269839 + 0.269839i
\(579\) 0 0
\(580\) −25056.8 + 25056.8i −0.0744851 + 0.0744851i
\(581\) 13741.8 0.0407090
\(582\) 0 0
\(583\) −498123. + 498123.i −1.46555 + 1.46555i
\(584\) 307384.i 0.901270i
\(585\) 0 0
\(586\) 296422. 0.863207
\(587\) 192901. + 192901.i 0.559833 + 0.559833i 0.929260 0.369427i \(-0.120446\pi\)
−0.369427 + 0.929260i \(0.620446\pi\)
\(588\) 0 0
\(589\) 480291.i 1.38444i
\(590\) −511.170 511.170i −0.00146846 0.00146846i
\(591\) 0 0
\(592\) −79865.1 + 79865.1i −0.227884 + 0.227884i
\(593\) 23881.7 23881.7i 0.0679133 0.0679133i −0.672334 0.740248i \(-0.734708\pi\)
0.740248 + 0.672334i \(0.234708\pi\)
\(594\) 0 0
\(595\) 63544.1i 0.179490i
\(596\) 143277. 143277.i 0.403351 0.403351i
\(597\) 0 0
\(598\) 6169.27 + 45469.8i 0.0172517 + 0.127151i
\(599\) −328881. −0.916610 −0.458305 0.888795i \(-0.651543\pi\)
−0.458305 + 0.888795i \(0.651543\pi\)
\(600\) 0 0
\(601\) 289076. 0.800319 0.400159 0.916446i \(-0.368955\pi\)
0.400159 + 0.916446i \(0.368955\pi\)
\(602\) 120688.i 0.333019i
\(603\) 0 0
\(604\) −142434. 142434.i −0.390428 0.390428i
\(605\) −122223. + 122223.i −0.333919 + 0.333919i
\(606\) 0 0
\(607\) −27331.5 −0.0741797 −0.0370899 0.999312i \(-0.511809\pi\)
−0.0370899 + 0.999312i \(0.511809\pi\)
\(608\) 537018.i 1.45272i
\(609\) 0 0
\(610\) 21312.2i 0.0572756i
\(611\) 6873.97 + 50663.6i 0.0184130 + 0.135711i
\(612\) 0 0
\(613\) −91286.9 91286.9i −0.242934 0.242934i 0.575129 0.818063i \(-0.304952\pi\)
−0.818063 + 0.575129i \(0.804952\pi\)
\(614\) −164412. −0.436111
\(615\) 0 0
\(616\) 621030. + 621030.i 1.63663 + 1.63663i
\(617\) −308320. 308320.i −0.809901 0.809901i 0.174718 0.984619i \(-0.444099\pi\)
−0.984619 + 0.174718i \(0.944099\pi\)
\(618\) 0 0
\(619\) −133583. + 133583.i −0.348634 + 0.348634i −0.859601 0.510967i \(-0.829288\pi\)
0.510967 + 0.859601i \(0.329288\pi\)
\(620\) −35317.2 −0.0918763
\(621\) 0 0
\(622\) −204268. + 204268.i −0.527981 + 0.527981i
\(623\) 864711.i 2.22790i
\(624\) 0 0
\(625\) −336606. −0.861711
\(626\) 181906. + 181906.i 0.464192 + 0.464192i
\(627\) 0 0
\(628\) 347234.i 0.880447i
\(629\) 249083. + 249083.i 0.629568 + 0.629568i
\(630\) 0 0
\(631\) −170966. + 170966.i −0.429389 + 0.429389i −0.888420 0.459031i \(-0.848197\pi\)
0.459031 + 0.888420i \(0.348197\pi\)
\(632\) −335539. + 335539.i −0.840057 + 0.840057i
\(633\) 0 0
\(634\) 186334.i 0.463567i
\(635\) −49238.5 + 49238.5i −0.122112 + 0.122112i
\(636\) 0 0
\(637\) −161053. 122571.i −0.396909 0.302072i
\(638\) 496324. 1.21934
