Properties

Label 117.5.j.b.109.5
Level $117$
Weight $5$
Character 117.109
Analytic conductor $12.094$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,5,Mod(73,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.73");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 117.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.0942856808\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 5446 x^{16} - 1452 x^{15} + 106320 x^{13} + 8376897 x^{12} - 1643220 x^{11} + 1054152 x^{10} + \cdots + 2103506496 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{22}\cdot 3^{10} \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 109.5
Root \(-0.755803 + 0.755803i\) of defining polynomial
Character \(\chi\) \(=\) 117.109
Dual form 117.5.j.b.73.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.755803 + 0.755803i) q^{2} +14.8575i q^{4} +(-25.9238 + 25.9238i) q^{5} +(55.8718 + 55.8718i) q^{7} +(-23.3222 - 23.3222i) q^{8} -39.1866i q^{10} +(-44.0036 - 44.0036i) q^{11} +(3.89259 - 168.955i) q^{13} -84.4562 q^{14} -202.466 q^{16} -77.6827i q^{17} +(-246.651 + 246.651i) q^{19} +(-385.164 - 385.164i) q^{20} +66.5162 q^{22} +513.460i q^{23} -719.088i q^{25} +(124.755 + 130.639i) q^{26} +(-830.116 + 830.116i) q^{28} +197.709 q^{29} +(108.512 - 108.512i) q^{31} +(526.180 - 526.180i) q^{32} +(58.7128 + 58.7128i) q^{34} -2896.82 q^{35} +(-739.885 - 739.885i) q^{37} -372.839i q^{38} +1209.20 q^{40} +(-1253.54 + 1253.54i) q^{41} -1757.44i q^{43} +(653.785 - 653.785i) q^{44} +(-388.075 - 388.075i) q^{46} +(-2396.04 - 2396.04i) q^{47} +3842.31i q^{49} +(543.489 + 543.489i) q^{50} +(2510.26 + 57.8343i) q^{52} +5503.35 q^{53} +2281.48 q^{55} -2606.11i q^{56} +(-149.429 + 149.429i) q^{58} +(4609.57 + 4609.57i) q^{59} -3179.03 q^{61} +164.028i q^{62} -2444.08i q^{64} +(4279.05 + 4480.87i) q^{65} +(-2737.08 + 2737.08i) q^{67} +1154.17 q^{68} +(2189.43 - 2189.43i) q^{70} +(-5327.99 + 5327.99i) q^{71} +(6132.89 + 6132.89i) q^{73} +1118.42 q^{74} +(-3664.62 - 3664.62i) q^{76} -4917.12i q^{77} -5972.92 q^{79} +(5248.70 - 5248.70i) q^{80} -1894.85i q^{82} +(-723.125 + 723.125i) q^{83} +(2013.83 + 2013.83i) q^{85} +(1328.28 + 1328.28i) q^{86} +2052.53i q^{88} +(5048.32 + 5048.32i) q^{89} +(9657.31 - 9222.34i) q^{91} -7628.75 q^{92} +3621.87 q^{94} -12788.3i q^{95} +(1216.16 - 1216.16i) q^{97} +(-2904.03 - 2904.03i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 24 q^{5} - 24 q^{7} - 372 q^{11} - 224 q^{13} - 480 q^{14} - 2328 q^{16} - 840 q^{19} - 228 q^{20} + 3536 q^{22} + 828 q^{26} - 1984 q^{28} + 5064 q^{29} + 1712 q^{31} + 7260 q^{32} + 8040 q^{34}+ \cdots - 11544 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.755803 + 0.755803i −0.188951 + 0.188951i −0.795242 0.606292i \(-0.792656\pi\)
0.606292 + 0.795242i \(0.292656\pi\)
\(3\) 0 0
\(4\) 14.8575i 0.928595i
\(5\) −25.9238 + 25.9238i −1.03695 + 1.03695i −0.0376619 + 0.999291i \(0.511991\pi\)
−0.999291 + 0.0376619i \(0.988009\pi\)
\(6\) 0 0
\(7\) 55.8718 + 55.8718i 1.14024 + 1.14024i 0.988406 + 0.151835i \(0.0485182\pi\)
0.151835 + 0.988406i \(0.451482\pi\)
\(8\) −23.3222 23.3222i −0.364410 0.364410i
\(9\) 0 0
\(10\) 39.1866i 0.391866i
\(11\) −44.0036 44.0036i −0.363666 0.363666i 0.501494 0.865161i \(-0.332784\pi\)
−0.865161 + 0.501494i \(0.832784\pi\)
\(12\) 0 0
\(13\) 3.89259 168.955i 0.0230331 0.999735i
\(14\) −84.4562 −0.430899
\(15\) 0 0
\(16\) −202.466 −0.790884
\(17\) 77.6827i 0.268798i −0.990927 0.134399i \(-0.957090\pi\)
0.990927 0.134399i \(-0.0429104\pi\)
\(18\) 0 0
\(19\) −246.651 + 246.651i −0.683244 + 0.683244i −0.960730 0.277486i \(-0.910499\pi\)
0.277486 + 0.960730i \(0.410499\pi\)
\(20\) −385.164 385.164i −0.962909 0.962909i
\(21\) 0 0
\(22\) 66.5162 0.137430
\(23\) 513.460i 0.970624i 0.874341 + 0.485312i \(0.161294\pi\)
−0.874341 + 0.485312i \(0.838706\pi\)
\(24\) 0 0
\(25\) 719.088i 1.15054i
\(26\) 124.755 + 130.639i 0.184549 + 0.193253i
\(27\) 0 0
\(28\) −830.116 + 830.116i −1.05882 + 1.05882i
\(29\) 197.709 0.235088 0.117544 0.993068i \(-0.462498\pi\)
0.117544 + 0.993068i \(0.462498\pi\)
\(30\) 0 0
\(31\) 108.512 108.512i 0.112916 0.112916i −0.648391 0.761307i \(-0.724558\pi\)
0.761307 + 0.648391i \(0.224558\pi\)
\(32\) 526.180 526.180i 0.513848 0.513848i
\(33\) 0 0
\(34\) 58.7128 + 58.7128i 0.0507896 + 0.0507896i
\(35\) −2896.82 −2.36475
\(36\) 0 0
\(37\) −739.885 739.885i −0.540457 0.540457i 0.383206 0.923663i \(-0.374820\pi\)
−0.923663 + 0.383206i \(0.874820\pi\)
\(38\) 372.839i 0.258199i
\(39\) 0 0
\(40\) 1209.20 0.755751
\(41\) −1253.54 + 1253.54i −0.745709 + 0.745709i −0.973670 0.227961i \(-0.926794\pi\)
0.227961 + 0.973670i \(0.426794\pi\)
\(42\) 0 0
\(43\) 1757.44i 0.950480i −0.879856 0.475240i \(-0.842361\pi\)
0.879856 0.475240i \(-0.157639\pi\)
\(44\) 653.785 653.785i 0.337699 0.337699i
\(45\) 0 0
\(46\) −388.075 388.075i −0.183400 0.183400i
\(47\) −2396.04 2396.04i −1.08467 1.08467i −0.996067 0.0886054i \(-0.971759\pi\)
−0.0886054 0.996067i \(-0.528241\pi\)
\(48\) 0 0
\(49\) 3842.31i 1.60030i
\(50\) 543.489 + 543.489i 0.217396 + 0.217396i
\(51\) 0 0
\(52\) 2510.26 + 57.8343i 0.928349 + 0.0213884i
\(53\) 5503.35 1.95918 0.979592 0.200997i \(-0.0644180\pi\)
0.979592 + 0.200997i \(0.0644180\pi\)
\(54\) 0 0
\(55\) 2281.48 0.754210
\(56\) 2606.11i 0.831030i
\(57\) 0 0
\(58\) −149.429 + 149.429i −0.0444201 + 0.0444201i
\(59\) 4609.57 + 4609.57i 1.32421 + 1.32421i 0.910333 + 0.413876i \(0.135825\pi\)
0.413876 + 0.910333i \(0.364175\pi\)
\(60\) 0 0
\(61\) −3179.03 −0.854349 −0.427175 0.904169i \(-0.640491\pi\)
−0.427175 + 0.904169i \(0.640491\pi\)
