Properties

Label 117.5.j.b.73.6
Level $117$
Weight $5$
Character 117.73
Analytic conductor $12.094$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,5,Mod(73,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.73");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 117.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.0942856808\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 5446 x^{16} - 1452 x^{15} + 106320 x^{13} + 8376897 x^{12} - 1643220 x^{11} + 1054152 x^{10} + \cdots + 2103506496 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{22}\cdot 3^{10} \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 73.6
Root \(-0.0868646 - 0.0868646i\) of defining polynomial
Character \(\chi\) \(=\) 117.73
Dual form 117.5.j.b.109.6

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.0868646 - 0.0868646i) q^{2} -15.9849i q^{4} +(14.6130 + 14.6130i) q^{5} +(21.4788 - 21.4788i) q^{7} +(-2.77836 + 2.77836i) q^{8} -2.53870i q^{10} +(-21.6960 + 21.6960i) q^{11} +(134.520 - 102.301i) q^{13} -3.73149 q^{14} -255.276 q^{16} -251.891i q^{17} +(133.428 + 133.428i) q^{19} +(233.587 - 233.587i) q^{20} +3.76923 q^{22} -1026.00i q^{23} -197.922i q^{25} +(-20.5713 - 2.79870i) q^{26} +(-343.336 - 343.336i) q^{28} +479.065 q^{29} +(359.729 + 359.729i) q^{31} +(66.6281 + 66.6281i) q^{32} +(-21.8804 + 21.8804i) q^{34} +627.737 q^{35} +(1221.26 - 1221.26i) q^{37} -23.1804i q^{38} -81.2001 q^{40} +(-381.553 - 381.553i) q^{41} -356.437i q^{43} +(346.809 + 346.809i) q^{44} +(-89.1229 + 89.1229i) q^{46} +(-2002.52 + 2002.52i) q^{47} +1478.33i q^{49} +(-17.1924 + 17.1924i) q^{50} +(-1635.27 - 2150.29i) q^{52} -1718.92 q^{53} -634.086 q^{55} +119.351i q^{56} +(-41.6137 - 41.6137i) q^{58} +(232.041 - 232.041i) q^{59} -1458.96 q^{61} -62.4953i q^{62} +4072.84i q^{64} +(3460.65 + 470.817i) q^{65} +(4507.42 + 4507.42i) q^{67} -4026.46 q^{68} +(-54.5281 - 54.5281i) q^{70} +(4295.61 + 4295.61i) q^{71} +(-6223.95 + 6223.95i) q^{73} -212.169 q^{74} +(2132.84 - 2132.84i) q^{76} +932.007i q^{77} -321.183 q^{79} +(-3730.34 - 3730.34i) q^{80} +66.2868i q^{82} +(8931.56 + 8931.56i) q^{83} +(3680.88 - 3680.88i) q^{85} +(-30.9617 + 30.9617i) q^{86} -120.558i q^{88} +(-5668.17 + 5668.17i) q^{89} +(692.027 - 5086.61i) q^{91} -16400.5 q^{92} +347.896 q^{94} +3899.57i q^{95} +(-3995.41 - 3995.41i) q^{97} +(128.414 - 128.414i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 24 q^{5} - 24 q^{7} - 372 q^{11} - 224 q^{13} - 480 q^{14} - 2328 q^{16} - 840 q^{19} - 228 q^{20} + 3536 q^{22} + 828 q^{26} - 1984 q^{28} + 5064 q^{29} + 1712 q^{31} + 7260 q^{32} + 8040 q^{34}+ \cdots - 11544 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.0868646 0.0868646i −0.0217161 0.0217161i 0.696165 0.717881i \(-0.254888\pi\)
−0.717881 + 0.696165i \(0.754888\pi\)
\(3\) 0 0
\(4\) 15.9849i 0.999057i
\(5\) 14.6130 + 14.6130i 0.584519 + 0.584519i 0.936142 0.351623i \(-0.114370\pi\)
−0.351623 + 0.936142i \(0.614370\pi\)
\(6\) 0 0
\(7\) 21.4788 21.4788i 0.438342 0.438342i −0.453112 0.891454i \(-0.649686\pi\)
0.891454 + 0.453112i \(0.149686\pi\)
\(8\) −2.77836 + 2.77836i −0.0434118 + 0.0434118i
\(9\) 0 0
\(10\) 2.53870i 0.0253870i
\(11\) −21.6960 + 21.6960i −0.179306 + 0.179306i −0.791053 0.611747i \(-0.790467\pi\)
0.611747 + 0.791053i \(0.290467\pi\)
\(12\) 0 0
\(13\) 134.520 102.301i 0.795975 0.605329i
\(14\) −3.73149 −0.0190382
\(15\) 0 0
\(16\) −255.276 −0.997171
\(17\) 251.891i 0.871596i −0.900045 0.435798i \(-0.856466\pi\)
0.900045 0.435798i \(-0.143534\pi\)
\(18\) 0 0
\(19\) 133.428 + 133.428i 0.369608 + 0.369608i 0.867334 0.497726i \(-0.165832\pi\)
−0.497726 + 0.867334i \(0.665832\pi\)
\(20\) 233.587 233.587i 0.583968 0.583968i
\(21\) 0 0
\(22\) 3.76923 0.00778766
\(23\) 1026.00i 1.93950i −0.244091 0.969752i \(-0.578490\pi\)
0.244091 0.969752i \(-0.421510\pi\)
\(24\) 0 0
\(25\) 197.922i 0.316675i
\(26\) −20.5713 2.79870i −0.0304309 0.00414009i
\(27\) 0 0
\(28\) −343.336 343.336i −0.437929 0.437929i
\(29\) 479.065 0.569637 0.284818 0.958581i \(-0.408067\pi\)
0.284818 + 0.958581i \(0.408067\pi\)
\(30\) 0 0
\(31\) 359.729 + 359.729i 0.374327 + 0.374327i 0.869051 0.494723i \(-0.164731\pi\)
−0.494723 + 0.869051i \(0.664731\pi\)
\(32\) 66.6281 + 66.6281i 0.0650665 + 0.0650665i
\(33\) 0 0
\(34\) −21.8804 + 21.8804i −0.0189277 + 0.0189277i
\(35\) 627.737 0.512439
\(36\) 0 0
\(37\) 1221.26 1221.26i 0.892085 0.892085i −0.102634 0.994719i \(-0.532727\pi\)
0.994719 + 0.102634i \(0.0327272\pi\)
\(38\) 23.1804i 0.0160529i
\(39\) 0 0
\(40\) −81.2001 −0.0507500
\(41\) −381.553 381.553i −0.226980 0.226980i 0.584450 0.811430i \(-0.301310\pi\)
−0.811430 + 0.584450i \(0.801310\pi\)
\(42\) 0 0
\(43\) 356.437i 0.192773i −0.995344 0.0963863i \(-0.969272\pi\)
0.995344 0.0963863i \(-0.0307284\pi\)
\(44\) 346.809 + 346.809i 0.179137 + 0.179137i
\(45\) 0 0
\(46\) −89.1229 + 89.1229i −0.0421186 + 0.0421186i
\(47\) −2002.52 + 2002.52i −0.906526 + 0.906526i −0.995990 0.0894638i \(-0.971485\pi\)
0.0894638 + 0.995990i \(0.471485\pi\)
\(48\) 0 0
\(49\) 1478.33i 0.615712i
\(50\) −17.1924 + 17.1924i −0.00687696 + 0.00687696i
\(51\) 0 0
\(52\) −1635.27 2150.29i −0.604758 0.795224i
\(53\) −1718.92 −0.611933 −0.305967 0.952042i \(-0.598980\pi\)
−0.305967 + 0.952042i \(0.598980\pi\)
\(54\) 0 0
\(55\) −634.086 −0.209615
\(56\) 119.351i 0.0380585i
\(57\) 0 0
\(58\) −41.6137 41.6137i −0.0123703 0.0123703i
\(59\) 232.041 232.041i 0.0666592 0.0666592i −0.672991 0.739650i \(-0.734991\pi\)
0.739650 + 0.672991i \(0.234991\pi\)
\(60\) 0 0
\(61\) −1458.96 −0.392088 −0.196044 0.980595i \(-0.562810\pi\)
−0.196044 + 0.980595i \(0.562810\pi\)
\(62\) 62.4953i 0.0162579i