\(639\) 0 0
\(640\) 24154.6 0.0589711
\(641\) 533276.i 1.29788i −0.760838 0.648942i \(-0.775212\pi\)
0.760838 0.648942i \(-0.224788\pi\)
\(642\) 0 0
\(643\) 165350. + 165350.i 0.399929 + 0.399929i 0.878208 0.478279i \(-0.158739\pi\)
−0.478279 + 0.878208i \(0.658739\pi\)
\(644\) −32808.5 + 32808.5i −0.0791069 + 0.0791069i
\(645\) 0 0
\(646\) −326729. −0.782928
\(647\) 422965.i 1.01041i −0.863000 0.505203i \(-0.831417\pi\)
0.863000 0.505203i \(-0.168583\pi\)
\(648\) 0 0
\(649\) 10221.9i 0.0242686i
\(650\) −38194.4 281506.i −0.0904008 0.666287i
\(651\) 0 0
\(652\) 237486. + 237486.i 0.558653 + 0.558653i
\(653\) 12686.1 0.0297510 0.0148755 0.999889i \(-0.495265\pi\)
0.0148755 + 0.999889i \(0.495265\pi\)
\(654\) 0 0
\(655\) −74248.2 74248.2i −0.173063 0.173063i
\(656\) 116114. + 116114.i 0.269822 + 0.269822i
\(657\) 0 0
\(658\) 36210.2 36210.2i 0.0836333 0.0836333i
\(659\) −504025. −1.16060 −0.580298 0.814404i \(-0.697064\pi\)
−0.580298 + 0.814404i \(0.697064\pi\)
\(660\) 0 0
\(661\) 110698. 110698.i 0.253359 0.253359i −0.568987 0.822346i \(-0.692665\pi\)
0.822346 + 0.568987i \(0.192665\pi\)
\(662\) 166895.i 0.380827i
\(663\) 0 0
\(664\) −15537.7 −0.0352412
\(665\) −135705. 135705.i −0.306869 0.306869i
\(666\) 0 0
\(667\) 78413.1i 0.176253i
\(668\) 51123.3 + 51123.3i 0.114569 + 0.114569i
\(669\) 0 0
\(670\) −1370.17 + 1370.17i −0.00305228 + 0.00305228i
\(671\) 213092. 213092.i 0.473285 0.473285i
\(672\) 0 0
\(673\) 629694.i 1.39027i 0.718879 + 0.695136i \(0.244656\pi\)
−0.718879 + 0.695136i \(0.755344\pi\)
\(674\) −194187. + 194187.i −0.427465 + 0.427465i
\(675\) 0 0
\(676\) −221274. + 61170.5i −0.484215 + 0.133859i
\(677\) 758327. 1.65455 0.827273 0.561800i \(-0.189891\pi\)
0.827273 + 0.561800i \(0.189891\pi\)
\(678\) 0 0
\(679\) −845100. −1.83303
\(680\) 71848.7i 0.155382i
\(681\) 0 0
\(682\) 349781. + 349781.i 0.752018 + 0.752018i
\(683\) −49915.7 + 49915.7i −0.107003 + 0.107003i −0.758581 0.651578i \(-0.774107\pi\)
0.651578 + 0.758581i \(0.274107\pi\)
\(684\) 0 0
\(685\) −68126.8 −0.145190
\(686\) 203702.i 0.432859i
\(687\) 0 0
\(688\) 44763.1i 0.0945679i
\(689\) −334029. + 438899.i −0.703632 + 0.924541i
\(690\) 0 0
\(691\) 154157. + 154157.i 0.322855 + 0.322855i 0.849861 0.527006i \(-0.176686\pi\)
−0.527006 + 0.849861i \(0.676686\pi\)
\(692\) 160492. 0.335152
\(693\) 0 0
\(694\) −228468. 228468.i −0.474359 0.474359i
\(695\) −23481.4 23481.4i −0.0486132 0.0486132i
\(696\) 0 0
\(697\) 362135. 362135.i 0.745427 0.745427i
