Properties

Label 117.5.j.b.109.10
Level $117$
Weight $5$
Character 117.109
Analytic conductor $12.094$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,5,Mod(73,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.73");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 117.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.0942856808\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 5446 x^{16} - 1452 x^{15} + 106320 x^{13} + 8376897 x^{12} - 1643220 x^{11} + 1054152 x^{10} + \cdots + 2103506496 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{22}\cdot 3^{10} \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 109.10
Root \(5.10926 - 5.10926i\) of defining polynomial
Character \(\chi\) \(=\) 117.109
Dual form 117.5.j.b.73.10

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(5.10926 - 5.10926i) q^{2} -36.2092i q^{4} +(-3.64937 + 3.64937i) q^{5} +(-17.1355 - 17.1355i) q^{7} +(-103.254 - 103.254i) q^{8} +37.2912i q^{10} +(-114.571 - 114.571i) q^{11} +(28.1152 - 166.645i) q^{13} -175.100 q^{14} -475.757 q^{16} +378.636i q^{17} +(374.813 - 374.813i) q^{19} +(132.141 + 132.141i) q^{20} -1170.74 q^{22} +249.703i q^{23} +598.364i q^{25} +(-707.785 - 995.081i) q^{26} +(-620.464 + 620.464i) q^{28} +460.768 q^{29} +(1349.74 - 1349.74i) q^{31} +(-778.703 + 778.703i) q^{32} +(1934.55 + 1934.55i) q^{34} +125.068 q^{35} +(-644.748 - 644.748i) q^{37} -3830.04i q^{38} +753.623 q^{40} +(103.315 - 103.315i) q^{41} +1797.34i q^{43} +(-4148.51 + 4148.51i) q^{44} +(1275.80 + 1275.80i) q^{46} +(2089.67 + 2089.67i) q^{47} -1813.75i q^{49} +(3057.20 + 3057.20i) q^{50} +(-6034.07 - 1018.03i) q^{52} +663.144 q^{53} +836.222 q^{55} +3538.62i q^{56} +(2354.19 - 2354.19i) q^{58} +(-3213.29 - 3213.29i) q^{59} -1971.21 q^{61} -13792.4i q^{62} +345.097i q^{64} +(505.546 + 710.752i) q^{65} +(2419.73 - 2419.73i) q^{67} +13710.1 q^{68} +(639.005 - 639.005i) q^{70} +(3751.05 - 3751.05i) q^{71} +(3077.50 + 3077.50i) q^{73} -6588.37 q^{74} +(-13571.7 - 13571.7i) q^{76} +3926.46i q^{77} +5600.97 q^{79} +(1736.21 - 1736.21i) q^{80} -1055.72i q^{82} +(-7657.10 + 7657.10i) q^{83} +(-1381.78 - 1381.78i) q^{85} +(9183.09 + 9183.09i) q^{86} +23659.7i q^{88} +(-187.625 - 187.625i) q^{89} +(-3337.32 + 2373.78i) q^{91} +9041.54 q^{92} +21353.3 q^{94} +2735.66i q^{95} +(-1371.54 + 1371.54i) q^{97} +(-9266.91 - 9266.91i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 24 q^{5} - 24 q^{7} - 372 q^{11} - 224 q^{13} - 480 q^{14} - 2328 q^{16} - 840 q^{19} - 228 q^{20} + 3536 q^{22} + 828 q^{26} - 1984 q^{28} + 5064 q^{29} + 1712 q^{31} + 7260 q^{32} + 8040 q^{34}+ \cdots - 11544 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 5.10926 5.10926i 1.27732 1.27732i 0.335152 0.942164i \(-0.391212\pi\)