\(62\) 164.028i 0.0426711i
\(63\) 0 0
\(64\) 2444.08i 0.596700i
\(65\) 4279.05 + 4480.87i 1.01279 + 1.06056i
\(66\) 0 0
\(67\) −2737.08 + 2737.08i −0.609729 + 0.609729i −0.942875 0.333146i \(-0.891890\pi\)
0.333146 + 0.942875i \(0.391890\pi\)
\(68\) 1154.17 0.249605
\(69\) 0 0
\(70\) 2189.43 2189.43i 0.446822 0.446822i
\(71\) −5327.99 + 5327.99i −1.05693 + 1.05693i −0.0586519 + 0.998278i \(0.518680\pi\)
−0.998278 + 0.0586519i \(0.981320\pi\)
\(72\) 0 0
\(73\) 6132.89 + 6132.89i 1.15085 + 1.15085i 0.986382 + 0.164470i \(0.0525915\pi\)
0.164470 + 0.986382i \(0.447408\pi\)
\(74\) 1118.42 0.204240
\(75\) 0 0
\(76\) −3664.62 3664.62i −0.634457 0.634457i
\(77\) 4917.12i 0.829335i
\(78\) 0 0
\(79\) −5972.92 −0.957046 −0.478523 0.878075i \(-0.658828\pi\)
−0.478523 + 0.878075i \(0.658828\pi\)
\(80\) 5248.70 5248.70i 0.820109 0.820109i
\(81\) 0 0
\(82\) 1894.85i 0.281805i
\(83\) −723.125 + 723.125i −0.104968 + 0.104968i −0.757640 0.652672i \(-0.773648\pi\)
0.652672 + 0.757640i \(0.273648\pi\)
\(84\) 0 0
\(85\) 2013.83 + 2013.83i 0.278731 + 0.278731i
\(86\) 1328.28 + 1328.28i 0.179594 + 0.179594i
\(87\) 0 0
\(88\) 2052.53i 0.265047i
\(89\) 5048.32 + 5048.32i 0.637334 + 0.637334i 0.949897 0.312563i \(-0.101188\pi\)
−0.312563 + 0.949897i \(0.601188\pi\)
\(90\) 0 0
\(91\) 9657.31 9222.34i 1.16620 1.11367i
\(92\) −7628.75 −0.901317
\(93\) 0 0
\(94\) 3621.87 0.409899
\(95\) 12788.3i 1.41698i
\(96\) 0 0
\(97\) 1216.16 1216.16i 0.129255 0.129255i −0.639520 0.768775i \(-0.720867\pi\)
0.768775 + 0.639520i \(0.220867\pi\)
\(98\) −2904.03 2904.03i −0.302378 0.302378i
\(99\) 0 0
\(100\) 10683.9 1.06839
\(101\) 1635.21i 0.160299i 0.996783 + 0.0801497i \(0.0255398\pi\)
−0.996783 + 0.0801497i \(0.974460\pi\)
\(102\) 0 0
\(103\) 16777.5i 1.58144i 0.612177 + 0.790721i \(0.290294\pi\)
−0.612177 + 0.790721i \(0.709706\pi\)
\(104\) −4031.19 + 3849.63i −0.372707 + 0.355920i
\(105\) 0 0
\(106\) −4159.45 + 4159.45i −0.370189 + 0.370189i
\(107\) −2250.96 −0.196608 −0.0983039 0.995156i \(-0.531342\pi\)
−0.0983039 + 0.995156i \(0.531342\pi\)
\(108\) 0 0
\(109\) −4156.99 + 4156.99i −0.349886 + 0.349886i −0.860067 0.510181i \(-0.829578\pi\)
0.510181 + 0.860067i \(0.329578\pi\)
\(110\) −1724.35 + 1724.35i −0.142509 + 0.142509i
\(111\) 0 0
\(112\) −11312.2 11312.2i −0.901798 0.901798i
\(113\) −20903.0 −1.63701 −0.818507 0.574497i \(-0.805198\pi\)
−0.818507 + 0.574497i \(0.805198\pi\)
\(114\) 0 0
\(115\) −13310.8 13310.8i −1.00649 1.00649i
\(116\) 2937.47i 0.218302i
\(117\) 0 0
\(118\) −6967.86 −0.500421
\(119\) 4340.27 4340.27i 0.306495 0.306495i
\(120\) 0 0
\(121\) 10768.4i 0.735493i
\(122\) 2402.72 2402.72i 0.161430 0.161430i
\(123\) 0 0
\(124\) 1612.22 + 1612.22i 0.104853 + 0.104853i
\(125\) 2439.12 + 2439.12i 0.156104 + 0.156104i
\(126\) 0 0
\(127\) 8903.28i 0.552005i 0.961157 + 0.276002i \(0.0890098\pi\)
−0.961157 + 0.276002i \(0.910990\pi\)
\(128\) 10266.1 + 10266.1i 0.626595 + 0.626595i
\(129\) 0 0
\(130\) −6620.78 152.538i −0.391762 0.00902589i
\(131\) −19604.9 −1.14241 −0.571204 0.820808i \(-0.693524\pi\)
−0.571204 + 0.820808i \(0.693524\pi\)
\(132\) 0 0
\(133\) −27561.7 −1.55812
\(134\) 4137.38i 0.230418i
\(135\) 0 0
\(136\) −1811.73 + 1811.73i −0.0979527 + 0.0979527i
\(137\) 14793.4 + 14793.4i 0.788183 + 0.788183i 0.981196 0.193013i \(-0.0618259\pi\)
−0.193013 + 0.981196i \(0.561826\pi\)
\(138\) 0 0
\(139\) 29205.3 1.51158 0.755790 0.654814i \(-0.227253\pi\)
0.755790 + 0.654814i \(0.227253\pi\)
\(140\) 43039.6i 2.19590i
\(141\) 0 0
\(142\) 8053.82i 0.399416i
\(143\) −7605.93 + 7263.35i −0.371946 + 0.355194i
\(144\) 0 0
\(145\) −5125.38 + 5125.38i −0.243775 + 0.243775i
\(146\) −9270.52 −0.434909
\(147\) 0 0
\(148\) 10992.9 10992.9i 0.501866 0.501866i
\(149\) −4521.47 + 4521.47i −0.203661 + 0.203661i −0.801566 0.597906i \(-0.796000\pi\)
0.597906 + 0.801566i \(0.296000\pi\)
\(150\) 0 0
\(151\) 6088.39 + 6088.39i 0.267023 + 0.267023i 0.827899 0.560877i \(-0.189536\pi\)
−0.560877 + 0.827899i \(0.689536\pi\)
\(152\) 11504.9 0.497961
\(153\) 0 0
\(154\) 3716.38 + 3716.38i 0.156703 + 0.156703i
\(155\) 5626.10i 0.234177i
\(156\) 0 0
\(157\) −12700.8 −0.515267 −0.257634 0.966243i \(-0.582943\pi\)
−0.257634 + 0.966243i \(0.582943\pi\)
\(158\) 4514.36 4514.36i 0.180835 0.180835i
\(159\) 0 0
\(160\) 27281.2i 1.06567i
\(161\) −28687.9 + 28687.9i −1.10675 + 1.10675i
\(162\) 0 0
\(163\) 18752.1 + 18752.1i 0.705787 + 0.705787i 0.965646 0.259859i \(-0.0836762\pi\)
−0.259859 + 0.965646i \(0.583676\pi\)
\(164\) −18624.5 18624.5i −0.692462 0.692462i
\(165\) 0 0
\(166\) 1093.08i 0.0396676i
\(167\) 11683.9 + 11683.9i 0.418942 + 0.418942i 0.884839 0.465897i \(-0.154268\pi\)
−0.465897 + 0.884839i \(0.654268\pi\)
\(168\) 0 0
\(169\) −28530.7 1315.35i −0.998939 0.0460540i
\(170\) −3044.12 −0.105333
\(171\) 0 0
\(172\) 26111.2 0.882611
\(173\) 30610.1i 1.02276i −0.859356 0.511378i \(-0.829135\pi\)
0.859356 0.511378i \(-0.170865\pi\)
\(174\) 0 0
\(175\) 40176.7 40176.7i 1.31189 1.31189i
\(176\) 8909.26 + 8909.26i 0.287618 + 0.287618i
\(177\) 0 0
\(178\) −7631.08 −0.240850
\(179\) 3696.07i 0.115354i −0.998335 0.0576772i \(-0.981631\pi\)
0.998335 0.0576772i \(-0.0183694\pi\)
\(180\) 0 0
\(181\) 9870.81i 0.301298i −0.988587 0.150649i \(-0.951864\pi\)
0.988587 0.150649i \(-0.0481363\pi\)
\(182\) −328.754 + 14269.3i −0.00992494 + 0.430785i
\(183\) 0 0
\(184\) 11975.0 11975.0i 0.353705 0.353705i
\(185\) 38361.3 1.12086
\(186\) 0 0
\(187\) −3418.32 + 3418.32i −0.0977529 + 0.0977529i
\(188\) 35599.2 35599.2i 1.00722 1.00722i
\(189\) 0 0
\(190\) 9665.42 + 9665.42i 0.267740 + 0.267740i