\(698\) −115424. −0.236911
\(699\) 0 0
\(700\) 203119. 203119.i 0.414529 0.414529i
\(701\) 529356.i 1.07724i 0.842549 + 0.538620i \(0.181054\pi\)
−0.842549 + 0.538620i \(0.818946\pi\)
\(702\) 0 0
\(703\) 1.06388e6 2.15270
\(704\) −544411. 544411.i −1.09845 1.09845i
\(705\) 0 0
\(706\) 224156.i 0.449718i
\(707\) 39174.7 + 39174.7i 0.0783731 + 0.0783731i
\(708\) 0 0
\(709\) −305608. + 305608.i −0.607957 + 0.607957i −0.942412 0.334455i \(-0.891448\pi\)
0.334455 + 0.942412i \(0.391448\pi\)
\(710\) −24917.8 + 24917.8i −0.0494302 + 0.0494302i
\(711\) 0 0
\(712\) 977721.i 1.92866i
\(713\) −55261.1 + 55261.1i −0.108703 + 0.108703i
\(714\) 0 0
\(715\) −119517. + 157039.i −0.233785 + 0.307182i
\(716\) 169024. 0.329703
\(717\) 0 0
\(718\) −546450. −1.05999
\(719\) 559312.i 1.08192i −0.841047 0.540962i \(-0.818060\pi\)
0.841047 0.540962i \(-0.181940\pi\)
\(720\) 0 0
\(721\) −478171. 478171.i −0.919842 0.919842i
\(722\) −437741. + 437741.i −0.839737 + 0.839737i
\(723\) 0 0
\(724\) 308366. 0.588287
\(725\) 485460.i 0.923587i
\(726\) 0 0
\(727\) 39892.6i 0.0754785i −0.999288 0.0377392i \(-0.987984\pi\)
0.999288 0.0377392i \(-0.0120156\pi\)
\(728\) 547193. + 416448.i 1.03247 + 0.785774i
\(729\) 0 0
\(730\) −48916.6 48916.6i −0.0917932 0.0917932i
\(731\) 139607. 0.261259
\(732\) 0 0
\(733\) −218804. 218804.i −0.407237 0.407237i 0.473537 0.880774i \(-0.342977\pi\)
−0.880774 + 0.473537i \(0.842977\pi\)
\(734\) −80687.9 80687.9i −0.149767 0.149767i
\(735\) 0 0
\(736\) 61788.0 61788.0i 0.114064 0.114064i
\(737\) −27399.5 −0.0504437
\(738\) 0 0
\(739\) 516317. 516317.i 0.945425 0.945425i −0.0531607 0.998586i \(-0.516930\pi\)
0.998586 + 0.0531607i \(0.0169296\pi\)
\(740\) 78230.6i 0.142861i
\(741\) 0 0
\(742\) 552426. 1.00338
\(743\) 664866. + 664866.i 1.20436 + 1.20436i 0.972827 + 0.231534i \(0.0743745\pi\)
0.231534 + 0.972827i \(0.425625\pi\)
\(744\) 0 0
\(745\) 136374.i 0.245708i
\(746\) −395940. 395940.i −0.711461 0.711461i
\(747\) 0 0
\(748\) −240219. + 240219.i −0.429343 + 0.429343i
\(749\) −257187. + 257187.i −0.458444 + 0.458444i
\(750\) 0 0
\(751\) 1.02624e6i 1.81956i −0.415087 0.909782i \(-0.636249\pi\)
0.415087 0.909782i \(-0.363751\pi\)
\(752\) −13430.4 + 13430.4i −0.0237495 + 0.0237495i
\(753\) 0 0
\(754\) 385069. 52245.6i 0.677323 0.0918982i
\(755\) −135572. −0.237835
\(756\) 0 0
\(757\) 727963. 1.27033 0.635167 0.772375i \(-0.280931\pi\)
0.635167 + 0.772375i \(0.280931\pi\)
\(758\) 132153.i 0.230005i
\(759\) 0 0
\(760\) 153440. + 153440.i 0.265652 + 0.265652i