\(63\) 0 0
\(64\) 4072.84i 0.994345i
\(65\) 3460.65 + 470.817i 0.819089 + 0.111436i
\(66\) 0 0
\(67\) 4507.42 + 4507.42i 1.00410 + 1.00410i 0.999992 + 0.00411288i \(0.00130917\pi\)
0.00411288 + 0.999992i \(0.498691\pi\)
\(68\) −4026.46 −0.870774
\(69\) 0 0
\(70\) −54.5281 54.5281i −0.0111282 0.0111282i
\(71\) 4295.61 + 4295.61i 0.852134 + 0.852134i 0.990396 0.138262i \(-0.0441516\pi\)
−0.138262 + 0.990396i \(0.544152\pi\)
\(72\) 0 0
\(73\) −6223.95 + 6223.95i −1.16794 + 1.16794i −0.185248 + 0.982692i \(0.559309\pi\)
−0.982692 + 0.185248i \(0.940691\pi\)
\(74\) −212.169 −0.0387453
\(75\) 0 0
\(76\) 2132.84 2132.84i 0.369259 0.369259i
\(77\) 932.007i 0.157195i
\(78\) 0 0
\(79\) −321.183 −0.0514634 −0.0257317 0.999669i \(-0.508192\pi\)
−0.0257317 + 0.999669i \(0.508192\pi\)
\(80\) −3730.34 3730.34i −0.582866 0.582866i
\(81\) 0 0
\(82\) 66.2868i 0.00985824i
\(83\) 8931.56 + 8931.56i 1.29650 + 1.29650i 0.930692 + 0.365804i \(0.119206\pi\)
0.365804 + 0.930692i \(0.380794\pi\)
\(84\) 0 0
\(85\) 3680.88 3680.88i 0.509464 0.509464i
\(86\) −30.9617 + 30.9617i −0.00418628 + 0.00418628i
\(87\) 0 0
\(88\) 120.558i 0.0155680i
\(89\) −5668.17 + 5668.17i −0.715588 + 0.715588i −0.967698 0.252111i \(-0.918875\pi\)
0.252111 + 0.967698i \(0.418875\pi\)
\(90\) 0 0
\(91\) 692.027 5086.61i 0.0835681 0.614251i
\(92\) −16400.5 −1.93768
\(93\) 0 0
\(94\) 347.896 0.0393725
\(95\) 3899.57i 0.432086i
\(96\) 0 0
\(97\) −3995.41 3995.41i −0.424637 0.424637i 0.462159 0.886797i \(-0.347075\pi\)
−0.886797 + 0.462159i \(0.847075\pi\)
\(98\) 128.414 128.414i 0.0133709 0.0133709i
\(99\) 0 0
\(100\) −3163.77 −0.316377
\(101\) 17363.6i 1.70215i −0.525043 0.851076i \(-0.675951\pi\)
0.525043 0.851076i \(-0.324049\pi\)
\(102\) 0 0
\(103\) 6664.68i 0.628210i −0.949388 0.314105i \(-0.898296\pi\)
0.949388 0.314105i \(-0.101704\pi\)
\(104\) −89.5162 + 657.971i −0.00827628 + 0.0608332i
\(105\) 0 0
\(106\) 149.313 + 149.313i 0.0132888 + 0.0132888i
\(107\) 4317.96 0.377147 0.188574 0.982059i \(-0.439614\pi\)
0.188574 + 0.982059i \(0.439614\pi\)
\(108\) 0 0
\(109\) 315.337 + 315.337i 0.0265413 + 0.0265413i 0.720253 0.693712i \(-0.244026\pi\)
−0.693712 + 0.720253i \(0.744026\pi\)
\(110\) 55.0796 + 55.0796i 0.00455204 + 0.00455204i
\(111\) 0 0
\(112\) −5483.01 + 5483.01i −0.437102 + 0.437102i
\(113\) 22445.2 1.75779 0.878896 0.477014i \(-0.158281\pi\)
0.878896 + 0.477014i \(0.158281\pi\)
\(114\) 0 0
\(115\) 14992.9 14992.9i 1.13368 1.13368i
\(116\) 7657.80i 0.569099i
\(117\) 0 0
\(118\) −40.3122 −0.00289516
\(119\) −5410.31 5410.31i −0.382057 0.382057i
\(120\) 0 0
\(121\) 13699.6i 0.935699i
\(122\) 126.732 + 126.732i 0.00851464 + 0.00851464i
\(123\) 0 0
\(124\) 5750.23 5750.23i 0.373974 0.373974i
\(125\) 12025.3 12025.3i 0.769622 0.769622i
\(126\) 0 0
\(127\) 20203.7i 1.25263i 0.779568 + 0.626317i \(0.215439\pi\)
−0.779568 + 0.626317i \(0.784561\pi\)
\(128\) 1419.84 1419.84i 0.0866599 0.0866599i
\(129\) 0 0
\(130\) −259.711 341.505i −0.0153675 0.0202074i
\(131\) −11605.8 −0.676291 −0.338145 0.941094i \(-0.609800\pi\)
−0.338145 + 0.941094i \(0.609800\pi\)
\(132\) 0 0
\(133\) 5731.76 0.324029
\(134\) 783.071i 0.0436106i
\(135\) 0 0
\(136\) 699.843 + 699.843i 0.0378375 + 0.0378375i
\(137\) 17702.6 17702.6i 0.943182 0.943182i −0.0552888 0.998470i \(-0.517608\pi\)
0.998470 + 0.0552888i \(0.0176079\pi\)
\(138\) 0 0
\(139\) −23995.5 −1.24194 −0.620969 0.783835i \(-0.713261\pi\)
−0.620969 + 0.783835i \(0.713261\pi\)
\(140\) 10034.3i 0.511955i
\(141\) 0 0
\(142\) 746.272i 0.0370101i
\(143\) −699.027 + 5138.06i −0.0341839 + 0.251262i
\(144\) 0 0
\(145\) 7000.56 + 7000.56i 0.332963 + 0.332963i
\(146\) 1081.28 0.0507263
\(147\) 0 0
\(148\) −19521.8 19521.8i −0.891243 0.891243i
\(149\) −1257.11 1257.11i −0.0566241 0.0566241i 0.678228 0.734852i \(-0.262748\pi\)
−0.734852 + 0.678228i \(0.762748\pi\)
\(150\) 0 0
\(151\) 23761.6 23761.6i 1.04213 1.04213i 0.0430569 0.999073i \(-0.486290\pi\)
0.999073 0.0430569i \(-0.0137097\pi\)
\(152\) −741.423 −0.0320907
\(153\) 0 0
\(154\) 80.9584 80.9584i 0.00341366 0.00341366i
\(155\) 10513.4i 0.437603i
\(156\) 0 0
\(157\) 3164.10 0.128366 0.0641831 0.997938i \(-0.479556\pi\)
0.0641831 + 0.997938i \(0.479556\pi\)
\(158\) 27.8994 + 27.8994i 0.00111759 + 0.00111759i
\(159\) 0 0
\(160\) 1947.27i 0.0760652i
\(161\) −22037.2 22037.2i −0.850167 0.850167i
\(162\) 0 0
\(163\) −2979.83 + 2979.83i −0.112154 + 0.112154i −0.760957 0.648802i \(-0.775270\pi\)
0.648802 + 0.760957i \(0.275270\pi\)
\(164\) −6099.08 + 6099.08i −0.226765 + 0.226765i
\(165\) 0 0
\(166\) 1551.67i 0.0563098i
\(167\) −30970.0 + 30970.0i −1.11047 + 1.11047i −0.117388 + 0.993086i \(0.537452\pi\)
−0.993086 + 0.117388i \(0.962548\pi\)
\(168\) 0 0
\(169\) 7630.15 27522.9i 0.267153 0.963654i
\(170\) −639.476 −0.0221272
\(171\) 0 0
\(172\) −5697.61 −0.192591
\(173\) 21213.4i 0.708792i 0.935095 + 0.354396i \(0.115314\pi\)
−0.935095 + 0.354396i \(0.884686\pi\)
\(174\) 0 0
\(175\) −4251.12 4251.12i −0.138812 0.138812i
\(176\) 5538.47 5538.47i 0.178799 0.178799i
\(177\) 0 0
\(178\) 984.727 0.0310796
\(179\) 46842.2i 1.46194i 0.682407 + 0.730972i \(0.260933\pi\)
−0.682407 + 0.730972i \(0.739067\pi\)
\(180\) 0 0
\(181\) 35937.8i 1.09697i 0.836161 + 0.548485i \(0.184795\pi\)
−0.836161 + 0.548485i \(0.815205\pi\)
\(182\) −501.959 + 381.734i −0.0151539 + 0.0115244i
\(183\) 0 0
\(184\) 2850.59 + 2850.59i 0.0841974 + 0.0841974i
\(185\) 35692.6 1.04288
\(186\) 0 0
\(187\) 5465.03 + 5465.03i 0.156282 + 0.156282i
\(188\) 32010.0 + 32010.0i 0.905671 + 0.905671i
\(189\) 0 0
\(190\) 338.735 338.735i 0.00938323 0.00938323i
\(191\) −25060.0 −0.686933 −0.343466 0.939165i \(-0.611601\pi\)