\(191\) 28809.3 0.789708 0.394854 0.918744i \(-0.370795\pi\)
0.394854 + 0.918744i \(0.370795\pi\)
\(192\) 0 0
\(193\) 15092.0 + 15092.0i 0.405166 + 0.405166i 0.880049 0.474883i \(-0.157510\pi\)
−0.474883 + 0.880049i \(0.657510\pi\)
\(194\) 1838.36i 0.0488457i
\(195\) 0 0
\(196\) −57087.3 −1.48603
\(197\) −14144.9 + 14144.9i −0.364474 + 0.364474i −0.865457 0.500983i \(-0.832972\pi\)
0.500983 + 0.865457i \(0.332972\pi\)
\(198\) 0 0
\(199\) 11143.9i 0.281403i 0.990052 + 0.140702i \(0.0449359\pi\)
−0.990052 + 0.140702i \(0.955064\pi\)
\(200\) −16770.7 + 16770.7i −0.419268 + 0.419268i
\(201\) 0 0
\(202\) −1235.90 1235.90i −0.0302887 0.0302887i
\(203\) 11046.4 + 11046.4i 0.268057 + 0.268057i
\(204\) 0 0
\(205\) 64992.9i 1.54653i
\(206\) −12680.5 12680.5i −0.298815 0.298815i
\(207\) 0 0
\(208\) −788.119 + 34207.7i −0.0182165 + 0.790674i
\(209\) 21707.1 0.496946
\(210\) 0 0
\(211\) −7090.45 −0.159261 −0.0796304 0.996824i \(-0.525374\pi\)
−0.0796304 + 0.996824i \(0.525374\pi\)
\(212\) 81766.1i 1.81929i
\(213\) 0 0
\(214\) 1701.29 1701.29i 0.0371492 0.0371492i
\(215\) 45559.5 + 45559.5i 0.985602 + 0.985602i
\(216\) 0 0
\(217\) 12125.5 0.257503
\(218\) 6283.74i 0.132222i
\(219\) 0 0
\(220\) 33897.2i 0.700355i
\(221\) −13124.9 302.387i −0.268727 0.00619126i
\(222\) 0 0
\(223\) −61073.2 + 61073.2i −1.22812 + 1.22812i −0.263447 + 0.964674i \(0.584859\pi\)
−0.964674 + 0.263447i \(0.915141\pi\)
\(224\) 58797.3 1.17182
\(225\) 0 0
\(226\) 15798.6 15798.6i 0.309315 0.309315i
\(227\) 47906.1 47906.1i 0.929692 0.929692i −0.0679936 0.997686i \(-0.521660\pi\)
0.997686 + 0.0679936i \(0.0216597\pi\)
\(228\) 0 0
\(229\) −32915.8 32915.8i −0.627673 0.627673i 0.319809 0.947482i \(-0.396381\pi\)
−0.947482 + 0.319809i \(0.896381\pi\)
\(230\) 20120.8 0.380355
\(231\) 0 0
\(232\) −4611.02 4611.02i −0.0856684 0.0856684i
\(233\) 93191.8i 1.71659i −0.513160 0.858293i \(-0.671525\pi\)
0.513160 0.858293i \(-0.328475\pi\)
\(234\) 0 0
\(235\) 124229. 2.24951
\(236\) −68486.8 + 68486.8i −1.22965 + 1.22965i
\(237\) 0 0
\(238\) 6560.78i 0.115825i
\(239\) 7463.00 7463.00i 0.130652 0.130652i −0.638757 0.769409i \(-0.720551\pi\)
0.769409 + 0.638757i \(0.220551\pi\)
\(240\) 0 0
\(241\) 4266.86 + 4266.86i 0.0734640 + 0.0734640i 0.742884 0.669420i \(-0.233457\pi\)
−0.669420 + 0.742884i \(0.733457\pi\)
\(242\) 8138.76 + 8138.76i 0.138972 + 0.138972i
\(243\) 0 0
\(244\) 47232.5i 0.793344i
\(245\) −99607.4 99607.4i −1.65943 1.65943i
\(246\) 0 0
\(247\) 40712.8 + 42633.1i 0.667325 + 0.698800i
\(248\) −5061.49 −0.0822953
\(249\) 0 0
\(250\) −3686.99 −0.0589918
\(251\) 59125.2i 0.938480i −0.883071 0.469240i \(-0.844528\pi\)
0.883071 0.469240i \(-0.155472\pi\)
\(252\) 0 0
\(253\) 22594.1 22594.1i 0.352983 0.352983i
\(254\) −6729.13 6729.13i −0.104302 0.104302i
\(255\) 0 0
\(256\) 23587.0 0.359909
\(257\) 50094.3i 0.758442i 0.925306 + 0.379221i \(0.123808\pi\)
−0.925306 + 0.379221i \(0.876192\pi\)
\(258\) 0 0
\(259\) 82677.5i 1.23250i
\(260\) −66574.7 + 63576.1i −0.984832 + 0.940475i
\(261\) 0 0
\(262\) 14817.4 14817.4i 0.215859 0.215859i
\(263\) −14909.8 −0.215556 −0.107778 0.994175i \(-0.534374\pi\)
−0.107778 + 0.994175i \(0.534374\pi\)
\(264\) 0 0
\(265\) −142668. + 142668.i −2.03158 + 2.03158i
\(266\) 20831.2 20831.2i 0.294409 0.294409i
\(267\) 0 0
\(268\) −40666.2 40666.2i −0.566192 0.566192i
\(269\) −55704.4 −0.769812 −0.384906 0.922956i \(-0.625766\pi\)
−0.384906 + 0.922956i \(0.625766\pi\)
\(270\) 0 0
\(271\) −4600.69 4600.69i −0.0626447 0.0626447i 0.675090 0.737735i \(-0.264105\pi\)
−0.737735 + 0.675090i \(0.764105\pi\)
\(272\) 15728.1i 0.212588i
\(273\) 0 0
\(274\) −22361.8 −0.297856
\(275\) −31642.5 + 31642.5i −0.418413 + 0.418413i
\(276\) 0 0
\(277\) 76710.8i 0.999762i −0.866094 0.499881i \(-0.833377\pi\)
0.866094 0.499881i \(-0.166623\pi\)
\(278\) −22073.4 + 22073.4i −0.285614 + 0.285614i
\(279\) 0 0
\(280\) 67560.3 + 67560.3i 0.861738 + 0.861738i
\(281\) 25395.9 + 25395.9i 0.321626 + 0.321626i 0.849391 0.527765i \(-0.176970\pi\)
−0.527765 + 0.849391i \(0.676970\pi\)
\(282\) 0 0
\(283\) 41249.2i 0.515042i 0.966273 + 0.257521i \(0.0829056\pi\)
−0.966273 + 0.257521i \(0.917094\pi\)
\(284\) −79160.7 79160.7i −0.981460 0.981460i
\(285\) 0 0
\(286\) 258.921 11238.3i 0.00316544 0.137394i
\(287\) −140075. −1.70058
\(288\) 0 0
\(289\) 77486.4 0.927748
\(290\) 7747.55i 0.0921231i
\(291\) 0 0
\(292\) −91119.6 + 91119.6i −1.06868 + 1.06868i
\(293\) 22812.4 + 22812.4i 0.265727 + 0.265727i 0.827376 0.561649i \(-0.189833\pi\)
−0.561649 + 0.827376i \(0.689833\pi\)
\(294\) 0 0
\(295\) −238995. −2.74628
\(296\) 34511.5i 0.393895i
\(297\) 0 0
\(298\) 6834.69i 0.0769638i
\(299\) 86751.8 + 1998.69i 0.970367 + 0.0223565i
\(300\) 0 0
\(301\) 98191.1 98191.1i 1.08378 1.08378i
\(302\) −9203.25 −0.100908
\(303\) 0 0
\(304\) 49938.5 49938.5i 0.540367 0.540367i
\(305\) 82412.6 82412.6i 0.885919 0.885919i
\(306\) 0 0
\(307\) 75497.8 + 75497.8i 0.801047 + 0.801047i 0.983259 0.182212i \(-0.0583259\pi\)
−0.182212 + 0.983259i \(0.558326\pi\)
\(308\) 73056.3 0.770116
\(309\) 0 0
\(310\) −4252.23 4252.23i −0.0442479 0.0442479i
\(311\) 53069.8i 0.548690i 0.961631 + 0.274345i \(0.0884610\pi\)
−0.961631 + 0.274345i \(0.911539\pi\)
\(312\) 0 0
\(313\) −46540.0 −0.475048 −0.237524 0.971382i \(-0.576336\pi\)
−0.237524 + 0.971382i \(0.576336\pi\)
\(314\) 9599.33 9599.33i 0.0973602 0.0973602i
\(315\) 0 0
\(316\) 88742.8i 0.888708i
\(317\) −32779.9 + 32779.9i −0.326203 + 0.326203i −0.851141 0.524937i \(-0.824089\pi\)
0.524937 + 0.851141i \(0.324089\pi\)
\(318\) 0 0
\(319\) −8699.92 8699.92i −0.0854937 0.0854937i