0.942164 0.335152i \(-0.108788\pi\)
\(3\) 0 0
\(4\) 36.2092i 2.26307i
\(5\) −3.64937 + 3.64937i −0.145975 + 0.145975i −0.776317 0.630342i \(-0.782914\pi\)
0.630342 + 0.776317i \(0.282914\pi\)
\(6\) 0 0
\(7\) −17.1355 17.1355i −0.349705 0.349705i 0.510295 0.860000i \(-0.329536\pi\)
−0.860000 + 0.510295i \(0.829536\pi\)
\(8\) −103.254 103.254i −1.61334 1.61334i
\(9\) 0 0
\(10\) 37.2912i 0.372912i
\(11\) −114.571 114.571i −0.946865 0.946865i 0.0517926 0.998658i \(-0.483507\pi\)
−0.998658 + 0.0517926i \(0.983507\pi\)
\(12\) 0 0
\(13\) 28.1152 166.645i 0.166362 0.986065i
\(14\) −175.100 −0.893367
\(15\) 0 0
\(16\) −475.757 −1.85842
\(17\) 378.636i 1.31016i 0.755560 + 0.655080i \(0.227365\pi\)
−0.755560 + 0.655080i \(0.772635\pi\)
\(18\) 0 0
\(19\) 374.813 374.813i 1.03826 1.03826i 0.0390244 0.999238i \(-0.487575\pi\)
0.999238 0.0390244i \(-0.0124250\pi\)
\(20\) 132.141 + 132.141i 0.330351 + 0.330351i
\(21\) 0 0
\(22\) −1170.74 −2.41889
\(23\) 249.703i 0.472029i 0.971750 + 0.236014i \(0.0758412\pi\)
−0.971750 + 0.236014i \(0.924159\pi\)
\(24\) 0 0
\(25\) 598.364i 0.957383i
\(26\) −707.785 995.081i −1.04702 1.47201i
\(27\) 0 0
\(28\) −620.464 + 620.464i −0.791408 + 0.791408i
\(29\) 460.768 0.547881 0.273941 0.961747i \(-0.411673\pi\)
0.273941 + 0.961747i \(0.411673\pi\)
\(30\) 0 0
\(31\) 1349.74 1349.74i 1.40452 1.40452i 0.619611 0.784909i \(-0.287290\pi\)
0.784909 0.619611i \(-0.212710\pi\)
\(32\) −778.703 + 778.703i −0.760453 + 0.760453i
\(33\) 0 0
\(34\) 1934.55 + 1934.55i 1.67349 + 1.67349i
\(35\) 125.068 0.102096
\(36\) 0 0
\(37\) −644.748 644.748i −0.470963 0.470963i 0.431263 0.902226i \(-0.358068\pi\)
−0.902226 + 0.431263i \(0.858068\pi\)
\(38\) 3830.04i 2.65238i
\(39\) 0 0
\(40\) 753.623 0.471015
\(41\) 103.315 103.315i 0.0614601 0.0614601i −0.675709 0.737169i \(-0.736162\pi\)
0.737169 + 0.675709i \(0.236162\pi\)
\(42\) 0 0
\(43\) 1797.34i 0.972061i 0.873942 + 0.486030i \(0.161556\pi\)
−0.873942 + 0.486030i \(0.838444\pi\)
\(44\) −4148.51 + 4148.51i −2.14282 + 2.14282i
\(45\) 0 0
\(46\) 1275.80 + 1275.80i 0.602930 + 0.602930i
\(47\) 2089.67 + 2089.67i 0.945980 + 0.945980i 0.998614 0.0526342i \(-0.0167617\pi\)
−0.0526342 + 0.998614i \(0.516762\pi\)
\(48\) 0 0
\(49\) 1813.75i 0.755413i