−0.343466 + 0.939165i \(0.611601\pi\)
\(192\) 0 0
\(193\) −31755.0 + 31755.0i −0.852506 + 0.852506i −0.990441 0.137935i \(-0.955954\pi\)
0.137935 + 0.990441i \(0.455954\pi\)
\(194\) 694.120i 0.0184430i
\(195\) 0 0
\(196\) 23630.9 0.615132
\(197\) −23870.6 23870.6i −0.615080 0.615080i 0.329186 0.944265i \(-0.393226\pi\)
−0.944265 + 0.329186i \(0.893226\pi\)
\(198\) 0 0
\(199\) 44314.1i 1.11901i 0.828826 + 0.559507i \(0.189009\pi\)
−0.828826 + 0.559507i \(0.810991\pi\)
\(200\) 549.898 + 549.898i 0.0137474 + 0.0137474i
\(201\) 0 0
\(202\) −1508.29 + 1508.29i −0.0369642 + 0.0369642i
\(203\) 10289.7 10289.7i 0.249696 0.249696i
\(204\) 0 0
\(205\) 11151.2i 0.265348i
\(206\) −578.924 + 578.924i −0.0136423 + 0.0136423i
\(207\) 0 0
\(208\) −34339.7 + 26114.9i −0.793724 + 0.603617i
\(209\) −5789.73 −0.132546
\(210\) 0 0
\(211\) 41706.9 0.936791 0.468396 0.883519i \(-0.344832\pi\)
0.468396 + 0.883519i \(0.344832\pi\)
\(212\) 27476.8i 0.611356i
\(213\) 0 0
\(214\) −375.078 375.078i −0.00819019 0.00819019i
\(215\) 5208.60 5208.60i 0.112679 0.112679i
\(216\) 0 0
\(217\) 15453.0 0.328167
\(218\) 54.7833i 0.00115275i
\(219\) 0 0
\(220\) 10135.8i 0.209418i
\(221\) −25768.6 33884.4i −0.527603 0.693769i
\(222\) 0 0
\(223\) −56698.2 56698.2i −1.14014 1.14014i −0.988423 0.151721i \(-0.951518\pi\)
−0.151721 0.988423i \(-0.548482\pi\)
\(224\) 2862.18 0.0570428
\(225\) 0 0
\(226\) −1949.70 1949.70i −0.0381725 0.0381725i
\(227\) 34882.4 + 34882.4i 0.676947 + 0.676947i 0.959308 0.282361i \(-0.0911177\pi\)
−0.282361 + 0.959308i \(0.591118\pi\)
\(228\) 0 0
\(229\) −22893.1 + 22893.1i −0.436550 + 0.436550i −0.890849 0.454299i \(-0.849890\pi\)
0.454299 + 0.890849i \(0.349890\pi\)
\(230\) −2604.70 −0.0492382
\(231\) 0 0
\(232\) −1331.01 + 1331.01i −0.0247290 + 0.0247290i
\(233\) 10250.9i 0.188822i 0.995533 + 0.0944108i \(0.0300967\pi\)
−0.995533 + 0.0944108i \(0.969903\pi\)
\(234\) 0 0
\(235\) −58525.4 −1.05976
\(236\) −3709.15 3709.15i −0.0665963 0.0665963i
\(237\) 0 0
\(238\) 939.929i 0.0165936i
\(239\) −73567.0 73567.0i −1.28791 1.28791i −0.936051 0.351863i \(-0.885548\pi\)
−0.351863 0.936051i \(-0.614452\pi\)
\(240\) 0 0
\(241\) 51482.8 51482.8i 0.886397 0.886397i −0.107778 0.994175i \(-0.534374\pi\)
0.994175 + 0.107778i \(0.0343736\pi\)
\(242\) 1190.01 1190.01i 0.0203198 0.0203198i
\(243\) 0 0
\(244\) 23321.3i 0.391718i
\(245\) −21602.7 + 21602.7i −0.359895 + 0.359895i
\(246\) 0 0
\(247\) 31598.6 + 4298.95i 0.517933 + 0.0704642i
\(248\) −1998.91 −0.0325004
\(249\) 0 0
\(250\) −2089.15 −0.0334264
\(251\) 18687.0i 0.296614i 0.988941 + 0.148307i \(0.0473823\pi\)
−0.988941 + 0.148307i \(0.952618\pi\)
\(252\) 0 0
\(253\) 22260.1 + 22260.1i 0.347765 + 0.347765i
\(254\) 1754.99 1754.99i 0.0272024 0.0272024i
\(255\) 0 0
\(256\) 64918.8 0.990582
\(257\) 69245.4i 1.04839i 0.851597 + 0.524197i \(0.175634\pi\)
−0.851597 + 0.524197i \(0.824366\pi\)
\(258\) 0 0
\(259\) 52462.5i 0.782077i
\(260\) 7525.97 55318.2i 0.111331 0.818316i
\(261\) 0 0
\(262\) 1008.14 + 1008.14i 0.0146864 + 0.0146864i
\(263\) 87200.1 1.26068 0.630341 0.776318i \(-0.282915\pi\)
0.630341 + 0.776318i \(0.282915\pi\)
\(264\) 0 0
\(265\) −25118.5 25118.5i −0.357686 0.357686i
\(266\) −497.887 497.887i −0.00703667 0.00703667i
\(267\) 0 0
\(268\) 72050.8 72050.8i 1.00316 1.00316i
\(269\) −19288.6 −0.266561 −0.133280 0.991078i \(-0.542551\pi\)
−0.133280 + 0.991078i \(0.542551\pi\)
\(270\) 0 0
\(271\) −77613.1 + 77613.1i −1.05681 + 1.05681i −0.0585225 + 0.998286i \(0.518639\pi\)
−0.998286 + 0.0585225i \(0.981361\pi\)
\(272\) 64301.7i 0.869130i
\(273\) 0 0
\(274\) −3075.45 −0.0409645
\(275\) 4294.12 + 4294.12i 0.0567817 + 0.0567817i
\(276\) 0 0
\(277\) 96547.1i 1.25829i −0.777289 0.629144i \(-0.783406\pi\)
0.777289 0.629144i \(-0.216594\pi\)
\(278\) 2084.36 + 2084.36i 0.0269701 + 0.0269701i
\(279\) 0 0
\(280\) −1744.08 + 1744.08i −0.0222459 + 0.0222459i
\(281\) 59466.7 59466.7i 0.753115 0.753115i −0.221945 0.975059i \(-0.571240\pi\)
0.975059 + 0.221945i \(0.0712404\pi\)
\(282\) 0 0
\(283\) 49885.9i 0.622880i −0.950266 0.311440i \(-0.899189\pi\)
0.950266 0.311440i \(-0.100811\pi\)
\(284\) 68664.9 68664.9i 0.851330 0.851330i
\(285\) 0 0
\(286\) 507.036 385.595i 0.00619879 0.00471410i
\(287\) −16390.6 −0.198989
\(288\) 0 0
\(289\) 20071.8 0.240321
\(290\) 1216.20i 0.0144614i
\(291\) 0 0
\(292\) 99489.3 + 99489.3i 1.16684 + 1.16684i
\(293\) 112153. 112153.i 1.30640 1.30640i 0.382407 0.923994i \(-0.375095\pi\)
0.923994 0.382407i \(-0.124905\pi\)
\(294\) 0 0
\(295\) 6781.61 0.0779271
\(296\) 6786.21i 0.0774540i
\(297\) 0 0
\(298\) 218.397i 0.00245931i
\(299\) −104960. 138017.i −1.17404 1.54380i
\(300\) 0 0
\(301\) −7655.82 7655.82i −0.0845004 0.0845004i
\(302\) −4128.08 −0.0452621
\(303\) 0 0
\(304\) −34061.1 34061.1i −0.368562 0.368562i
\(305\) −21319.7 21319.7i −0.229183 0.229183i
\(306\) 0 0
\(307\) −49954.0 + 49954.0i −0.530022 + 0.530022i −0.920579 0.390557i \(-0.872282\pi\)
0.390557 + 0.920579i \(0.372282\pi\)
\(308\) 14898.0 0.157046
\(309\) 0 0
\(310\) 913.243 913.243i 0.00950304 0.00950304i
\(311\) 50895.9i 0.526213i 0.964767 + 0.263107i \(0.0847471\pi\)
−0.964767 + 0.263107i \(0.915253\pi\)
\(312\) 0 0
\(313\) −140281. −1.43189 −0.715947 0.698154i \(-0.754005\pi\)
−0.715947 + 0.698154i \(0.754005\pi\)
\(314\) −274.848 274.848i −0.00278762 0.00278762i
\(315\) 0 0
\(316\) 5134.08i 0.0514149i
\(317\) −115302. 115302.i −1.14741 1.14741i −0.987061 0.160346i \(-0.948739\pi\)
−0.160346 0.987061i \(-0.551261\pi\)
\(318\) 0 0
\(319\) −10393.8 + 10393.8i −0.102139 + 0.102139i
\(320\) −59516.3 + 59516.3i −0.581214 + 0.581214i
\(321\) 0 0