\(761\) −121468. + 121468.i −0.209746 + 0.209746i −0.804160 0.594413i \(-0.797384\pi\)
0.594413 + 0.804160i \(0.297384\pi\)
\(762\) 0 0
\(763\) −484363. −0.831997
\(764\) 404579.i 0.693134i
\(765\) 0 0
\(766\) 819088.i 1.39596i
\(767\) −1076.01 7930.60i −0.00182906 0.0134808i
\(768\) 0 0
\(769\) 78988.3 + 78988.3i 0.133570 + 0.133570i 0.770731 0.637161i \(-0.219891\pi\)
−0.637161 + 0.770731i \(0.719891\pi\)
\(770\) 197660. 0.333378
\(771\) 0 0
\(772\) −101692. 101692.i −0.170628 0.170628i
\(773\) 167987. + 167987.i 0.281136 + 0.281136i 0.833562 0.552426i \(-0.186298\pi\)
−0.552426 + 0.833562i \(0.686298\pi\)
\(774\) 0 0
\(775\) 342125. 342125.i 0.569615 0.569615i
\(776\) 955547. 1.58682
\(777\) 0 0
\(778\) 187268. 187268.i 0.309389 0.309389i
\(779\) 1.54676e6i 2.54887i
\(780\) 0 0
\(781\) −498285. −0.816912
\(782\) 37592.6 + 37592.6i 0.0614736 + 0.0614736i
\(783\) 0 0
\(784\) 75186.1i 0.122322i
\(785\) 165252. + 165252.i 0.268169 + 0.268169i
\(786\) 0 0
\(787\) −515211. + 515211.i −0.831833 + 0.831833i −0.987767 0.155935i \(-0.950161\pi\)
0.155935 + 0.987767i \(0.450161\pi\)
\(788\) 236847. 236847.i 0.381430 0.381430i
\(789\) 0 0
\(790\) 106794.i 0.171117i
\(791\) 411283. 411283.i 0.657336 0.657336i
\(792\) 0 0
\(793\) 142894. 187757.i 0.227232 0.298572i
\(794\) 502711. 0.797403
\(795\) 0 0
\(796\) 411457. 0.649379
\(797\) 1.07630e6i 1.69441i −0.531268 0.847204i \(-0.678284\pi\)
0.531268 0.847204i \(-0.321716\pi\)
\(798\) 0 0
\(799\) 41886.7 + 41886.7i 0.0656118 + 0.0656118i
\(800\) −382533. + 382533.i −0.597708 + 0.597708i
\(801\) 0 0
\(802\) −286784. −0.445868
\(803\) 978193.i 1.51703i
\(804\) 0 0
\(805\) 31227.8i 0.0481892i
\(806\) 308194. + 234555.i 0.474411 + 0.361056i
\(807\) 0 0
\(808\) −44294.5 44294.5i −0.0678465 0.0678465i
\(809\) −1.19149e6 −1.82051 −0.910254 0.414051i \(-0.864114\pi\)
−0.910254 + 0.414051i \(0.864114\pi\)
\(810\) 0 0
\(811\) 34214.2 + 34214.2i 0.0520193 + 0.0520193i 0.732638 0.680619i \(-0.238289\pi\)
−0.680619 + 0.732638i \(0.738289\pi\)
\(812\) 277844. + 277844.i 0.421395 + 0.421395i
\(813\) 0 0
\(814\) −774795. + 774795.i −1.16933 + 1.16933i
\(815\) 226044. 0.340312
\(816\) 0 0
\(817\) 298145. 298145.i 0.446667 0.446667i
\(818\) 36786.6i 0.0549773i
\(819\) 0 0
\(820\) −113738. −0.169152
\(821\) −223368. 223368.i −0.331386 0.331386i 0.521727 0.853113i \(-0.325288\pi\)
−0.853113 + 0.521727i \(0.825288\pi\)
\(822\) 0 0
\(823\) 88095.9i 0.130064i −0.997883 0.0650318i \(-0.979285\pi\)