\(320\) 63360.0 + 63360.0i 0.618750 + 0.618750i
\(321\) 0 0
\(322\) 43364.9i 0.418241i
\(323\) 19160.5 + 19160.5i 0.183655 + 0.183655i
\(324\) 0 0
\(325\) −121494. 2799.12i −1.15024 0.0265005i
\(326\) −28345.7 −0.266718
\(327\) 0 0
\(328\) 58470.5 0.543487
\(329\) 267742.i 2.47357i
\(330\) 0 0
\(331\) −10224.0 + 10224.0i −0.0933177 + 0.0933177i −0.752225 0.658907i \(-0.771019\pi\)
0.658907 + 0.752225i \(0.271019\pi\)
\(332\) −10743.8 10743.8i −0.0974729 0.0974729i
\(333\) 0 0
\(334\) −17661.4 −0.158319
\(335\) 141911.i 1.26452i
\(336\) 0 0
\(337\) 83180.9i 0.732426i −0.930531 0.366213i \(-0.880654\pi\)
0.930531 0.366213i \(-0.119346\pi\)
\(338\) 22557.7 20569.5i 0.197452 0.180048i
\(339\) 0 0
\(340\) −29920.5 + 29920.5i −0.258828 + 0.258828i
\(341\) −9549.87 −0.0821275
\(342\) 0 0
\(343\) −80528.9 + 80528.9i −0.684484 + 0.684484i
\(344\) −40987.3 + 40987.3i −0.346364 + 0.346364i
\(345\) 0 0
\(346\) 23135.2 + 23135.2i 0.193251 + 0.193251i
\(347\) 113467. 0.942343 0.471172 0.882041i \(-0.343831\pi\)
0.471172 + 0.882041i \(0.343831\pi\)
\(348\) 0 0
\(349\) 85102.7 + 85102.7i 0.698703 + 0.698703i 0.964131 0.265428i \(-0.0855132\pi\)
−0.265428 + 0.964131i \(0.585513\pi\)
\(350\) 60731.4i 0.495767i
\(351\) 0 0
\(352\) −46307.7 −0.373739
\(353\) −143909. + 143909.i −1.15488 + 1.15488i −0.169320 + 0.985561i \(0.554157\pi\)
−0.985561 + 0.169320i \(0.945843\pi\)
\(354\) 0 0
\(355\) 276243.i 2.19197i
\(356\) −75005.6 + 75005.6i −0.591825 + 0.591825i
\(357\) 0 0
\(358\) 2793.50 + 2793.50i 0.0217963 + 0.0217963i
\(359\) 61789.1 + 61789.1i 0.479427 + 0.479427i 0.904948 0.425521i \(-0.139909\pi\)
−0.425521 + 0.904948i \(0.639909\pi\)
\(360\) 0 0
\(361\) 8647.58i 0.0663560i
\(362\) 7460.39 + 7460.39i 0.0569305 + 0.0569305i
\(363\) 0 0
\(364\) 137021. + 143484.i 1.03415 + 1.08293i
\(365\) −317976. −2.38676
\(366\) 0 0
\(367\) 83785.3 0.622065 0.311032 0.950399i \(-0.399325\pi\)
0.311032 + 0.950399i \(0.399325\pi\)
\(368\) 103958.i 0.767651i
\(369\) 0 0
\(370\) −28993.6 + 28993.6i −0.211787 + 0.211787i
\(371\) 307482. + 307482.i 2.23394 + 2.23394i
\(372\) 0 0
\(373\) 204445. 1.46946 0.734731 0.678358i \(-0.237308\pi\)
0.734731 + 0.678358i \(0.237308\pi\)
\(374\) 5167.16i 0.0369410i
\(375\) 0 0
\(376\) 111762.i 0.790530i
\(377\) 769.602 33404.0i 0.00541481 0.235026i
\(378\) 0 0
\(379\) 34520.1 34520.1i 0.240322 0.240322i −0.576661 0.816983i \(-0.695645\pi\)
0.816983 + 0.576661i \(0.195645\pi\)
\(380\) 190002. 1.31580
\(381\) 0 0
\(382\) −21774.2 + 21774.2i −0.149216 + 0.149216i
\(383\) 32143.1 32143.1i 0.219124 0.219124i −0.589005 0.808129i \(-0.700480\pi\)
0.808129 + 0.589005i \(0.200480\pi\)
\(384\) 0 0
\(385\) 127471. + 127471.i 0.859981 + 0.859981i
\(386\) −22813.2 −0.153113
\(387\) 0 0
\(388\) 18069.1 + 18069.1i 0.120026 + 0.120026i
\(389\) 88729.2i 0.586364i −0.956057 0.293182i \(-0.905286\pi\)
0.956057 0.293182i \(-0.0947142\pi\)
\(390\) 0 0
\(391\) 39887.0 0.260902
\(392\) 89611.3 89611.3i 0.583164 0.583164i
\(393\) 0 0
\(394\) 21381.5i 0.137735i
\(395\) 154841. 154841.i 0.992411 0.992411i
\(396\) 0 0
\(397\) 98911.6 + 98911.6i 0.627576 + 0.627576i 0.947457 0.319882i \(-0.103643\pi\)
−0.319882 + 0.947457i \(0.603643\pi\)
\(398\) −8422.57 8422.57i −0.0531714 0.0531714i
\(399\) 0 0
\(400\) 145591.i 0.909944i
\(401\) 8767.07 + 8767.07i 0.0545213 + 0.0545213i 0.733842 0.679320i \(-0.237725\pi\)
−0.679320 + 0.733842i \(0.737725\pi\)
\(402\) 0 0
\(403\) −17911.3 18756.1i −0.110285 0.115487i
\(404\) −24295.2 −0.148853
\(405\) 0 0
\(406\) −16697.8 −0.101299
\(407\) 65115.3i 0.393092i
\(408\) 0 0
\(409\) 90488.4 90488.4i 0.540937 0.540937i −0.382867 0.923804i \(-0.625063\pi\)
0.923804 + 0.382867i \(0.125063\pi\)
\(410\) 49121.9 + 49121.9i 0.292218 + 0.292218i
\(411\) 0 0
\(412\) −249272. −1.46852
\(413\) 515090.i 3.01984i
\(414\) 0 0
\(415\) 37492.3i 0.217694i
\(416\) −86852.7 90949.1i −0.501876 0.525547i
\(417\) 0 0
\(418\) −16406.3 + 16406.3i −0.0938983 + 0.0938983i
\(419\) 255942. 1.45785 0.728926 0.684593i \(-0.240020\pi\)
0.728926 + 0.684593i \(0.240020\pi\)
\(420\) 0 0
\(421\) 82355.8 82355.8i 0.464654 0.464654i −0.435523 0.900177i \(-0.643437\pi\)
0.900177 + 0.435523i \(0.143437\pi\)
\(422\) 5358.99 5358.99i 0.0300925 0.0300925i
\(423\) 0 0
\(424\) −128350. 128350.i −0.713946 0.713946i
\(425\) −55860.7 −0.309263
\(426\) 0 0
\(427\) −177618. 177618.i −0.974164 0.974164i
\(428\) 33443.7i 0.182569i
\(429\) 0 0
\(430\) −68868.0 −0.372461
\(431\) 180532. 180532.i 0.971850 0.971850i −0.0277649 0.999614i \(-0.508839\pi\)
0.999614 + 0.0277649i \(0.00883898\pi\)
\(432\) 0 0
\(433\) 249267.i 1.32950i 0.747064 + 0.664752i \(0.231463\pi\)
−0.747064 + 0.664752i \(0.768537\pi\)
\(434\) −9164.53 + 9164.53i −0.0486554 + 0.0486554i
\(435\) 0 0
\(436\) −61762.6 61762.6i −0.324902 0.324902i
\(437\) −126645. 126645.i −0.663173 0.663173i
\(438\) 0 0
\(439\) 218037.i 1.13136i −0.824625 0.565680i \(-0.808614\pi\)
0.824625 0.565680i \(-0.191386\pi\)
\(440\) −53209.3 53209.3i −0.274841 0.274841i
\(441\) 0 0
\(442\) 10148.4 9691.29i 0.0519460 0.0496063i
\(443\) −129384. −0.659286 −0.329643 0.944106i \(-0.606928\pi\)
−0.329643 + 0.944106i \(0.606928\pi\)
\(444\) 0 0
\(445\) −261744. −1.32177
\(446\) 92318.7i 0.464109i
\(447\) 0 0
\(448\) 136555. 136555.i 0.680382 0.680382i
\(449\) −128000. 128000.i −0.634920 0.634920i 0.314378 0.949298i \(-0.398204\pi\)
−0.949298 + 0.314378i \(0.898204\pi\)
\(450\) 0 0
\(451\) 110320. 0.542379
\(452\) 310567.i 1.52012i
\(453\) 0 0
\(454\) 72415.2i 0.351332i
\(455\) −11276.1 + 489433.i −0.0544676 + 2.36412i
\(456\) 0 0