\(322\) 3828.50i 0.0369247i
\(323\) 33609.4 33609.4i 0.322149 0.322149i
\(324\) 0 0
\(325\) −20247.6 26624.4i −0.191693 0.252066i
\(326\) 517.684 0.00487112
\(327\) 0 0
\(328\) 2120.18 0.0197072
\(329\) 86023.2i 0.794737i
\(330\) 0 0
\(331\) 84823.6 + 84823.6i 0.774213 + 0.774213i 0.978840 0.204627i \(-0.0655980\pi\)
−0.204627 + 0.978840i \(0.565598\pi\)
\(332\) 142770. 142770.i 1.29527 1.29527i
\(333\) 0 0
\(334\) 5380.40 0.0482304
\(335\) 131734.i 1.17384i
\(336\) 0 0
\(337\) 35747.4i 0.314764i −0.987538 0.157382i \(-0.949695\pi\)
0.987538 0.157382i \(-0.0503053\pi\)
\(338\) −3053.56 + 1727.98i −0.0267284 + 0.0151253i
\(339\) 0 0
\(340\) −58838.5 58838.5i −0.508984 0.508984i
\(341\) −15609.3 −0.134238
\(342\) 0 0
\(343\) 83323.1 + 83323.1i 0.708235 + 0.708235i
\(344\) 990.308 + 990.308i 0.00836861 + 0.00836861i
\(345\) 0 0
\(346\) 1842.70 1842.70i 0.0153922 0.0153922i
\(347\) −60713.6 −0.504228 −0.252114 0.967697i \(-0.581126\pi\)
−0.252114 + 0.967697i \(0.581126\pi\)
\(348\) 0 0
\(349\) 43916.5 43916.5i 0.360559 0.360559i −0.503459 0.864019i \(-0.667940\pi\)
0.864019 + 0.503459i \(0.167940\pi\)
\(350\) 738.544i 0.00602893i
\(351\) 0 0
\(352\) −2891.13 −0.0233336
\(353\) 35106.8 + 35106.8i 0.281736 + 0.281736i 0.833801 0.552065i \(-0.186160\pi\)
−0.552065 + 0.833801i \(0.686160\pi\)
\(354\) 0 0
\(355\) 125543.i 0.996177i
\(356\) 90605.2 + 90605.2i 0.714913 + 0.714913i
\(357\) 0 0
\(358\) 4068.92 4068.92i 0.0317478 0.0317478i
\(359\) −105453. + 105453.i −0.818219 + 0.818219i −0.985850 0.167631i \(-0.946388\pi\)
0.167631 + 0.985850i \(0.446388\pi\)
\(360\) 0 0
\(361\) 94714.7i 0.726780i
\(362\) 3121.72 3121.72i 0.0238219 0.0238219i
\(363\) 0 0
\(364\) −81309.0 11062.0i −0.613672 0.0834893i
\(365\) −181901. −1.36537
\(366\) 0 0
\(367\) 23389.1 0.173653 0.0868263 0.996223i \(-0.472327\pi\)
0.0868263 + 0.996223i \(0.472327\pi\)
\(368\) 261913.i 1.93402i
\(369\) 0 0
\(370\) −3100.42 3100.42i −0.0226473 0.0226473i
\(371\) −36920.3 + 36920.3i −0.268236 + 0.268236i
\(372\) 0 0
\(373\) 175048. 1.25817 0.629084 0.777337i \(-0.283430\pi\)
0.629084 + 0.777337i \(0.283430\pi\)
\(374\) 949.435i 0.00678769i
\(375\) 0 0
\(376\) 11127.4i 0.0787079i
\(377\) 64443.7 49008.6i 0.453417 0.344818i
\(378\) 0 0
\(379\) 949.057 + 949.057i 0.00660715 + 0.00660715i 0.710403 0.703795i \(-0.248513\pi\)
−0.703795 + 0.710403i \(0.748513\pi\)
\(380\) 62334.3 0.431678
\(381\) 0 0
\(382\) 2176.83 + 2176.83i 0.0149175 + 0.0149175i
\(383\) 126901. + 126901.i 0.865105 + 0.865105i 0.991926 0.126821i \(-0.0404774\pi\)
−0.126821 + 0.991926i \(0.540477\pi\)
\(384\) 0 0
\(385\) −13619.4 + 13619.4i −0.0918832 + 0.0918832i
\(386\) 5516.77 0.0370263
\(387\) 0 0
\(388\) −63866.3 + 63866.3i −0.424237 + 0.424237i
\(389\) 13102.1i 0.0865849i −0.999062 0.0432925i \(-0.986215\pi\)
0.999062 0.0432925i \(-0.0137847\pi\)
\(390\) 0 0
\(391\) −258440. −1.69046
\(392\) −4107.31 4107.31i −0.0267292 0.0267292i
\(393\) 0 0
\(394\) 4147.02i 0.0267143i
\(395\) −4693.44 4693.44i −0.0300813 0.0300813i
\(396\) 0 0
\(397\) 157539. 157539.i 0.999554 0.999554i −0.000446211 1.00000i \(-0.500142\pi\)
1.00000 0.000446211i \(0.000142033\pi\)
\(398\) 3849.32 3849.32i 0.0243007 0.0243007i
\(399\) 0 0
\(400\) 50524.7i 0.315779i
\(401\) −55324.7 + 55324.7i −0.344057 + 0.344057i −0.857890 0.513833i \(-0.828225\pi\)
0.513833 + 0.857890i \(0.328225\pi\)
\(402\) 0 0
\(403\) 85191.1 + 11590.1i 0.524546 + 0.0713639i
\(404\) −277556. −1.70055
\(405\) 0 0
\(406\) −1787.62 −0.0108449
\(407\) 52993.1i 0.319912i
\(408\) 0 0
\(409\) −130129. 130129.i −0.777909 0.777909i 0.201566 0.979475i \(-0.435397\pi\)
−0.979475 + 0.201566i \(0.935397\pi\)
\(410\) −968.647 + 968.647i −0.00576233 + 0.00576233i
\(411\) 0 0
\(412\) −106534. −0.627617
\(413\) 9967.89i 0.0584391i
\(414\) 0 0
\(415\) 261033.i 1.51565i
\(416\) 15778.9 + 2146.70i 0.0911780 + 0.0124047i
\(417\) 0 0
\(418\) 502.922 + 502.922i 0.00287838 + 0.00287838i
\(419\) 78745.1 0.448534 0.224267 0.974528i \(-0.428001\pi\)
0.224267 + 0.974528i \(0.428001\pi\)
\(420\) 0 0
\(421\) 122352. + 122352.i 0.690314 + 0.690314i 0.962301 0.271987i \(-0.0876808\pi\)
−0.271987 + 0.962301i \(0.587681\pi\)
\(422\) −3622.85 3622.85i −0.0203435 0.0203435i
\(423\) 0 0
\(424\) 4775.77 4775.77i 0.0265651 0.0265651i
\(425\) −49854.8 −0.276013
\(426\) 0 0
\(427\) −31336.6 + 31336.6i −0.171869 + 0.171869i
\(428\) 69022.2i 0.376792i
\(429\) 0 0
\(430\) −904.885 −0.00489392
\(431\) −33590.4 33590.4i −0.180826 0.180826i 0.610890 0.791716i \(-0.290812\pi\)
−0.791716 + 0.610890i \(0.790812\pi\)
\(432\) 0 0
\(433\) 81942.2i 0.437051i 0.975831 + 0.218525i \(0.0701246\pi\)
−0.975831 + 0.218525i \(0.929875\pi\)
\(434\) −1342.32 1342.32i −0.00712652 0.00712652i
\(435\) 0 0
\(436\) 5040.64 5040.64i 0.0265163 0.0265163i
\(437\) 136897. 136897.i 0.716856 0.716856i
\(438\) 0 0
\(439\) 78273.4i 0.406149i 0.979163 + 0.203074i \(0.0650933\pi\)
−0.979163 + 0.203074i \(0.934907\pi\)
\(440\) 1761.72 1761.72i 0.00909978 0.00909978i
\(441\) 0 0
\(442\) −704.968 + 5181.73i −0.00360849 + 0.0265235i
\(443\) −169637. −0.864395 −0.432198 0.901779i \(-0.642262\pi\)
−0.432198 + 0.901779i \(0.642262\pi\)
\(444\) 0 0
\(445\) −165658. −0.836549
\(446\) 9850.14i 0.0495191i
\(447\) 0 0
\(448\) 87479.6 + 87479.6i 0.435864 + 0.435864i
\(449\) 191202. 191202.i 0.948417 0.948417i −0.0503165 0.998733i \(-0.516023\pi\)
0.998733 + 0.0503165i \(0.0160230\pi\)
\(450\) 0 0
\(451\) 16556.3 0.0813975
\(452\) 358785.i 1.75613i
\(453\) 0 0
\(454\) 6060.09i 0.0294014i
\(455\) 84443.1 64217.9i 0.407888 0.310194i
\(456\) 0 0
\(457\) 85965.6 + 85965.6i 0.411616 + 0.411616i 0.882301 0.470685i \(-0.155993\pi\)