0.997883 0.0650318i \(-0.0207149\pi\)
\(824\) 540664. + 540664.i 0.796293 + 0.796293i
\(825\) 0 0
\(826\) −5668.15 + 5668.15i −0.00830771 + 0.00830771i
\(827\) 245737. 245737.i 0.359302 0.359302i −0.504254 0.863556i \(-0.668232\pi\)
0.863556 + 0.504254i \(0.168232\pi\)
\(828\) 0 0
\(829\) 662724.i 0.964326i 0.876082 + 0.482163i \(0.160149\pi\)
−0.876082 + 0.482163i \(0.839851\pi\)
\(830\) −2472.65 + 2472.65i −0.00358927 + 0.00358927i
\(831\) 0 0
\(832\) −479684. 365069.i −0.692961 0.527386i
\(833\) −234490. −0.337935
\(834\) 0 0
\(835\) 48660.2 0.0697913
\(836\) 1.02603e6i 1.46807i
\(837\) 0 0
\(838\) −653318. 653318.i −0.930329 0.930329i
\(839\) −177547. + 177547.i −0.252226 + 0.252226i −0.821883 0.569657i \(-0.807076\pi\)
0.569657 + 0.821883i \(0.307076\pi\)
\(840\) 0 0
\(841\) −43225.7 −0.0611154
\(842\) 592279.i 0.835415i
\(843\) 0 0
\(844\) 91738.6i 0.128786i
\(845\) −76195.1 + 134418.i −0.106712 + 0.188255i
\(846\) 0 0
\(847\) 1.35527e6 + 1.35527e6i 1.88912 + 1.88912i
\(848\) −204895. −0.284932
\(849\) 0 0
\(850\) −232738. 232738.i −0.322129 0.322129i
\(851\) −122408. 122408.i −0.169025 0.169025i
\(852\) 0 0
\(853\) 898.292 898.292i 0.00123458 0.00123458i −0.706489 0.707724i \(-0.749722\pi\)
0.707724 + 0.706489i \(0.249722\pi\)
\(854\) −236323. −0.324033
\(855\) 0 0
\(856\) 290800. 290800.i 0.396868 0.396868i
\(857\) 284851.i 0.387843i −0.981017 0.193921i \(-0.937879\pi\)
0.981017 0.193921i \(-0.0621206\pi\)
\(858\) 0 0
\(859\) −302470. −0.409917 −0.204959 0.978771i \(-0.565706\pi\)
−0.204959 + 0.978771i \(0.565706\pi\)
\(860\) −21923.5 21923.5i −0.0296424 0.0296424i
\(861\) 0 0
\(862\) 444716.i 0.598506i
\(863\) 577769. + 577769.i 0.775769 + 0.775769i 0.979108 0.203340i \(-0.0651795\pi\)
−0.203340 + 0.979108i \(0.565180\pi\)
\(864\) 0 0
\(865\) 76379.8 76379.8i 0.102081 0.102081i
\(866\) −54636.6 + 54636.6i −0.0728530 + 0.0728530i
\(867\) 0 0
\(868\) 391618.i 0.519785i
\(869\) −1.06779e6 + 1.06779e6i −1.41399 + 1.41399i
\(870\) 0 0
\(871\) −21257.6 + 2884.21i −0.0280207 + 0.00380181i
\(872\) 547665. 0.720248
\(873\) 0 0
\(874\) 160566. 0.210199
\(875\) 396164.i 0.517439i
\(876\) 0 0
\(877\) −457143. 457143.i −0.594365 0.594365i 0.344443 0.938807i \(-0.388068\pi\)
−0.938807 + 0.344443i \(0.888068\pi\)
\(878\) −63048.2 + 63048.2i −0.0817868 + 0.0817868i
\(879\) 0 0
\(880\) −73312.2 −0.0946697
\(881\) 438514.i 0.564979i 0.959270 + 0.282489i \(0.0911602\pi\)
−0.959270 + 0.282489i \(0.908840\pi\)
\(882\) 0 0