\(50\) 3057.20 + 3057.20i 1.22288 + 1.22288i
\(51\) 0 0
\(52\) −6034.07 1018.03i −2.23154 0.376490i
\(53\) 663.144 0.236078 0.118039 0.993009i \(-0.462339\pi\)
0.118039 + 0.993009i \(0.462339\pi\)
\(54\) 0 0
\(55\) 836.222 0.276437
\(56\) 3538.62i 1.12839i
\(57\) 0 0
\(58\) 2354.19 2354.19i 0.699818 0.699818i
\(59\) −3213.29 3213.29i −0.923093 0.923093i 0.0741541 0.997247i \(-0.476374\pi\)
−0.997247 + 0.0741541i \(0.976374\pi\)
\(60\) 0 0
\(61\) −1971.21 −0.529751 −0.264876 0.964283i \(-0.585331\pi\)
−0.264876 + 0.964283i \(0.585331\pi\)
\(62\) 13792.4i 3.58803i
\(63\) 0 0
\(64\) 345.097i 0.0842521i
\(65\) 505.546 + 710.752i 0.119656 + 0.168225i
\(66\) 0 0
\(67\) 2419.73 2419.73i 0.539035 0.539035i −0.384211 0.923245i \(-0.625526\pi\)
0.923245 + 0.384211i \(0.125526\pi\)
\(68\) 13710.1 2.96499
\(69\) 0 0
\(70\) 639.005 639.005i 0.130409 0.130409i
\(71\) 3751.05 3751.05i 0.744108 0.744108i −0.229257 0.973366i \(-0.573630\pi\)
0.973366 + 0.229257i \(0.0736298\pi\)
\(72\) 0 0
\(73\) 3077.50 + 3077.50i 0.577500 + 0.577500i 0.934214 0.356714i \(-0.116103\pi\)
−0.356714 + 0.934214i \(0.616103\pi\)
\(74\) −6588.37 −1.20314
\(75\) 0 0
\(76\) −13571.7 13571.7i −2.34966 2.34966i
\(77\) 3926.46i 0.662247i
\(78\) 0 0
\(79\) 5600.97 0.897447 0.448724 0.893671i \(-0.351879\pi\)
0.448724 + 0.893671i \(0.351879\pi\)
\(80\) 1736.21 1736.21i 0.271283 0.271283i
\(81\) 0 0
\(82\) 1055.72i 0.157008i
\(83\) −7657.10 + 7657.10i −1.11150 + 1.11150i −0.118549 + 0.992948i \(0.537824\pi\)
−0.992948 + 0.118549i \(0.962176\pi\)
\(84\) 0 0
\(85\) −1381.78 1381.78i −0.191250 0.191250i
\(86\) 9183.09 + 9183.09i 1.24163 + 1.24163i
\(87\) 0 0
\(88\) 23659.7i 3.05524i
\(89\) −187.625 187.625i −0.0236870 0.0236870i 0.695164 0.718851i \(-0.255332\pi\)
−0.718851 + 0.695164i \(0.755332\pi\)
\(90\) 0 0
\(91\) −3337.32 + 2373.78i −0.403009 + 0.286654i
\(92\) 9041.54 1.06824
\(93\) 0 0
\(94\) 21353.3 2.41663
\(95\) 2735.66i 0.303120i
\(96\) 0 0
\(97\) −1371.54 + 1371.54i −0.145769 + 0.145769i −0.776225 0.630456i \(-0.782868\pi\)
0.630456 + 0.776225i \(0.282868\pi\)
\(98\) −9266.91 9266.91i −0.964901 0.964901i
\(99\) 0 0
\(100\) 21666.3 2.16663
\(101\) 5770.48i 0.565678i 0.959167 + 0.282839i \(0.0912763\pi\)
−0.959167 + 0.282839i \(0.908724\pi\)
\(102\) 0 0
\(103\) 10514.1i 0.991053i 0.868593 + 0.495526i \(0.165025\pi\)
−0.868593 + 0.495526i \(0.834975\pi\)
\(104\) −20109.7 + 14303.7i −1.85926 + 1.32246i
\(105\) 0 0
\(106\) 3388.18 3388.18i 0.301547 0.301547i