\(457\) −162330. + 162330.i −0.777258 + 0.777258i −0.979364 0.202105i \(-0.935222\pi\)
0.202105 + 0.979364i \(0.435222\pi\)
\(458\) 49755.7 0.237199
\(459\) 0 0
\(460\) 197766. 197766.i 0.934623 0.934623i
\(461\) 78988.5 78988.5i 0.371674 0.371674i −0.496413 0.868087i \(-0.665350\pi\)
0.868087 + 0.496413i \(0.165350\pi\)
\(462\) 0 0
\(463\) 3183.80 + 3183.80i 0.0148520 + 0.0148520i 0.714494 0.699642i \(-0.246657\pi\)
−0.699642 + 0.714494i \(0.746657\pi\)
\(464\) −40029.5 −0.185928
\(465\) 0 0
\(466\) 70434.6 + 70434.6i 0.324350 + 0.324350i
\(467\) 178606.i 0.818959i −0.912319 0.409479i \(-0.865710\pi\)
0.912319 0.409479i \(-0.134290\pi\)
\(468\) 0 0
\(469\) −305851. −1.39048
\(470\) −93892.7 + 93892.7i −0.425046 + 0.425046i
\(471\) 0 0
\(472\) 215011.i 0.965110i
\(473\) −77333.6 + 77333.6i −0.345658 + 0.345658i
\(474\) 0 0
\(475\) 177364. + 177364.i 0.786100 + 0.786100i
\(476\) 64485.7 + 64485.7i 0.284609 + 0.284609i
\(477\) 0 0
\(478\) 11281.1i 0.0493738i
\(479\) 127290. + 127290.i 0.554785 + 0.554785i 0.927818 0.373033i \(-0.121682\pi\)
−0.373033 + 0.927818i \(0.621682\pi\)
\(480\) 0 0
\(481\) −127888. + 122127.i −0.552762 + 0.527865i
\(482\) −6449.82 −0.0277622
\(483\) 0 0
\(484\) 159991. 0.682976
\(485\) 63055.0i 0.268063i
\(486\) 0 0
\(487\) −19975.0 + 19975.0i −0.0842227 + 0.0842227i −0.747963 0.663740i \(-0.768968\pi\)
0.663740 + 0.747963i \(0.268968\pi\)
\(488\) 74142.1 + 74142.1i 0.311333 + 0.311333i
\(489\) 0 0
\(490\) 150567. 0.627102
\(491\) 119626.i 0.496205i −0.968734 0.248103i \(-0.920193\pi\)
0.968734 0.248103i \(-0.0798070\pi\)
\(492\) 0 0
\(493\) 15358.6i 0.0631913i
\(494\) −62993.1 1451.31i −0.258130 0.00594712i
\(495\) 0 0
\(496\) −21970.1 + 21970.1i −0.0893034 + 0.0893034i
\(497\) −595368. −2.41031
\(498\) 0 0
\(499\) 42223.1 42223.1i 0.169570 0.169570i −0.617220 0.786790i \(-0.711741\pi\)
0.786790 + 0.617220i \(0.211741\pi\)
\(500\) −36239.2 + 36239.2i −0.144957 + 0.144957i
\(501\) 0 0
\(502\) 44687.0 + 44687.0i 0.177327 + 0.177327i
\(503\) −325582. −1.28684 −0.643419 0.765514i \(-0.722485\pi\)
−0.643419 + 0.765514i \(0.722485\pi\)
\(504\) 0 0
\(505\) −42391.0 42391.0i −0.166223 0.166223i
\(506\) 34153.4i 0.133393i
\(507\) 0 0
\(508\) −132281. −0.512589
\(509\) −19696.3 + 19696.3i −0.0760238 + 0.0760238i −0.744096 0.668072i \(-0.767120\pi\)
0.668072 + 0.744096i \(0.267120\pi\)
\(510\) 0 0
\(511\) 685311.i 2.62450i
\(512\) −182085. + 182085.i −0.694600 + 0.694600i
\(513\) 0 0
\(514\) −37861.5 37861.5i −0.143308 0.143308i
\(515\) −434937. 434937.i −1.63988 1.63988i
\(516\) 0 0
\(517\) 210869.i 0.788918i
\(518\) 62487.9 + 62487.9i 0.232882 + 0.232882i
\(519\) 0 0
\(520\) 4706.93 204301.i 0.0174073 0.755551i
\(521\) −88391.6 −0.325638 −0.162819 0.986656i \(-0.552059\pi\)
−0.162819 + 0.986656i \(0.552059\pi\)
\(522\) 0 0
\(523\) 170185. 0.622184 0.311092 0.950380i \(-0.399305\pi\)
0.311092 + 0.950380i \(0.399305\pi\)
\(524\) 291280.i 1.06084i
\(525\) 0 0
\(526\) 11268.9 11268.9i 0.0407296 0.0407296i
\(527\) −8429.52 8429.52i −0.0303516 0.0303516i
\(528\) 0 0
\(529\) 16199.6 0.0578886
\(530\) 215658.i 0.767738i
\(531\) 0 0
\(532\) 409498.i 1.44687i
\(533\) 206912. + 216671.i 0.728335 + 0.762687i
\(534\) 0 0
\(535\) 58353.5 58353.5i 0.203873 0.203873i
\(536\) 127669. 0.444383
\(537\) 0 0
\(538\) 42101.6 42101.6i 0.145457 0.145457i
\(539\) 169076. 169076.i 0.581975 0.581975i
\(540\) 0 0
\(541\) −335088. 335088.i −1.14489 1.14489i −0.987543 0.157348i \(-0.949706\pi\)
−0.157348 0.987543i \(-0.550294\pi\)
\(542\) 6954.43 0.0236735
\(543\) 0 0
\(544\) −40875.1 40875.1i −0.138121 0.138121i
\(545\) 215530.i 0.725630i
\(546\) 0 0
\(547\) −55273.4 −0.184732 −0.0923658 0.995725i \(-0.529443\pi\)
−0.0923658 + 0.995725i \(0.529443\pi\)
\(548\) −219793. + 219793.i −0.731903 + 0.731903i
\(549\) 0 0
\(550\) 47831.0i 0.158119i
\(551\) −48765.2 + 48765.2i −0.160623 + 0.160623i
\(552\) 0 0
\(553\) −333718. 333718.i −1.09126 1.09126i
\(554\) 57978.3 + 57978.3i 0.188906 + 0.188906i
\(555\) 0 0
\(556\) 433918.i 1.40365i
\(557\) 261902. + 261902.i 0.844167 + 0.844167i 0.989398 0.145231i \(-0.0463926\pi\)
−0.145231 + 0.989398i \(0.546393\pi\)
\(558\) 0 0
\(559\) −296928. 6840.99i −0.950227 0.0218925i
\(560\) 586508. 1.87024
\(561\) 0 0
\(562\) −38388.6 −0.121543
\(563\) 451899.i 1.42569i 0.701323 + 0.712844i \(0.252593\pi\)
−0.701323 + 0.712844i \(0.747407\pi\)
\(564\) 0 0
\(565\) 541886. 541886.i 1.69751 1.69751i
\(566\) −31176.3 31176.3i −0.0973175 0.0973175i
\(567\) 0 0
\(568\) 248521. 0.770311
\(569\) 444187.i 1.37196i −0.727621 0.685979i \(-0.759374\pi\)
0.727621 0.685979i \(-0.240626\pi\)
\(570\) 0 0
\(571\) 388114.i 1.19038i 0.803584 + 0.595192i \(0.202924\pi\)
−0.803584 + 0.595192i \(0.797076\pi\)
\(572\) −107915. 113005.i −0.329831 0.345388i
\(573\) 0 0
\(574\) 105869. 105869.i 0.321325 0.321325i
\(575\) 369223. 1.11674
\(576\) 0 0
\(577\) −399739. + 399739.i −1.20067 + 1.20067i −0.226711 + 0.973962i \(0.572797\pi\)
−0.973962 + 0.226711i \(0.927203\pi\)
\(578\) −58564.5 + 58564.5i −0.175299 + 0.175299i
\(579\) 0 0
\(580\) −76150.4 76150.4i −0.226369 0.226369i
\(581\) −80804.6 −0.239378
\(582\) 0 0
\(583\) −242167. 242167.i −0.712489 0.712489i
\(584\) 286065.i 0.838764i
\(585\) 0 0
\(586\) −34483.4 −0.100419
\(587\) 88922.4 88922.4i 0.258069 0.258069i −0.566200 0.824268i \(-0.691587\pi\)
0.824268 + 0.566200i \(0.191587\pi\)
\(588\) 0 0
\(589\) 53529.3i 0.154298i
\(590\) 180634. 180634.i 0.518913 0.518913i
\(591\) 0 0
\(592\) 149802. + 149802.i 0.427439 + 0.427439i
\(593\) 221413. + 221413.i 0.629641 + 0.629641i 0.947978 0.318337i \(-0.103124\pi\)