\(883\) 215411.i 0.276278i −0.990413 0.138139i \(-0.955888\pi\)
0.990413 0.138139i \(-0.0441121\pi\)
\(884\) −161085. + 211658.i −0.206135 + 0.270851i
\(885\) 0 0
\(886\) 48524.2 + 48524.2i 0.0618146 + 0.0618146i
\(887\) −883724. −1.12323 −0.561616 0.827398i \(-0.689820\pi\)
−0.561616 + 0.827398i \(0.689820\pi\)
\(888\) 0 0
\(889\) 545985. + 545985.i 0.690839 + 0.690839i
\(890\) −155593. 155593.i −0.196431 0.196431i
\(891\) 0 0
\(892\) 223435. 223435.i 0.280815 0.280815i
\(893\) 178907. 0.224349
\(894\) 0 0
\(895\) 80440.4 80440.4i 0.100422 0.100422i
\(896\) 267840.i 0.333626i
\(897\) 0 0
\(898\) 856037. 1.06155
\(899\) 467989. + 467989.i 0.579050 + 0.579050i
\(900\) 0 0
\(901\) 639026.i 0.787171i
\(902\) 1.12646e6 + 1.12646e6i 1.38453 + 1.38453i
\(903\) 0 0
\(904\) −465034. + 465034.i −0.569046 + 0.569046i
\(905\) 146755. 146755.i 0.179182 0.179182i
\(906\) 0 0
\(907\) 628760.i 0.764311i −0.924098 0.382156i \(-0.875182\pi\)
0.924098 0.382156i \(-0.124818\pi\)
\(908\) 187101. 187101.i 0.226937 0.226937i
\(909\) 0 0
\(910\) 153352. 20806.7i 0.185186 0.0251258i
\(911\) −471997. −0.568725 −0.284363 0.958717i \(-0.591782\pi\)
−0.284363 + 0.958717i \(0.591782\pi\)
\(912\) 0 0
\(913\) −49445.9 −0.0593183
\(914\) 338841.i 0.405605i
\(915\) 0 0
\(916\) −227124. 227124.i −0.270690 0.270690i
\(917\) −823307. + 823307.i −0.979091 + 0.979091i
\(918\) 0 0
\(919\) −738465. −0.874377 −0.437189 0.899370i \(-0.644026\pi\)
−0.437189 + 0.899370i \(0.644026\pi\)
\(920\) 35309.0i 0.0417166i
\(921\) 0 0
\(922\) 424444.i 0.499296i
\(923\) −386589. + 52451.9i −0.453781 + 0.0615684i
\(924\) 0 0
\(925\) 757836. + 757836.i 0.885710 + 0.885710i
\(926\) 618826. 0.721683
\(927\) 0 0
\(928\) −523262. 523262.i −0.607608 0.607608i
\(929\) −945453. 945453.i −1.09549 1.09549i −0.994931 0.100560i \(-0.967937\pi\)
−0.100560 0.994931i \(-0.532063\pi\)
\(930\) 0 0
\(931\) −500777. + 500777.i −0.577757 + 0.577757i
\(932\) −232642. −0.267828
\(933\) 0 0
\(934\) 79808.1 79808.1i 0.0914857 0.0914857i
\(935\) 228646.i 0.261541i
\(936\) 0 0
\(937\) −759558. −0.865130 −0.432565 0.901603i \(-0.642391\pi\)
−0.432565 + 0.901603i \(0.642391\pi\)
\(938\) 15193.2 + 15193.2i 0.0172681 + 0.0172681i
\(939\) 0 0
\(940\) 13155.5i 0.0148886i
\(941\) 603301. + 603301.i 0.681326 + 0.681326i 0.960299 0.278973i \(-0.0899940\pi\)
−0.278973 + 0.960299i \(0.589994\pi\)
\(942\) 0 0
\(943\) −177966. + 177966.i −0.200131 + 0.200131i
\(944\) 2102.32 2102.32i 0.00235915 0.00235915i
\(945\) 0 0
\(946\) 434260.i 0.485253i