−0.470685 + 0.882301i \(0.655993\pi\)
\(458\) 3977.20 0.0189604
\(459\) 0 0
\(460\) −239660. 239660.i −1.13261 1.13261i
\(461\) 231988. + 231988.i 1.09160 + 1.09160i 0.995358 + 0.0962424i \(0.0306824\pi\)
0.0962424 + 0.995358i \(0.469318\pi\)
\(462\) 0 0
\(463\) 19082.7 19082.7i 0.0890180 0.0890180i −0.661196 0.750214i \(-0.729951\pi\)
0.750214 + 0.661196i \(0.229951\pi\)
\(464\) −122294. −0.568025
\(465\) 0 0
\(466\) 890.443 890.443i 0.00410048 0.00410048i
\(467\) 122781.i 0.562987i 0.959563 + 0.281493i \(0.0908298\pi\)
−0.959563 + 0.281493i \(0.909170\pi\)
\(468\) 0 0
\(469\) 193628. 0.880283
\(470\) 5083.79 + 5083.79i 0.0230140 + 0.0230140i
\(471\) 0 0
\(472\) 1289.38i 0.00578759i
\(473\) 7733.25 + 7733.25i 0.0345653 + 0.0345653i
\(474\) 0 0
\(475\) 26408.4 26408.4i 0.117046 0.117046i
\(476\) −86483.4 + 86483.4i −0.381697 + 0.381697i
\(477\) 0 0
\(478\) 12780.7i 0.0559371i
\(479\) −96432.8 + 96432.8i −0.420295 + 0.420295i −0.885305 0.465011i \(-0.846051\pi\)
0.465011 + 0.885305i \(0.346051\pi\)
\(480\) 0 0
\(481\) 39348.1 289220.i 0.170072 1.25008i
\(482\) −8944.07 −0.0384983
\(483\) 0 0
\(484\) 218986. 0.934816
\(485\) 116770.i 0.496417i
\(486\) 0 0
\(487\) −192723. 192723.i −0.812598 0.812598i 0.172425 0.985023i \(-0.444840\pi\)
−0.985023 + 0.172425i \(0.944840\pi\)
\(488\) 4053.51 4053.51i 0.0170212 0.0170212i
\(489\) 0 0
\(490\) 3753.02 0.0156311
\(491\) 92057.9i 0.381855i 0.981604 + 0.190927i \(0.0611495\pi\)
−0.981604 + 0.190927i \(0.938850\pi\)
\(492\) 0 0
\(493\) 120672.i 0.496493i
\(494\) −2371.37 3118.22i −0.00971730 0.0127777i
\(495\) 0 0
\(496\) −91830.0 91830.0i −0.373268 0.373268i
\(497\) 184529. 0.747052
\(498\) 0 0
\(499\) −69581.0 69581.0i −0.279441 0.279441i 0.553445 0.832886i \(-0.313313\pi\)
−0.832886 + 0.553445i \(0.813313\pi\)
\(500\) −192224. 192224.i −0.768896 0.768896i
\(501\) 0 0
\(502\) 1623.24 1623.24i 0.00644131 0.00644131i
\(503\) 340240. 1.34477 0.672387 0.740200i \(-0.265269\pi\)
0.672387 + 0.740200i \(0.265269\pi\)
\(504\) 0 0
\(505\) 253735. 253735.i 0.994940 0.994940i
\(506\) 3867.22i 0.0151042i
\(507\) 0 0
\(508\) 322955. 1.25145
\(509\) −273188. 273188.i −1.05445 1.05445i −0.998430 0.0560201i \(-0.982159\pi\)
−0.0560201 0.998430i \(-0.517841\pi\)
\(510\) 0 0
\(511\) 267366.i 1.02391i
\(512\) −28356.5 28356.5i −0.108171 0.108171i
\(513\) 0 0
\(514\) 6014.97 6014.97i 0.0227671 0.0227671i
\(515\) 97390.8 97390.8i 0.367201 0.367201i
\(516\) 0 0
\(517\) 86893.2i 0.325091i
\(518\) −4557.13 + 4557.13i −0.0169837 + 0.0169837i
\(519\) 0 0
\(520\) −10923.0 + 8306.82i −0.0403958 + 0.0307205i
\(521\) 413731. 1.52420 0.762100 0.647459i \(-0.224168\pi\)
0.762100 + 0.647459i \(0.224168\pi\)
\(522\) 0 0
\(523\) 331600. 1.21230 0.606151 0.795350i \(-0.292713\pi\)
0.606151 + 0.795350i \(0.292713\pi\)
\(524\) 185518.i 0.675653i
\(525\) 0 0
\(526\) −7574.60 7574.60i −0.0273772 0.0273772i
\(527\) 90612.4 90612.4i 0.326262 0.326262i
\(528\) 0 0
\(529\) −772831. −2.76168
\(530\) 4363.82i 0.0155351i
\(531\) 0 0
\(532\) 91621.6i 0.323724i
\(533\) −90359.5 12293.3i −0.318067 0.0432727i
\(534\) 0 0
\(535\) 63098.2 + 63098.2i 0.220450 + 0.220450i
\(536\) −25046.5 −0.0871800
\(537\) 0 0
\(538\) 1675.50 + 1675.50i 0.00578867 + 0.00578867i
\(539\) −32073.7 32073.7i −0.110401 0.110401i
\(540\) 0 0
\(541\) −24174.5 + 24174.5i −0.0825968 + 0.0825968i −0.747198 0.664601i \(-0.768601\pi\)
0.664601 + 0.747198i \(0.268601\pi\)
\(542\) 13483.7 0.0458996
\(543\) 0 0
\(544\) 16783.0 16783.0i 0.0567117 0.0567117i
\(545\) 9216.03i 0.0310278i
\(546\) 0 0
\(547\) −114112. −0.381380 −0.190690 0.981650i \(-0.561073\pi\)
−0.190690 + 0.981650i \(0.561073\pi\)
\(548\) −282974. 282974.i −0.942292 0.942292i
\(549\) 0 0
\(550\) 746.013i 0.00246616i
\(551\) 63920.8 + 63920.8i 0.210542 + 0.210542i
\(552\) 0 0
\(553\) −6898.62 + 6898.62i −0.0225586 + 0.0225586i
\(554\) −8386.52 + 8386.52i −0.0273251 + 0.0273251i
\(555\) 0 0
\(556\) 383566.i 1.24077i
\(557\) −324441. + 324441.i −1.04575 + 1.04575i −0.0468427 + 0.998902i \(0.514916\pi\)
−0.998902 + 0.0468427i \(0.985084\pi\)
\(558\) 0 0
\(559\) −36463.7 47947.8i −0.116691 0.153442i
\(560\) −160246. −0.510989
\(561\) 0 0
\(562\) −10331.1 −0.0327095
\(563\) 128026.i 0.403908i −0.979395 0.201954i \(-0.935271\pi\)
0.979395 0.201954i \(-0.0647291\pi\)
\(564\) 0 0
\(565\) 327992. + 327992.i 1.02746 + 1.02746i
\(566\) −4333.31 + 4333.31i −0.0135266 + 0.0135266i
\(567\) 0 0
\(568\) −23869.4 −0.0739853
\(569\) 358977.i 1.10877i −0.832259 0.554386i \(-0.812953\pi\)
0.832259 0.554386i \(-0.187047\pi\)
\(570\) 0 0
\(571\) 183795.i 0.563718i 0.959456 + 0.281859i \(0.0909510\pi\)
−0.959456 + 0.281859i \(0.909049\pi\)
\(572\) 82131.4 + 11173.9i 0.251025 + 0.0341517i
\(573\) 0 0
\(574\) 1423.76 + 1423.76i 0.00432128 + 0.00432128i
\(575\) −203068. −0.614193
\(576\) 0 0
\(577\) −57109.1 57109.1i −0.171535 0.171535i 0.616118 0.787654i \(-0.288704\pi\)
−0.787654 + 0.616118i \(0.788704\pi\)
\(578\) −1743.53 1743.53i −0.00521884 0.00521884i
\(579\) 0 0
\(580\) 111903. 111903.i 0.332649 0.332649i
\(581\) 383678. 1.13662
\(582\) 0 0
\(583\) 37293.7 37293.7i 0.109723 0.109723i
\(584\) 34584.7i 0.101405i
\(585\) 0 0
\(586\) −19484.3 −0.0567400
\(587\) 211138. + 211138.i 0.612759 + 0.612759i 0.943664 0.330905i \(-0.107354\pi\)
−0.330905 + 0.943664i \(0.607354\pi\)
\(588\) 0 0
\(589\) 95996.0i 0.276709i
\(590\) −589.081 589.081i −0.00169228 0.00169228i
\(591\) 0 0
\(592\) −311759. + 311759.i −0.889561 + 0.889561i
\(593\) 214002. 214002.i 0.608567 0.608567i −0.334004 0.942572i \(-0.608400\pi\)
0.942572 + 0.334004i \(0.108400\pi\)
\(594\) 0 0
\(595\) 158122.i 0.446639i