−0.318337 + 0.947978i \(0.603124\pi\)
\(594\) 0 0
\(595\) 225033.i 0.635641i
\(596\) −67177.9 67177.9i −0.189118 0.189118i
\(597\) 0 0
\(598\) −67077.9 + 64056.7i −0.187576 + 0.179127i
\(599\) 400910. 1.11736 0.558681 0.829383i \(-0.311308\pi\)
0.558681 + 0.829383i \(0.311308\pi\)
\(600\) 0 0
\(601\) 214969. 0.595149 0.297575 0.954699i \(-0.403822\pi\)
0.297575 + 0.954699i \(0.403822\pi\)
\(602\) 148426.i 0.409561i
\(603\) 0 0
\(604\) −90458.3 + 90458.3i −0.247956 + 0.247956i
\(605\) 279157. + 279157.i 0.762672 + 0.762672i
\(606\) 0 0
\(607\) 597701. 1.62221 0.811104 0.584901i \(-0.198867\pi\)
0.811104 + 0.584901i \(0.198867\pi\)
\(608\) 259566.i 0.702167i
\(609\) 0 0
\(610\) 124576.i 0.334790i
\(611\) −414150. + 395497.i −1.10937 + 1.05940i
\(612\) 0 0
\(613\) −160710. + 160710.i −0.427684 + 0.427684i −0.887839 0.460155i \(-0.847794\pi\)
0.460155 + 0.887839i \(0.347794\pi\)
\(614\) −114123. −0.302717
\(615\) 0 0
\(616\) −114678. + 114678.i −0.302218 + 0.302218i
\(617\) −59850.2 + 59850.2i −0.157216 + 0.157216i −0.781332 0.624116i \(-0.785459\pi\)
0.624116 + 0.781332i \(0.285459\pi\)
\(618\) 0 0
\(619\) 377131. + 377131.i 0.984264 + 0.984264i 0.999878 0.0156145i \(-0.00497045\pi\)
−0.0156145 + 0.999878i \(0.504970\pi\)
\(620\) −83589.9 −0.217456
\(621\) 0 0
\(622\) −40110.4 40110.4i −0.103675 0.103675i
\(623\) 564118.i 1.45343i
\(624\) 0 0
\(625\) 322968. 0.826797
\(626\) 35175.1 35175.1i 0.0897607 0.0897607i
\(627\) 0 0
\(628\) 188703.i 0.478475i
\(629\) −57476.3 + 57476.3i −0.145274 + 0.145274i
\(630\) 0 0
\(631\) −51852.3 51852.3i −0.130230 0.130230i 0.638988 0.769217i \(-0.279354\pi\)
−0.769217 + 0.638988i \(0.779354\pi\)
\(632\) 139302. + 139302.i 0.348757 + 0.348757i
\(633\) 0 0
\(634\) 49550.2i 0.123273i
\(635\) −230807. 230807.i −0.572403 0.572403i
\(636\) 0 0
\(637\) 649179. + 14956.6i 1.59987 + 0.0368598i
\(638\) 13150.9 0.0323082
\(639\) 0 0
\(640\) −532274. −1.29950
\(641\) 174399.i 0.424450i −0.977221 0.212225i \(-0.931929\pi\)
0.977221 0.212225i \(-0.0680710\pi\)
\(642\) 0 0
\(643\) −46308.4 + 46308.4i −0.112005 + 0.112005i −0.760888 0.648883i \(-0.775236\pi\)
0.648883 + 0.760888i \(0.275236\pi\)
\(644\) −426232. 426232.i −1.02772 1.02772i
\(645\) 0 0
\(646\) −28963.2 −0.0694034
\(647\) 158276.i 0.378099i 0.981968 + 0.189050i \(0.0605407\pi\)
−0.981968 + 0.189050i \(0.939459\pi\)
\(648\) 0 0
\(649\) 405676.i 0.963141i
\(650\) 93940.9 89709.7i 0.222345 0.212331i
\(651\) 0 0
\(652\) −278609. + 278609.i −0.655390 + 0.655390i
\(653\) −251177. −0.589052 −0.294526 0.955643i \(-0.595162\pi\)
−0.294526 + 0.955643i \(0.595162\pi\)
\(654\) 0 0
\(655\) 508233. 508233.i 1.18462 1.18462i
\(656\) 253799. 253799.i 0.589769 0.589769i
\(657\) 0 0
\(658\) 202360. + 202360.i 0.467384 + 0.467384i
\(659\) 514739. 1.18527 0.592634 0.805472i \(-0.298088\pi\)
0.592634 + 0.805472i \(0.298088\pi\)
\(660\) 0 0
\(661\) −99888.1 99888.1i −0.228618 0.228618i 0.583497 0.812115i \(-0.301684\pi\)
−0.812115 + 0.583497i \(0.801684\pi\)
\(662\) 15454.6i 0.0352649i
\(663\) 0 0
\(664\) 33729.8 0.0765028
\(665\) 714503. 714503.i 1.61570 1.61570i
\(666\) 0 0
\(667\) 101516.i 0.228182i
\(668\) −173593. + 173593.i −0.389028 + 0.389028i
\(669\) 0 0
\(670\) 107257. + 107257.i 0.238932 + 0.238932i
\(671\) 139889. + 139889.i 0.310698 + 0.310698i
\(672\) 0 0
\(673\) 852495.i 1.88218i −0.338153 0.941091i \(-0.609802\pi\)
0.338153 0.941091i \(-0.390198\pi\)
\(674\) 62868.4 + 62868.4i 0.138392 + 0.138392i
\(675\) 0 0
\(676\) 19542.8 423895.i 0.0427655 0.927610i
\(677\) 90015.3 0.196399 0.0981994 0.995167i \(-0.468692\pi\)
0.0981994 + 0.995167i \(0.468692\pi\)
\(678\) 0 0
\(679\) 135898. 0.294764
\(680\) 93934.0i 0.203144i
\(681\) 0 0
\(682\) 7217.82 7217.82i 0.0155181 0.0155181i
\(683\) −231496. 231496.i −0.496252 0.496252i 0.414017 0.910269i \(-0.364125\pi\)
−0.910269 + 0.414017i \(0.864125\pi\)
\(684\) 0 0
\(685\) −767003. −1.63462
\(686\) 121728.i 0.258668i
\(687\) 0 0
\(688\) 355822.i 0.751719i
\(689\) 21422.3 929819.i 0.0451261 1.95866i
\(690\) 0 0
\(691\) −34118.8 + 34118.8i −0.0714558 + 0.0714558i −0.741931 0.670476i \(-0.766090\pi\)
0.670476 + 0.741931i \(0.266090\pi\)
\(692\) 454790. 0.949726
\(693\) 0 0
\(694\) −85758.5 + 85758.5i −0.178057 + 0.178057i
\(695\) −757111. + 757111.i −1.56744 + 1.56744i
\(696\) 0 0
\(697\) 97378.1 + 97378.1i 0.200445 + 0.200445i
\(698\) −128642. −0.264041
\(699\) 0 0
\(700\) 596927. + 596927.i 1.21822 + 1.21822i
\(701\) 413503.i 0.841479i 0.907182 + 0.420739i \(0.138229\pi\)
−0.907182 + 0.420739i \(0.861771\pi\)
\(702\) 0 0
\(703\) 364987. 0.738527
\(704\) −107549. + 107549.i −0.217000 + 0.217000i
\(705\) 0 0
\(706\) 217533.i 0.436432i
\(707\) −91362.3 + 91362.3i −0.182780 + 0.182780i
\(708\) 0 0
\(709\) −256055. 256055.i −0.509379 0.509379i 0.404957 0.914336i \(-0.367287\pi\)
−0.914336 + 0.404957i \(0.867287\pi\)
\(710\) 208786. + 208786.i 0.414175 + 0.414175i
\(711\) 0 0
\(712\) 235476.i 0.464501i
\(713\) 55716.7 + 55716.7i 0.109599 + 0.109599i
\(714\) 0 0
\(715\) 8880.89 385469.i 0.0173718 0.754010i
\(716\) 54914.5 0.107118
\(717\) 0 0
\(718\) −93400.8 −0.181176
\(719\) 115639.i 0.223691i −0.993726 0.111845i \(-0.964324\pi\)
0.993726 0.111845i \(-0.0356761\pi\)
\(720\) 0 0
\(721\) −937390. + 937390.i −1.80322 + 1.80322i
\(722\) −6535.87 6535.87i −0.0125380 0.0125380i
\(723\) 0 0
\(724\) 146656. 0.279784
\(725\) 142170.i 0.270479i
\(726\) 0 0
\(727\) 754304.i 1.42718i 0.700565 + 0.713588i \(0.252931\pi\)
−0.700565 + 0.713588i \(0.747069\pi\)
\(728\) −440316. 10144.5i −0.830809 0.0191412i
\(729\) 0 0
\(730\) 240327. 240327.i 0.450980 0.450980i