\(107\) −14517.5 −1.26801 −0.634006 0.773328i \(-0.718591\pi\)
−0.634006 + 0.773328i \(0.718591\pi\)
\(108\) 0 0
\(109\) −5657.08 + 5657.08i −0.476145 + 0.476145i −0.903897 0.427751i \(-0.859306\pi\)
0.427751 + 0.903897i \(0.359306\pi\)
\(110\) 4272.48 4272.48i 0.353097 0.353097i
\(111\) 0 0
\(112\) 8152.35 + 8152.35i 0.649900 + 0.649900i
\(113\) 16972.1 1.32917 0.664584 0.747213i \(-0.268609\pi\)
0.664584 + 0.747213i \(0.268609\pi\)
\(114\) 0 0
\(115\) −911.259 911.259i −0.0689043 0.0689043i
\(116\) 16684.0i 1.23990i
\(117\) 0 0
\(118\) −32835.1 −2.35816
\(119\) 6488.14 6488.14i 0.458169 0.458169i
\(120\) 0 0
\(121\) 11611.9i 0.793108i
\(122\) −10071.4 + 10071.4i −0.676660 + 0.676660i
\(123\) 0 0
\(124\) −48873.1 48873.1i −3.17853 3.17853i
\(125\) −4464.51 4464.51i −0.285729 0.285729i
\(126\) 0 0
\(127\) 1663.77i 0.103154i 0.998669 + 0.0515770i \(0.0164247\pi\)
−0.998669 + 0.0515770i \(0.983575\pi\)
\(128\) −10696.1 10696.1i −0.652836 0.652836i
\(129\) 0 0
\(130\) 6214.39 + 1048.45i 0.367715 + 0.0620384i
\(131\) 15728.6 0.916530 0.458265 0.888816i \(-0.348471\pi\)
0.458265 + 0.888816i \(0.348471\pi\)
\(132\) 0 0
\(133\) −12845.2 −0.726171
\(134\) 24726.0i 1.37703i
\(135\) 0 0
\(136\) 39095.7 39095.7i 2.11374 2.11374i
\(137\) 4416.77 + 4416.77i 0.235323 + 0.235323i 0.814910 0.579587i \(-0.196786\pi\)
−0.579587 + 0.814910i \(0.696786\pi\)
\(138\) 0 0
\(139\) −25079.5 −1.29804 −0.649021 0.760771i \(-0.724821\pi\)
−0.649021 + 0.760771i \(0.724821\pi\)
\(140\) 4528.60i 0.231051i
\(141\) 0 0
\(142\) 38330.2i 1.90092i
\(143\) −22313.8 + 15871.4i −1.09119 + 0.776148i
\(144\) 0 0
\(145\) −1681.51 + 1681.51i −0.0799769 + 0.0799769i
\(146\) 31447.5 1.47530
\(147\) 0 0
\(148\) −23345.8 + 23345.8i −1.06582 + 1.06582i
\(149\) −23320.2 + 23320.2i −1.05041 + 1.05041i −0.0517510 + 0.998660i \(0.516480\pi\)
−0.998660 + 0.0517510i \(0.983520\pi\)
\(150\) 0 0
\(151\) 20735.4 + 20735.4i 0.909408 + 0.909408i 0.996224 0.0868168i \(-0.0276695\pi\)
−0.0868168 + 0.996224i \(0.527669\pi\)
\(152\) −77401.8 −3.35015
\(153\) 0 0
\(154\) 20061.3 + 20061.3i 0.845899 + 0.845899i
\(155\) 9851.43i 0.410049i
\(156\) 0 0
\(157\) −24799.3 −1.00610 −0.503048 0.864258i \(-0.667788\pi\)
−0.503048 + 0.864258i \(0.667788\pi\)
\(158\) 28616.8 28616.8i 1.14632 1.14632i
\(159\) 0 0
\(160\) 5683.55i 0.222014i
\(161\) 4278.80 4278.80i 0.165071 0.165071i
\(162\) 0 0
\(163\) 6464.65 + 6464.65i 0.243316 + 0.243316i 0.818220 0.574905i \(-0.194961\pi\)
−0.574905 + 0.818220i \(0.694961\pi\)