\(596\) −20094.8 + 20094.8i −0.0565706 + 0.0565706i
\(597\) 0 0
\(598\) −2871.46 + 21106.1i −0.00802973 + 0.0590209i
\(599\) −85941.2 −0.239523 −0.119762 0.992803i \(-0.538213\pi\)
−0.119762 + 0.992803i \(0.538213\pi\)
\(600\) 0 0
\(601\) −326765. −0.904663 −0.452332 0.891850i \(-0.649408\pi\)
−0.452332 + 0.891850i \(0.649408\pi\)
\(602\) 1330.04i 0.00367004i
\(603\) 0 0
\(604\) −379827. 379827.i −1.04115 1.04115i
\(605\) −200191. + 200191.i −0.546934 + 0.546934i
\(606\) 0 0
\(607\) 69228.5 0.187892 0.0939459 0.995577i \(-0.470052\pi\)
0.0939459 + 0.995577i \(0.470052\pi\)
\(608\) 17780.2i 0.0480982i
\(609\) 0 0
\(610\) 3703.86i 0.00995393i
\(611\) −64519.4 + 474237.i −0.172825 + 1.27032i
\(612\) 0 0
\(613\) 357789. + 357789.i 0.952151 + 0.952151i 0.998906 0.0467552i \(-0.0148881\pi\)
−0.0467552 + 0.998906i \(0.514888\pi\)
\(614\) 8678.47 0.0230201
\(615\) 0 0
\(616\) −2589.45 2589.45i −0.00682410 0.00682410i
\(617\) 402876. + 402876.i 1.05828 + 1.05828i 0.998193 + 0.0600878i \(0.0191381\pi\)
0.0600878 + 0.998193i \(0.480862\pi\)
\(618\) 0 0
\(619\) −169086. + 169086.i −0.441293 + 0.441293i −0.892446 0.451153i \(-0.851013\pi\)
0.451153 + 0.892446i \(0.351013\pi\)
\(620\) 168056. 0.437190
\(621\) 0 0
\(622\) 4421.05 4421.05i 0.0114273 0.0114273i
\(623\) 243491.i 0.627345i
\(624\) 0 0
\(625\) 227751. 0.583042
\(626\) 12185.5 + 12185.5i 0.0310952 + 0.0310952i
\(627\) 0 0
\(628\) 50577.9i 0.128245i
\(629\) −307626. 307626.i −0.777537 0.777537i
\(630\) 0 0
\(631\) 431081. 431081.i 1.08268 1.08268i 0.0864220 0.996259i \(-0.472457\pi\)
0.996259 0.0864220i \(-0.0275433\pi\)
\(632\) 892.361 892.361i 0.00223412 0.00223412i
\(633\) 0 0
\(634\) 20031.3i 0.0498345i
\(635\) −295237. + 295237.i −0.732189 + 0.732189i
\(636\) 0 0
\(637\) 151234. + 198864.i 0.372709 + 0.490092i
\(638\) 1805.70 0.00443614
\(639\) 0 0
\(640\) 41496.0 0.101309
\(641\) 355513.i 0.865245i −0.901575 0.432623i \(-0.857588\pi\)
0.901575 0.432623i \(-0.142412\pi\)
\(642\) 0 0
\(643\) 17508.7 + 17508.7i 0.0423479 + 0.0423479i 0.727964 0.685616i \(-0.240467\pi\)
−0.685616 + 0.727964i \(0.740467\pi\)
\(644\) −352262. + 352262.i −0.849365 + 0.849365i
\(645\) 0 0
\(646\) −5838.94 −0.0139917
\(647\) 617081.i 1.47412i 0.675826 + 0.737061i \(0.263787\pi\)
−0.675826 + 0.737061i \(0.736213\pi\)
\(648\) 0 0
\(649\) 10068.7i 0.0239048i
\(650\) −553.925 + 4071.51i −0.00131106 + 0.00963672i
\(651\) 0 0
\(652\) 47632.3 + 47632.3i 0.112049 + 0.112049i
\(653\) −164123. −0.384895 −0.192447 0.981307i \(-0.561642\pi\)
−0.192447 + 0.981307i \(0.561642\pi\)
\(654\) 0 0
\(655\) −169596. 169596.i −0.395305 0.395305i
\(656\) 97401.2 + 97401.2i 0.226337 + 0.226337i
\(657\) 0 0
\(658\) 7472.37 7472.37i 0.0172586 0.0172586i
\(659\) −401563. −0.924662 −0.462331 0.886707i \(-0.652987\pi\)
−0.462331 + 0.886707i \(0.652987\pi\)
\(660\) 0 0
\(661\) −57121.2 + 57121.2i −0.130736 + 0.130736i −0.769447 0.638711i \(-0.779468\pi\)
0.638711 + 0.769447i \(0.279468\pi\)
\(662\) 14736.3i 0.0336259i
\(663\) 0 0
\(664\) −49630.1 −0.112566
\(665\) 83758.0 + 83758.0i 0.189401 + 0.189401i
\(666\) 0 0
\(667\) 491519.i 1.10481i
\(668\) 495053. + 495053.i 1.10943 + 1.10943i
\(669\) 0 0
\(670\) 11443.0 11443.0i 0.0254912 0.0254912i
\(671\) 31653.6 31653.6i 0.0703036 0.0703036i
\(672\) 0 0
\(673\) 598216.i 1.32077i 0.750926 + 0.660387i \(0.229608\pi\)
−0.750926 + 0.660387i \(0.770392\pi\)
\(674\) −3105.18 + 3105.18i −0.00683545 + 0.00683545i
\(675\) 0 0
\(676\) −439951. 121967.i −0.962745 0.266901i
\(677\) −249942. −0.545332 −0.272666 0.962109i \(-0.587905\pi\)
−0.272666 + 0.962109i \(0.587905\pi\)
\(678\) 0 0
\(679\) −171633. −0.372273
\(680\) 20453.6i 0.0442335i
\(681\) 0 0
\(682\) 1355.90 + 1355.90i 0.00291513 + 0.00291513i
\(683\) −248913. + 248913.i −0.533589 + 0.533589i −0.921638 0.388050i \(-0.873149\pi\)
0.388050 + 0.921638i \(0.373149\pi\)
\(684\) 0 0
\(685\) 517375. 1.10262
\(686\) 14475.7i 0.0307603i
\(687\) 0 0
\(688\) 90989.7i 0.192227i
\(689\) −231229. + 175847.i −0.487083 + 0.370421i
\(690\) 0 0
\(691\) −268299. 268299.i −0.561906 0.561906i 0.367943 0.929849i \(-0.380062\pi\)
−0.929849 + 0.367943i \(0.880062\pi\)
\(692\) 339095. 0.708124
\(693\) 0 0
\(694\) 5273.86 + 5273.86i 0.0109499 + 0.0109499i
\(695\) −350645. 350645.i −0.725936 0.725936i
\(696\) 0 0
\(697\) −96109.7 + 96109.7i −0.197834 + 0.197834i
\(698\) −7629.58 −0.0156599
\(699\) 0 0
\(700\) −67953.8 + 67953.8i −0.138681 + 0.138681i
\(701\) 539033.i 1.09693i −0.836173 0.548465i \(-0.815212\pi\)
0.836173 0.548465i \(-0.184788\pi\)
\(702\) 0 0
\(703\) 325903. 0.659443
\(704\) −88364.3 88364.3i −0.178292 0.178292i
\(705\) 0 0
\(706\) 6099.08i 0.0122364i
\(707\) −372950. 372950.i −0.746125 0.746125i
\(708\) 0 0
\(709\) −542342. + 542342.i −1.07890 + 1.07890i −0.0822903 + 0.996608i \(0.526223\pi\)
−0.996608 + 0.0822903i \(0.973777\pi\)
\(710\) 10905.3 10905.3i 0.0216331 0.0216331i
\(711\) 0 0
\(712\) 31496.4i 0.0621299i
\(713\) 369081. 369081.i 0.726010 0.726010i
\(714\) 0 0
\(715\) −85297.2 + 64867.4i −0.166849 + 0.126886i
\(716\) 748768. 1.46057
\(717\) 0 0
\(718\) 18320.2 0.0355371
\(719\) 733372.i 1.41862i −0.704896 0.709311i \(-0.749006\pi\)
0.704896 0.709311i \(-0.250994\pi\)
\(720\) 0 0
\(721\) −143149. 143149.i −0.275371 0.275371i
\(722\) −8227.35 + 8227.35i −0.0157829 + 0.0157829i
\(723\) 0 0
\(724\) 574463. 1.09593
\(725\) 94817.4i 0.180390i
\(726\) 0 0
\(727\) 71768.0i 0.135788i −0.997693 0.0678941i \(-0.978372\pi\)
0.997693 0.0678941i \(-0.0216280\pi\)
\(728\) 12209.7 + 16055.1i 0.0230379 + 0.0302936i
\(729\) 0 0
\(730\) 15800.7 + 15800.7i 0.0296505 + 0.0296505i
\(731\) −89783.2 −0.168020