\(731\) −136522. −0.255487
\(732\) 0 0
\(733\) −286004. + 286004.i −0.532310 + 0.532310i −0.921259 0.388949i \(-0.872838\pi\)
0.388949 + 0.921259i \(0.372838\pi\)
\(734\) −63325.2 + 63325.2i −0.117540 + 0.117540i
\(735\) 0 0
\(736\) 270173. + 270173.i 0.498753 + 0.498753i
\(737\) 240883. 0.443476
\(738\) 0 0
\(739\) −491973. 491973.i −0.900850 0.900850i 0.0946597 0.995510i \(-0.469824\pi\)
−0.995510 + 0.0946597i \(0.969824\pi\)
\(740\) 569954.i 1.04082i
\(741\) 0 0
\(742\) −464792. −0.844210
\(743\) 30681.5 30681.5i 0.0555776 0.0555776i −0.678772 0.734349i \(-0.737487\pi\)
0.734349 + 0.678772i \(0.237487\pi\)
\(744\) 0 0
\(745\) 234428.i 0.422373i
\(746\) −154520. + 154520.i −0.277656 + 0.277656i
\(747\) 0 0
\(748\) −50787.8 50787.8i −0.0907728 0.0907728i
\(749\) −125765. 125765.i −0.224180 0.224180i
\(750\) 0 0
\(751\) 100355.i 0.177934i −0.996035 0.0889669i \(-0.971643\pi\)
0.996035 0.0889669i \(-0.0283565\pi\)
\(752\) 485118. + 485118.i 0.857850 + 0.857850i
\(753\) 0 0
\(754\) 24665.2 + 25828.5i 0.0433852 + 0.0454315i
\(755\) −315668. −0.553780
\(756\) 0 0
\(757\) 307678. 0.536915 0.268457 0.963292i \(-0.413486\pi\)
0.268457 + 0.963292i \(0.413486\pi\)
\(758\) 52180.8i 0.0908181i
\(759\) 0 0
\(760\) −298251. + 298251.i −0.516362 + 0.516362i
\(761\) −42256.7 42256.7i −0.0729670 0.0729670i 0.669681 0.742648i \(-0.266431\pi\)
−0.742648 + 0.669681i \(0.766431\pi\)
\(762\) 0 0
\(763\) −464518. −0.797908
\(764\) 428035.i 0.733319i
\(765\) 0 0
\(766\) 48587.7i 0.0828074i
\(767\) 796754. 760868.i 1.35436 1.29336i
\(768\) 0 0
\(769\) 257148. 257148.i 0.434841 0.434841i −0.455431 0.890271i \(-0.650515\pi\)
0.890271 + 0.455431i \(0.150515\pi\)
\(770\) −192685. −0.324988
\(771\) 0 0
\(772\) −224230. + 224230.i −0.376235 + 0.376235i
\(773\) −503211. + 503211.i −0.842154 + 0.842154i −0.989139 0.146985i \(-0.953043\pi\)
0.146985 + 0.989139i \(0.453043\pi\)
\(774\) 0 0
\(775\) −78029.8 78029.8i −0.129914 0.129914i
\(776\) −56727.1 −0.0942035
\(777\) 0 0
\(778\) 67061.8 + 67061.8i 0.110794 + 0.110794i
\(779\) 618372.i 1.01900i
\(780\) 0 0
\(781\) 468902. 0.768740
\(782\) −30146.7 + 30146.7i −0.0492977 + 0.0492977i
\(783\) 0 0
\(784\) 777939.i 1.26565i
\(785\) 329254. 329254.i 0.534308 0.534308i
\(786\) 0 0
\(787\) −170363. 170363.i −0.275060 0.275060i 0.556073 0.831133i \(-0.312307\pi\)
−0.831133 + 0.556073i \(0.812307\pi\)
\(788\) −210158. 210158.i −0.338449 0.338449i
\(789\) 0 0
\(790\) 234059.i 0.375034i
\(791\) −1.16789e6 1.16789e6i −1.86659 1.86659i
\(792\) 0 0
\(793\) −12374.7 + 537114.i −0.0196783 + 0.854122i
\(794\) −149515. −0.237162
\(795\) 0 0
\(796\) −165570. −0.261310
\(797\) 1.00145e6i 1.57657i 0.615312 + 0.788284i \(0.289030\pi\)
−0.615312 + 0.788284i \(0.710970\pi\)
\(798\) 0 0
\(799\) −186131. + 186131.i −0.291558 + 0.291558i
\(800\) −378370. 378370.i −0.591203 0.591203i
\(801\) 0 0
\(802\) −13252.4 −0.0206037
\(803\) 539739.i 0.837053i
\(804\) 0 0
\(805\) 1.48740e6i 2.29528i
\(806\) 27713.3 + 638.494i 0.0426598 + 0.000982849i
\(807\) 0 0
\(808\) 38136.8 38136.8i 0.0584146 0.0584146i
\(809\) −483971. −0.739473 −0.369736 0.929137i \(-0.620552\pi\)
−0.369736 + 0.929137i \(0.620552\pi\)
\(810\) 0 0
\(811\) 573330. 573330.i 0.871692 0.871692i −0.120965 0.992657i \(-0.538599\pi\)
0.992657 + 0.120965i \(0.0385989\pi\)
\(812\) −164122. + 164122.i −0.248917 + 0.248917i
\(813\) 0 0
\(814\) −49214.4 49214.4i −0.0742751 0.0742751i
\(815\) −972250. −1.46374
\(816\) 0 0
\(817\) 433474. + 433474.i 0.649409 + 0.649409i
\(818\) 136783.i 0.204421i
\(819\) 0 0
\(820\) 965634. 1.43610
\(821\) −393694. + 393694.i −0.584081 + 0.584081i −0.936022 0.351941i \(-0.885522\pi\)
0.351941 + 0.936022i \(0.385522\pi\)
\(822\) 0 0
\(823\) 704258.i 1.03976i 0.854240 + 0.519879i \(0.174023\pi\)
−0.854240 + 0.519879i \(0.825977\pi\)
\(824\) 391289. 391289.i 0.576292 0.576292i
\(825\) 0 0
\(826\) −389307. 389307.i −0.570600 0.570600i
\(827\) 222716. + 222716.i 0.325642 + 0.325642i 0.850927 0.525285i \(-0.176041\pi\)
−0.525285 + 0.850927i \(0.676041\pi\)
\(828\) 0 0
\(829\) 511137.i 0.743753i 0.928282 + 0.371876i \(0.121285\pi\)
−0.928282 + 0.371876i \(0.878715\pi\)
\(830\) 28336.8 + 28336.8i 0.0411334 + 0.0411334i
\(831\) 0 0
\(832\) −412941. 9513.83i −0.596542 0.0137439i
\(833\) 298481. 0.430157
\(834\) 0 0
\(835\) −605781. −0.868846
\(836\) 322513.i 0.461461i
\(837\) 0 0
\(838\) −193442. + 193442.i −0.275462 + 0.275462i
\(839\) −265771. 265771.i −0.377558 0.377558i 0.492663 0.870220i \(-0.336024\pi\)
−0.870220 + 0.492663i \(0.836024\pi\)
\(840\) 0 0
\(841\) −668192. −0.944734
\(842\) 124490.i 0.175594i
\(843\) 0 0
\(844\) 105347.i 0.147889i
\(845\) 773723. 705526.i 1.08361 0.988096i
\(846\) 0 0
\(847\) 601648. 601648.i 0.838640 0.838640i
\(848\) −1.11424e6 −1.54949
\(849\) 0 0
\(850\) 42219.7 42219.7i 0.0584356 0.0584356i
\(851\) 379902. 379902.i 0.524581 0.524581i
\(852\) 0 0
\(853\) −73021.9 73021.9i −0.100359 0.100359i 0.655145 0.755503i \(-0.272608\pi\)
−0.755503 + 0.655145i \(0.772608\pi\)
\(854\) 268489. 0.368138
\(855\) 0 0
\(856\) 52497.5 + 52497.5i 0.0716458 + 0.0716458i
\(857\) 361781.i 0.492588i −0.969195 0.246294i \(-0.920787\pi\)
0.969195 0.246294i \(-0.0792128\pi\)
\(858\) 0 0
\(859\) 441391. 0.598188 0.299094 0.954224i \(-0.403316\pi\)
0.299094 + 0.954224i \(0.403316\pi\)
\(860\) −676901. + 676901.i −0.915225 + 0.915225i
\(861\) 0 0
\(862\) 272893.i 0.367264i
\(863\) 995991. 995991.i 1.33732 1.33732i 0.438665 0.898651i \(-0.355452\pi\)
0.898651 0.438665i \(-0.144548\pi\)
\(864\) 0 0
\(865\) 793529. + 793529.i 1.06055 + 1.06055i