\(947\) −706138. + 706138.i −0.787389 + 0.787389i −0.981066 0.193676i \(-0.937959\pi\)
0.193676 + 0.981066i \(0.437959\pi\)
\(948\) 0 0
\(949\) −102969. 758922.i −0.114334 0.842684i
\(950\) −994073. −1.10147
\(951\) 0 0
\(952\) 796700. 0.879065
\(953\) 633625.i 0.697664i −0.937185 0.348832i \(-0.886578\pi\)
0.937185 0.348832i \(-0.113422\pi\)
\(954\) 0 0
\(955\) −192544. 192544.i −0.211117 0.211117i
\(956\) −371932. + 371932.i −0.406957 + 0.406957i
\(957\) 0 0
\(958\) 1.00626e6 1.09642
\(959\) 755430.i 0.821405i
\(960\) 0 0
\(961\) 263897.i 0.285751i
\(962\) −519559. + 682676.i −0.561416 + 0.737674i
\(963\) 0 0
\(964\) −295866. 295866.i −0.318377 0.318377i
\(965\) −96792.4 −0.103941
\(966\) 0 0
\(967\) 664366. + 664366.i 0.710484 + 0.710484i 0.966636 0.256152i \(-0.0824549\pi\)
−0.256152 + 0.966636i \(0.582455\pi\)
\(968\) −1.53240e6 1.53240e6i −1.63539 1.63539i
\(969\) 0 0
\(970\) 152064. 152064.i 0.161616 0.161616i
\(971\) 72281.4 0.0766634 0.0383317 0.999265i \(-0.487796\pi\)
0.0383317 + 0.999265i \(0.487796\pi\)
\(972\) 0 0
\(973\) −260375. + 260375.i −0.275026 + 0.275026i
\(974\) 195913.i 0.206512i
\(975\) 0 0
\(976\) 87652.3 0.0920161
\(977\) 943495. + 943495.i 0.988440 + 0.988440i 0.999934 0.0114940i \(-0.00365872\pi\)
−0.0114940 + 0.999934i \(0.503659\pi\)
\(978\) 0 0
\(979\) 3.11142e6i 3.24634i
\(980\) 36823.7 + 36823.7i 0.0383420 + 0.0383420i
\(981\) 0 0
\(982\) −357661. + 357661.i −0.370893 + 0.370893i
\(983\) 718661. 718661.i 0.743733 0.743733i −0.229562 0.973294i \(-0.573729\pi\)
0.973294 + 0.229562i \(0.0737292\pi\)
\(984\) 0 0
\(985\) 225435.i 0.232354i
\(986\) 318360. 318360.i 0.327464 0.327464i
\(987\) 0 0
\(988\) 108005. + 796033.i 0.110644 + 0.815487i
\(989\) −68607.7 −0.0701424
\(990\) 0 0
\(991\) −972544. −0.990289 −0.495144 0.868811i \(-0.664885\pi\)
−0.495144 + 0.868811i \(0.664885\pi\)
\(992\) 737531.i 0.749475i
\(993\) 0 0
\(994\) 276303. + 276303.i 0.279648 + 0.279648i
\(995\) 195817. 195817.i 0.197789 0.197789i
\(996\) 0 0
\(997\) −1.40966e6 −1.41816 −0.709080 0.705128i \(-0.750889\pi\)
−0.709080 + 0.705128i \(0.750889\pi\)
\(998\) 861933.i 0.865391i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.5.j.b.73.7 20
3.2 odd 2 39.5.g.a.34.4 yes 20
13.5 odd 4 inner 117.5.j.b.109.7 20
39.5 even 4 39.5.g.a.31.4 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.5.g.a.31.4 20 39.5 even 4
39.5.g.a.34.4 yes 20 3.2 odd 2
117.5.j.b.73.7 20 1.1 even 1 trivial
117.5.j.b.109.7 20 13.5 odd 4 inner