\(164\) −3740.93 3740.93i −0.139089 0.139089i
\(165\) 0 0
\(166\) 78244.3i 2.83947i
\(167\) −7697.87 7697.87i −0.276018 0.276018i 0.555499 0.831517i \(-0.312527\pi\)
−0.831517 + 0.555499i \(0.812527\pi\)
\(168\) 0 0
\(169\) −26980.1 9370.51i −0.944647 0.328088i
\(170\) −14119.8 −0.488574
\(171\) 0 0
\(172\) 65080.2 2.19984
\(173\) 10901.9i 0.364257i −0.983275 0.182129i \(-0.941701\pi\)
0.983275 0.182129i \(-0.0582987\pi\)
\(174\) 0 0
\(175\) 10253.3 10253.3i 0.334801 0.334801i
\(176\) 54507.8 + 54507.8i 1.75968 + 1.75968i
\(177\) 0 0
\(178\) −1917.25 −0.0605116
\(179\) 47477.0i 1.48176i 0.671638 + 0.740880i \(0.265591\pi\)
−0.671638 + 0.740880i \(0.734409\pi\)
\(180\) 0 0
\(181\) 48805.7i 1.48975i −0.667203 0.744876i \(-0.732509\pi\)
0.667203 0.744876i \(-0.267491\pi\)
\(182\) −4922.97 + 29179.5i −0.148623 + 0.880918i
\(183\) 0 0
\(184\) 25782.8 25782.8i 0.761544 0.761544i
\(185\) 4705.85 0.137497
\(186\) 0 0
\(187\) 43380.6 43380.6i 1.24054 1.24054i
\(188\) 75665.2 75665.2i 2.14082 2.14082i
\(189\) 0 0
\(190\) 13977.2 + 13977.2i 0.387180 + 0.387180i
\(191\) 5254.59 0.144036 0.0720182 0.997403i \(-0.477056\pi\)
0.0720182 + 0.997403i \(0.477056\pi\)
\(192\) 0 0
\(193\) 13302.8 + 13302.8i 0.357131 + 0.357131i 0.862754 0.505623i \(-0.168737\pi\)
−0.505623 + 0.862754i \(0.668737\pi\)
\(194\) 14015.1i 0.372386i
\(195\) 0 0
\(196\) −65674.2 −1.70955
\(197\) 19229.0 19229.0i 0.495477 0.495477i −0.414550 0.910027i \(-0.636061\pi\)
0.910027 + 0.414550i \(0.136061\pi\)
\(198\) 0 0
\(199\) 27677.4i 0.698906i 0.936954 + 0.349453i \(0.113632\pi\)
−0.936954 + 0.349453i \(0.886368\pi\)
\(200\) 61783.5 61783.5i 1.54459 1.54459i
\(201\) 0 0
\(202\) 29482.9 + 29482.9i 0.722550 + 0.722550i
\(203\) −7895.52 7895.52i −0.191597 0.191597i
\(204\) 0 0
\(205\) 754.066i 0.0179433i
\(206\) 53719.2 + 53719.2i 1.26589 + 1.26589i
\(207\) 0 0
\(208\) −13376.0 + 79282.4i −0.309171 + 1.83253i
\(209\) −85885.1 −1.96619
\(210\) 0 0
\(211\) 75928.5 1.70545 0.852727 0.522357i \(-0.174947\pi\)
0.852727 + 0.522357i \(0.174947\pi\)
\(212\) 24011.9i 0.534262i
\(213\) 0 0
\(214\) −74173.6 + 74173.6i −1.61965 + 1.61965i
\(215\) −6559.16 6559.16i −0.141896 0.141896i
\(216\) 0 0
\(217\) −46257.2 −0.982335
\(218\) 57807.1i 1.21638i
\(219\) 0 0
\(220\) 30278.9i 0.625597i
\(221\) 63097.8 + 10645.4i 1.29190 + 0.217961i
\(222\) 0 0
\(223\) −7655.61 + 7655.61i −0.153947 + 0.153947i −0.779878 0.625931i \(-0.784719\pi\)
0.625931 + 0.779878i \(0.284719\pi\)
\(224\) 26687.0 0.531868
\(225\) 0 0