\(866\) −188397. 188397.i −0.251211 0.251211i
\(867\) 0 0
\(868\) 180156.i 0.239116i
\(869\) 262830. + 262830.i 0.348045 + 0.348045i
\(870\) 0 0
\(871\) 451789. + 473097.i 0.595524 + 0.623612i
\(872\) 193901. 0.255004
\(873\) 0 0
\(874\) 191438. 0.250614
\(875\) 272556.i 0.355991i
\(876\) 0 0
\(877\) 182081. 182081.i 0.236736 0.236736i −0.578761 0.815497i \(-0.696464\pi\)
0.815497 + 0.578761i \(0.196464\pi\)
\(878\) 164793. + 164793.i 0.213771 + 0.213771i
\(879\) 0 0
\(880\) −461924. −0.596492
\(881\) 1.36681e6i 1.76099i 0.474054 + 0.880496i \(0.342790\pi\)
−0.474054 + 0.880496i \(0.657210\pi\)
\(882\) 0 0
\(883\) 564414.i 0.723896i 0.932198 + 0.361948i \(0.117888\pi\)
−0.932198 + 0.361948i \(0.882112\pi\)
\(884\) 4492.72 195003.i 0.00574917 0.249538i
\(885\) 0 0
\(886\) 97789.0 97789.0i 0.124573 0.124573i
\(887\) 110785. 0.140811 0.0704053 0.997518i \(-0.477571\pi\)
0.0704053 + 0.997518i \(0.477571\pi\)
\(888\) 0 0
\(889\) −497442. + 497442.i −0.629418 + 0.629418i
\(890\) 197827. 197827.i 0.249750 0.249750i
\(891\) 0 0
\(892\) −907397. 907397.i −1.14043 1.14043i
\(893\) 1.18197e6 1.48219
\(894\) 0 0
\(895\) 95816.3 + 95816.3i 0.119617 + 0.119617i
\(896\) 1.14717e6i 1.42894i
\(897\) 0 0
\(898\) 193486. 0.239937
\(899\) 21453.9 21453.9i 0.0265452 0.0265452i
\(900\) 0 0
\(901\) 427515.i 0.526625i
\(902\) −83380.5 + 83380.5i −0.102483 + 0.102483i
\(903\) 0 0
\(904\) 487505. + 487505.i 0.596544 + 0.596544i
\(905\) 255889. + 255889.i 0.312431 + 0.312431i
\(906\) 0 0
\(907\) 966035.i 1.17430i −0.809479 0.587149i \(-0.800250\pi\)
0.809479 0.587149i \(-0.199750\pi\)
\(908\) 711766. + 711766.i 0.863308 + 0.863308i
\(909\) 0 0
\(910\) −361392. 378437.i −0.436411 0.456995i
\(911\) 1.12436e6 1.35478 0.677392 0.735622i \(-0.263110\pi\)
0.677392 + 0.735622i \(0.263110\pi\)
\(912\) 0 0
\(913\) 63640.3 0.0763467
\(914\) 245379.i 0.293727i
\(915\) 0 0
\(916\) 489047. 489047.i 0.582854 0.582854i
\(917\) −1.09536e6 1.09536e6i −1.30262 1.30262i
\(918\) 0 0
\(919\) −71843.6 −0.0850662 −0.0425331 0.999095i \(-0.513543\pi\)
−0.0425331 + 0.999095i \(0.513543\pi\)
\(920\) 620877.i 0.733550i
\(921\) 0 0
\(922\) 119400.i 0.140456i
\(923\) 879451. + 920930.i 1.03231 + 1.08099i
\(924\) 0 0
\(925\) −532043. + 532043.i −0.621818 + 0.621818i
\(926\) −4812.66 −0.00561259
\(927\) 0 0
\(928\) 104031. 104031.i 0.120800 0.120800i
\(929\) 767314. 767314.i 0.889082 0.889082i −0.105353 0.994435i \(-0.533597\pi\)
0.994435 + 0.105353i \(0.0335974\pi\)
\(930\) 0 0
\(931\) −947711. 947711.i −1.09339 1.09339i
\(932\) 1.38460e6 1.59401
\(933\) 0 0
\(934\) 134991. + 134991.i 0.154743 + 0.154743i
\(935\) 177232.i 0.202730i
\(936\) 0 0
\(937\) −52590.1 −0.0598997 −0.0299499 0.999551i \(-0.509535\pi\)
−0.0299499 + 0.999551i \(0.509535\pi\)
\(938\) 231163. 231163.i 0.262732 0.262732i
\(939\) 0 0
\(940\) 1.84574e6i 2.08888i
\(941\) 50182.4 50182.4i 0.0566725 0.0566725i −0.678203 0.734875i \(-0.737241\pi\)
0.734875 + 0.678203i \(0.237241\pi\)
\(942\) 0 0
\(943\) −643641. 643641.i −0.723803 0.723803i
\(944\) −933283. 933283.i −1.04730 1.04730i
\(945\) 0 0
\(946\) 116898.i 0.130625i
\(947\) −661892. 661892.i −0.738053 0.738053i 0.234148 0.972201i \(-0.424770\pi\)
−0.972201 + 0.234148i \(0.924770\pi\)
\(948\) 0 0
\(949\) 1.06006e6 1.01231e6i 1.17705 1.12404i
\(950\) −268104. −0.297068
\(951\) 0 0
\(952\) −202449. −0.223379
\(953\) 1.38652e6i 1.52665i 0.646015 + 0.763325i \(0.276434\pi\)
−0.646015 + 0.763325i \(0.723566\pi\)
\(954\) 0 0
\(955\) −746848. + 746848.i −0.818889 + 0.818889i
\(956\) 110882. + 110882.i 0.121323 + 0.121323i
\(957\) 0 0
\(958\) −192413. −0.209654
\(959\) 1.65307e6i 1.79744i
\(960\) 0 0
\(961\) 899971.i 0.974500i
\(962\) 4353.54 188962.i 0.00470427 0.204185i
\(963\) 0 0
\(964\) −63395.0 + 63395.0i −0.0682183 + 0.0682183i
\(965\) −782485. −0.840275
\(966\) 0 0
\(967\) 975365. 975365.i 1.04307 1.04307i 0.0440424 0.999030i \(-0.485976\pi\)
0.999030 0.0440424i \(-0.0140237\pi\)
\(968\) −251142. + 251142.i −0.268021 + 0.268021i
\(969\) 0 0
\(970\) −47657.2 47657.2i −0.0506506 0.0506506i
\(971\) −850441. −0.901999 −0.450999 0.892524i \(-0.648932\pi\)
−0.450999 + 0.892524i \(0.648932\pi\)
\(972\) 0 0
\(973\) 1.63175e6 + 1.63175e6i 1.72357 + 1.72357i
\(974\) 30194.4i 0.0318279i
\(975\) 0 0
\(976\) 643647. 0.675691
\(977\) 418372. 418372.i 0.438302 0.438302i −0.453138 0.891440i \(-0.649696\pi\)
0.891440 + 0.453138i \(0.149696\pi\)
\(978\) 0 0
\(979\) 444289.i 0.463554i
\(980\) 1.47992e6 1.47992e6i 1.54094 1.54094i
\(981\) 0 0
\(982\) 90413.4 + 90413.4i 0.0937584 + 0.0937584i
\(983\) 84309.7 + 84309.7i 0.0872511 + 0.0872511i 0.749385 0.662134i \(-0.230349\pi\)
−0.662134 + 0.749385i \(0.730349\pi\)
\(984\) 0 0
\(985\) 733377.i 0.755884i
\(986\) 11608.1 + 11608.1i 0.0119400 + 0.0119400i
\(987\) 0 0
\(988\) −633422. + 604892.i −0.648902 + 0.619675i
\(989\) 902374. 0.922559
\(990\) 0 0
\(991\) −1.44435e6 −1.47070 −0.735351 0.677686i \(-0.762983\pi\)
−0.735351 + 0.677686i \(0.762983\pi\)
\(992\) 114194.i 0.116043i
\(993\) 0 0
\(994\) 449981. 449981.i 0.455430 0.455430i
\(995\) −288891. 288891.i −0.291802 0.291802i
\(996\) 0 0
\(997\) 1.78714e6 1.79791 0.898954 0.438043i \(-0.144328\pi\)
0.898954 + 0.438043i \(0.144328\pi\)
\(998\) 63824.8i 0.0640809i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.5.j.b.109.5 20
3.2 odd 2 39.5.g.a.31.6 20
13.8 odd 4 inner 117.5.j.b.73.5 20
39.8 even 4 39.5.g.a.34.6 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.5.g.a.31.6 20 3.2 odd 2
39.5.g.a.34.6 yes 20 39.8 even 4
117.5.j.b.73.5 20 13.8 odd 4 inner
117.5.j.b.109.5 20 1.1 even 1 trivial