\(732\) 0 0
\(733\) 113097. + 113097.i 0.210496 + 0.210496i 0.804478 0.593982i \(-0.202445\pi\)
−0.593982 + 0.804478i \(0.702445\pi\)
\(734\) −2031.68 2031.68i −0.00377106 0.00377106i
\(735\) 0 0
\(736\) 68360.3 68360.3i 0.126197 0.126197i
\(737\) −195586. −0.360084
\(738\) 0 0
\(739\) 117545. 117545.i 0.215236 0.215236i −0.591251 0.806487i \(-0.701366\pi\)
0.806487 + 0.591251i \(0.201366\pi\)
\(740\) 570543.i 1.04190i
\(741\) 0 0
\(742\) 6414.13 0.0116501
\(743\) 507699. + 507699.i 0.919663 + 0.919663i 0.997005 0.0773413i \(-0.0246431\pi\)
−0.0773413 + 0.997005i \(0.524643\pi\)
\(744\) 0 0
\(745\) 36740.2i 0.0661957i
\(746\) −15205.4 15205.4i −0.0273226 0.0273226i
\(747\) 0 0
\(748\) 87358.1 87358.1i 0.156135 0.156135i
\(749\) 92744.5 92744.5i 0.165320 0.165320i
\(750\) 0 0
\(751\) 436896.i 0.774636i −0.921946 0.387318i \(-0.873401\pi\)
0.921946 0.387318i \(-0.126599\pi\)
\(752\) 511194. 511194.i 0.903962 0.903962i
\(753\) 0 0
\(754\) −9854.98 1340.76i −0.0173346 0.00235835i
\(755\) 694455. 1.21829
\(756\) 0 0
\(757\) −435716. −0.760348 −0.380174 0.924915i \(-0.624136\pi\)
−0.380174 + 0.924915i \(0.624136\pi\)
\(758\) 164.879i 0.000286964i
\(759\) 0 0
\(760\) −10834.4 10834.4i −0.0187576 0.0187576i
\(761\) 63224.5 63224.5i 0.109173 0.109173i −0.650410 0.759583i \(-0.725403\pi\)
0.759583 + 0.650410i \(0.225403\pi\)
\(762\) 0 0
\(763\) 13546.1 0.0232683
\(764\) 400582.i 0.686285i
\(765\) 0 0
\(766\) 22046.5i 0.0375735i
\(767\) 7476.15 54952.0i 0.0127083 0.0934098i
\(768\) 0 0
\(769\) −247132. 247132.i −0.417904 0.417904i 0.466577 0.884481i \(-0.345487\pi\)
−0.884481 + 0.466577i \(0.845487\pi\)
\(770\) 2366.09 0.00399070
\(771\) 0 0
\(772\) 507601. + 507601.i 0.851702 + 0.851702i
\(773\) −370482. 370482.i −0.620024 0.620024i 0.325513 0.945537i \(-0.394463\pi\)
−0.945537 + 0.325513i \(0.894463\pi\)
\(774\) 0 0
\(775\) 71198.2 71198.2i 0.118540 0.118540i
\(776\) 22201.4 0.0368685
\(777\) 0 0
\(778\) −1138.11 + 1138.11i −0.00188029 + 0.00188029i
\(779\) 101820.i 0.167787i
\(780\) 0 0
\(781\) −186395. −0.305585
\(782\) 22449.3 + 22449.3i 0.0367104 + 0.0367104i
\(783\) 0 0
\(784\) 377381.i 0.613971i
\(785\) 46236.9 + 46236.9i 0.0750325 + 0.0750325i
\(786\) 0 0
\(787\) −167668. + 167668.i −0.270708 + 0.270708i −0.829385 0.558677i \(-0.811309\pi\)
0.558677 + 0.829385i \(0.311309\pi\)
\(788\) −381570. + 381570.i −0.614499 + 0.614499i
\(789\) 0 0
\(790\) 815.387i 0.00130650i
\(791\) 482096. 482096.i 0.770514 0.770514i
\(792\) 0 0
\(793\) −196259. + 149252.i −0.312092 + 0.237342i
\(794\) −27369.1 −0.0434129
\(795\) 0 0
\(796\) 708356. 1.11796
\(797\) 114399.i 0.180097i −0.995937 0.0900483i \(-0.971298\pi\)
0.995937 0.0900483i \(-0.0287022\pi\)
\(798\) 0 0
\(799\) 504416. + 504416.i 0.790125 + 0.790125i
\(800\) 13187.2 13187.2i 0.0206050 0.0206050i
\(801\) 0 0
\(802\) 9611.52 0.0149432
\(803\) 270070.i 0.418837i
\(804\) 0 0
\(805\) 644057.i 0.993877i
\(806\) −6393.31 8406.86i −0.00984138 0.0129409i
\(807\) 0 0
\(808\) 48242.4 + 48242.4i 0.0738935 + 0.0738935i
\(809\) −1.23834e6 −1.89209 −0.946046 0.324032i \(-0.894961\pi\)
−0.946046 + 0.324032i \(0.894961\pi\)
\(810\) 0 0
\(811\) 205643. + 205643.i 0.312660 + 0.312660i 0.845939 0.533280i \(-0.179041\pi\)
−0.533280 + 0.845939i \(0.679041\pi\)
\(812\) −164480. 164480.i −0.249460 0.249460i
\(813\) 0 0
\(814\) 4603.22 4603.22i 0.00694725 0.00694725i
\(815\) −87088.4 −0.131113
\(816\) 0 0
\(817\) 47558.8 47558.8i 0.0712503 0.0712503i
\(818\) 22607.3i 0.0337864i
\(819\) 0 0
\(820\) −178251. −0.265097
\(821\) 659037. + 659037.i 0.977741 + 0.977741i 0.999758 0.0220168i \(-0.00700872\pi\)
−0.0220168 + 0.999758i \(0.507009\pi\)
\(822\) 0 0
\(823\) 1.08710e6i 1.60498i −0.596664 0.802491i \(-0.703507\pi\)
0.596664 0.802491i \(-0.296493\pi\)
\(824\) 18516.8 + 18516.8i 0.0272717 + 0.0272717i
\(825\) 0 0
\(826\) −865.857 + 865.857i −0.00126907 + 0.00126907i
\(827\) −413357. + 413357.i −0.604385 + 0.604385i −0.941473 0.337088i \(-0.890558\pi\)
0.337088 + 0.941473i \(0.390558\pi\)
\(828\) 0 0
\(829\) 857909.i 1.24834i −0.781290 0.624169i \(-0.785438\pi\)
0.781290 0.624169i \(-0.214562\pi\)
\(830\) 22674.6 22674.6i 0.0329141 0.0329141i
\(831\) 0 0
\(832\) 416654. + 547877.i 0.601906 + 0.791474i
\(833\) 372377. 0.536652
\(834\) 0 0
\(835\) −905128. −1.29819
\(836\) 92548.3i 0.132421i
\(837\) 0 0
\(838\) −6840.16 6840.16i −0.00974043 0.00974043i
\(839\) −225669. + 225669.i −0.320588 + 0.320588i −0.848993 0.528404i \(-0.822791\pi\)
0.528404 + 0.848993i \(0.322791\pi\)
\(840\) 0 0
\(841\) −477778. −0.675514
\(842\) 21256.1i 0.0299819i
\(843\) 0 0
\(844\) 666681.i 0.935908i
\(845\) 513691. 290693.i 0.719430 0.407118i
\(846\) 0 0
\(847\) 294250. + 294250.i 0.410156 + 0.410156i
\(848\) 438799. 0.610202
\(849\) 0 0
\(850\) 4330.62 + 4330.62i 0.00599393 + 0.00599393i
\(851\) −1.25301e6 1.25301e6i −1.73020 1.73020i
\(852\) 0 0
\(853\) 704776. 704776.i 0.968619 0.968619i −0.0309037 0.999522i \(-0.509839\pi\)
0.999522 + 0.0309037i \(0.00983851\pi\)
\(854\) 5444.09 0.00746465
\(855\) 0 0
\(856\) −11996.8 + 11996.8i −0.0163726 + 0.0163726i
\(857\) 1.00696e6i 1.37105i 0.728051 + 0.685523i \(0.240426\pi\)
−0.728051 + 0.685523i \(0.759574\pi\)
\(858\) 0 0
\(859\) −1.07340e6 −1.45470 −0.727352 0.686264i \(-0.759249\pi\)
−0.727352 + 0.686264i \(0.759249\pi\)
\(860\) −83259.0 83259.0i −0.112573 0.112573i
\(861\) 0 0
\(862\) 5835.63i 0.00785367i
\(863\) 726484. + 726484.i 0.975449 + 0.975449i 0.999706 0.0242565i \(-0.00772184\pi\)
−0.0242565 + 0.999706i \(0.507722\pi\)
\(864\) 0 0
\(865\) −309992. + 309992.i −0.414303 + 0.414303i
\(866\) 7117.87 7117.87i 0.00949105 0.00949105i