\(226\) 86715.2 86715.2i 1.69777 1.69777i
\(227\) 13863.1 13863.1i 0.269035 0.269035i −0.559676 0.828711i \(-0.689074\pi\)
0.828711 + 0.559676i \(0.189074\pi\)
\(228\) 0 0
\(229\) 3756.78 + 3756.78i 0.0716382 + 0.0716382i 0.742018 0.670380i \(-0.233869\pi\)
−0.670380 + 0.742018i \(0.733869\pi\)
\(230\) −9311.73 −0.176025
\(231\) 0 0
\(232\) −47576.1 47576.1i −0.883921 0.883921i
\(233\) 12679.4i 0.233554i −0.993158 0.116777i \(-0.962744\pi\)
0.993158 0.116777i \(-0.0372563\pi\)
\(234\) 0 0
\(235\) −15251.9 −0.276178
\(236\) −116350. + 116350.i −2.08903 + 2.08903i
\(237\) 0 0
\(238\) 66299.2i 1.17045i
\(239\) 61402.0 61402.0i 1.07495 1.07495i 0.0779924 0.996954i \(-0.475149\pi\)
0.996954 0.0779924i \(-0.0248510\pi\)
\(240\) 0 0
\(241\) 37991.4 + 37991.4i 0.654111 + 0.654111i 0.953980 0.299869i \(-0.0969431\pi\)
−0.299869 + 0.953980i \(0.596943\pi\)
\(242\) 59328.2 + 59328.2i 1.01305 + 1.01305i
\(243\) 0 0
\(244\) 71375.7i 1.19887i
\(245\) 6619.03 + 6619.03i 0.110271 + 0.110271i
\(246\) 0 0
\(247\) −51922.7 72998.6i −0.851067 1.19652i
\(248\) −278733. −4.53194
\(249\) 0 0
\(250\) −45620.7 −0.729931
\(251\) 86105.8i 1.36674i −0.730074 0.683368i \(-0.760514\pi\)
0.730074 0.683368i \(-0.239486\pi\)
\(252\) 0 0
\(253\) 28608.7 28608.7i 0.446948 0.446948i
\(254\) 8500.64 + 8500.64i 0.131760 + 0.131760i
\(255\) 0 0
\(256\) −114820. −1.75201
\(257\) 23260.9i 0.352176i −0.984374 0.176088i \(-0.943656\pi\)
0.984374 0.176088i \(-0.0563443\pi\)
\(258\) 0 0
\(259\) 22096.2i 0.329396i
\(260\) 25735.7 18305.4i 0.380706 0.270790i
\(261\) 0 0
\(262\) 80361.5 80361.5i 1.17070 1.17070i
\(263\) 32185.6 0.465319 0.232659 0.972558i \(-0.425257\pi\)
0.232659 + 0.972558i \(0.425257\pi\)
\(264\) 0 0
\(265\) −2420.06 + 2420.06i −0.0344615 + 0.0344615i
\(266\) −65629.7 + 65629.7i −0.927550 + 0.927550i
\(267\) 0 0
\(268\) −87616.2 87616.2i −1.21987 1.21987i
\(269\) 60022.3 0.829484 0.414742 0.909939i \(-0.363872\pi\)
0.414742 + 0.909939i \(0.363872\pi\)
\(270\) 0 0
\(271\) 37263.2 + 37263.2i 0.507390 + 0.507390i 0.913724 0.406335i \(-0.133193\pi\)
−0.406335 + 0.913724i \(0.633193\pi\)
\(272\) 180139.i 2.43483i
\(273\) 0 0
\(274\) 45132.9 0.601163
\(275\) 68555.0 68555.0i 0.906512 0.906512i
\(276\) 0 0
\(277\) 31412.8i 0.409399i −0.978825 0.204699i \(-0.934378\pi\)
0.978825 0.204699i \(-0.0656217\pi\)
\(278\) −128138. + 128138.i −1.65801 + 1.65801i
\(279\) 0 0
\(280\) −12913.7 12913.7i −0.164716 0.164716i
\(281\) −84576.2 84576.2i −1.07111 1.07111i −0.997270 0.0738438i \(-0.976473\pi\)