\(867\) 0 0
\(868\) 247016.i 0.327857i
\(869\) 6968.39 6968.39i 0.00922769 0.00922769i
\(870\) 0 0
\(871\) 1.06745e6 + 145225.i 1.40706 + 0.191428i
\(872\) −1752.24 −0.00230441
\(873\) 0 0
\(874\) −23783.0 −0.0311347
\(875\) 516579.i 0.674715i
\(876\) 0 0
\(877\) −271952. 271952.i −0.353584 0.353584i 0.507857 0.861441i \(-0.330438\pi\)
−0.861441 + 0.507857i \(0.830438\pi\)
\(878\) 6799.18 6799.18i 0.00881998 0.00881998i
\(879\) 0 0
\(880\) 161867. 0.209022
\(881\) 252034.i 0.324719i −0.986732 0.162360i \(-0.948090\pi\)
0.986732 0.162360i \(-0.0519104\pi\)
\(882\) 0 0
\(883\) 927130.i 1.18910i 0.804058 + 0.594551i \(0.202670\pi\)
−0.804058 + 0.594551i \(0.797330\pi\)
\(884\) −541638. + 411909.i −0.693114 + 0.527105i
\(885\) 0 0
\(886\) 14735.4 + 14735.4i 0.0187713 + 0.0187713i
\(887\) −642869. −0.817100 −0.408550 0.912736i \(-0.633965\pi\)
−0.408550 + 0.912736i \(0.633965\pi\)
\(888\) 0 0
\(889\) 433951. + 433951.i 0.549083 + 0.549083i
\(890\) 14389.8 + 14389.8i 0.0181666 + 0.0181666i
\(891\) 0 0
\(892\) −906316. + 906316.i −1.13907 + 1.13907i
\(893\) −534385. −0.670118
\(894\) 0 0
\(895\) −684503. + 684503.i −0.854534 + 0.854534i
\(896\) 60992.6i 0.0759734i
\(897\) 0 0
\(898\) −33217.3 −0.0411919
\(899\) 172333. + 172333.i 0.213231 + 0.213231i
\(900\) 0 0
\(901\) 432981.i 0.533358i
\(902\) −1438.16 1438.16i −0.00176764 0.00176764i
\(903\) 0 0
\(904\) −62360.9 + 62360.9i −0.0763089 + 0.0763089i
\(905\) −525158. + 525158.i −0.641200 + 0.641200i
\(906\) 0 0
\(907\) 234146.i 0.284624i −0.989822 0.142312i \(-0.954546\pi\)
0.989822 0.142312i \(-0.0454536\pi\)
\(908\) 557592. 557592.i 0.676308 0.676308i
\(909\) 0 0
\(910\) −12913.4 1756.85i −0.0155940 0.00212154i
\(911\) 1.19549e6 1.44049 0.720244 0.693721i \(-0.244030\pi\)
0.720244 + 0.693721i \(0.244030\pi\)
\(912\) 0 0
\(913\) −387558. −0.464939
\(914\) 14934.7i 0.0178774i
\(915\) 0 0
\(916\) 365945. + 365945.i 0.436139 + 0.436139i
\(917\) −249279. + 249279.i −0.296447 + 0.296447i
\(918\) 0 0
\(919\) 716149. 0.847954 0.423977 0.905673i \(-0.360634\pi\)
0.423977 + 0.905673i \(0.360634\pi\)
\(920\) 83311.1i 0.0984299i
\(921\) 0 0
\(922\) 40303.1i 0.0474107i
\(923\) 1.01729e6 + 138401.i 1.19410 + 0.162456i
\(924\) 0 0
\(925\) −241715. 241715.i −0.282501 0.282501i
\(926\) −3315.22 −0.00386626
\(927\) 0 0
\(928\) 31919.2 + 31919.2i 0.0370643 + 0.0370643i
\(929\) 1698.00 + 1698.00i 0.00196746 + 0.00196746i 0.708090 0.706122i \(-0.249557\pi\)
−0.706122 + 0.708090i \(0.749557\pi\)
\(930\) 0 0
\(931\) −197251. + 197251.i −0.227572 + 0.227572i
\(932\) 163860. 0.188644
\(933\) 0 0
\(934\) 10665.3 10665.3i 0.0122259 0.0122259i
\(935\) 159721.i 0.182700i
\(936\) 0 0
\(937\) 1.49808e6 1.70630 0.853152 0.521663i \(-0.174688\pi\)
0.853152 + 0.521663i \(0.174688\pi\)
\(938\) −16819.4 16819.4i −0.0191163 0.0191163i
\(939\) 0 0
\(940\) 935524.i 1.05876i
\(941\) 843256. + 843256.i 0.952314 + 0.952314i 0.998914 0.0466000i \(-0.0148386\pi\)
−0.0466000 + 0.998914i \(0.514839\pi\)
\(942\) 0 0
\(943\) −391472. + 391472.i −0.440228 + 0.440228i
\(944\) −59234.4 + 59234.4i −0.0664706 + 0.0664706i
\(945\) 0 0
\(946\) 1343.49i 0.00150125i
\(947\) 299398. 299398.i 0.333848 0.333848i −0.520198 0.854046i \(-0.674142\pi\)
0.854046 + 0.520198i \(0.174142\pi\)
\(948\) 0 0
\(949\) −200530. + 1.47396e6i −0.222663 + 1.63664i
\(950\) −4587.91 −0.00508356
\(951\) 0 0
\(952\) 30063.5 0.0331716
\(953\) 941607.i 1.03677i 0.855146 + 0.518387i \(0.173467\pi\)
−0.855146 + 0.518387i \(0.826533\pi\)
\(954\) 0 0
\(955\) −366201. 366201.i −0.401525 0.401525i
\(956\) −1.17596e6 + 1.17596e6i −1.28670 + 1.28670i
\(957\) 0 0
\(958\) 16753.2 0.0182544
\(959\) 760459.i 0.826873i
\(960\) 0 0
\(961\) 664712.i 0.719758i
\(962\) −28540.9 + 21705.0i −0.0308403 + 0.0234537i
\(963\) 0 0
\(964\) −822948. 822948.i −0.885561 0.885561i
\(965\) −928070. −0.996612
\(966\) 0 0
\(967\) −206817. 206817.i −0.221173 0.221173i 0.587819 0.808992i \(-0.299987\pi\)
−0.808992 + 0.587819i \(0.799987\pi\)
\(968\) −38062.3 38062.3i −0.0406204 0.0406204i
\(969\) 0 0
\(970\) −10143.2 + 10143.2i −0.0107803 + 0.0107803i
\(971\) −1.54657e6 −1.64033 −0.820165 0.572128i \(-0.806118\pi\)
−0.820165 + 0.572128i \(0.806118\pi\)
\(972\) 0 0
\(973\) −515393. + 515393.i −0.544394 + 0.544394i
\(974\) 33481.6i 0.0352930i
\(975\) 0 0
\(976\) 372437. 0.390979
\(977\) 109090. + 109090.i 0.114287 + 0.114287i 0.761937 0.647651i \(-0.224248\pi\)
−0.647651 + 0.761937i \(0.724248\pi\)
\(978\) 0 0
\(979\) 245953.i 0.256618i
\(980\) 345318. + 345318.i 0.359556 + 0.359556i
\(981\) 0 0
\(982\) 7996.57 7996.57i 0.00829241 0.00829241i
\(983\) 238965. 238965.i 0.247302 0.247302i −0.572561 0.819862i \(-0.694050\pi\)
0.819862 + 0.572561i \(0.194050\pi\)
\(984\) 0 0
\(985\) 697642.i 0.719051i
\(986\) −10482.1 + 10482.1i −0.0107819 + 0.0107819i
\(987\) 0 0
\(988\) 68718.3 505100.i 0.0703977 0.517445i
\(989\) −365703. −0.373883
\(990\) 0 0
\(991\) 810923. 0.825719 0.412859 0.910795i \(-0.364530\pi\)
0.412859 + 0.910795i \(0.364530\pi\)
\(992\) 47936.1i 0.0487123i
\(993\) 0 0
\(994\) −16029.0 16029.0i −0.0162231 0.0162231i
\(995\) −647560. + 647560.i −0.654085 + 0.654085i
\(996\) 0 0
\(997\) 17086.1 0.0171890 0.00859452 0.999963i \(-0.497264\pi\)
0.00859452 + 0.999963i \(0.497264\pi\)
\(998\) 12088.3i 0.0121368i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.5.j.b.73.6 20
3.2 odd 2 39.5.g.a.34.5 yes 20
13.5 odd 4 inner 117.5.j.b.109.6 20
39.5 even 4 39.5.g.a.31.5 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.5.g.a.31.5 20 39.5 even 4
39.5.g.a.34.5 yes 20 3.2 odd 2
117.5.j.b.73.6 20 1.1 even 1 trivial
117.5.j.b.109.6 20 13.5 odd 4 inner