−0.0738438 0.997270i \(-0.523527\pi\)
\(282\) 0 0
\(283\) 99352.6i 1.24053i −0.784393 0.620264i \(-0.787026\pi\)
0.784393 0.620264i \(-0.212974\pi\)
\(284\) −135822. 135822.i −1.68397 1.68397i
\(285\) 0 0
\(286\) −32915.7 + 195099.i −0.402412 + 2.38518i
\(287\) −3540.70 −0.0429858
\(288\) 0 0
\(289\) −59844.3 −0.716518
\(290\) 17182.6i 0.204311i
\(291\) 0 0
\(292\) 111434. 111434.i 1.30692 1.30692i
\(293\) −65772.3 65772.3i −0.766139 0.766139i 0.211286 0.977424i \(-0.432235\pi\)
−0.977424 + 0.211286i \(0.932235\pi\)
\(294\) 0 0
\(295\) 23452.9 0.269497
\(296\) 133145.i 1.51965i
\(297\) 0 0
\(298\) 238298.i 2.68341i
\(299\) 41611.8 + 7020.45i 0.465451 + 0.0785277i
\(300\) 0 0
\(301\) 30798.4 30798.4i 0.339934 0.339934i
\(302\) 211885. 2.32320
\(303\) 0 0
\(304\) −178320. + 178320.i −1.92953 + 1.92953i
\(305\) 7193.66 7193.66i 0.0773303 0.0773303i
\(306\) 0 0
\(307\) 78031.0 + 78031.0i 0.827924 + 0.827924i 0.987229 0.159305i \(-0.0509254\pi\)
−0.159305 + 0.987229i \(0.550925\pi\)
\(308\) 142174. 1.49871
\(309\) 0 0
\(310\) 50333.5 + 50333.5i 0.523762 + 0.523762i
\(311\) 28292.0i 0.292511i 0.989247 + 0.146256i \(0.0467222\pi\)
−0.989247 + 0.146256i \(0.953278\pi\)
\(312\) 0 0
\(313\) 29449.3 0.300598 0.150299 0.988641i \(-0.451976\pi\)
0.150299 + 0.988641i \(0.451976\pi\)
\(314\) −126706. + 126706.i −1.28510 + 1.28510i
\(315\) 0 0
\(316\) 202806.i 2.03099i
\(317\) −109874. + 109874.i −1.09339 + 1.09339i −0.0982270 + 0.995164i \(0.531317\pi\)
−0.995164 + 0.0982270i \(0.968683\pi\)
\(318\) 0 0
\(319\) −52790.5 52790.5i −0.518770 0.518770i
\(320\) −1259.39 1259.39i −0.0122987 0.0122987i
\(321\) 0 0
\(322\) 43723.0i 0.421695i
\(323\) 141918. + 141918.i 1.36029 + 1.36029i
\(324\) 0 0
\(325\) 99714.4 + 16823.1i 0.944041 + 0.159272i
\(326\) 66059.2 0.621582
\(327\) 0 0
\(328\) −21335.3 −0.198313
\(329\) 71615.2i 0.661628i
\(330\) 0 0
\(331\) −36941.8 + 36941.8i −0.337180 + 0.337180i −0.855305 0.518125i \(-0.826630\pi\)
0.518125 + 0.855305i \(0.326630\pi\)
\(332\) 277257. + 277257.i 2.51540 + 2.51540i
\(333\) 0 0
\(334\) −78660.9 −0.705125
\(335\) 17660.9i 0.157371i
\(336\) 0 0
\(337\) 68140.0i 0.599988i 0.953941 + 0.299994i \(0.0969847\pi\)
−0.953941 + 0.299994i \(0.903015\pi\)
\(338\) −185725. + 89971.9i −1.62568 + 0.787542i
\(339\) 0 0
\(340\) −50033.2 + 50033.2i −0.432813 + 0.432813i
\(341\) −309282. −2.65978
\(342\) 0 0
\(343\) −72222.0 + 72222.0i −0.613877 + 0.613877i
\(344\) 185582. 185582.i 1.56827 1.56827i
\(345\) 0 0
\(346\) −55700.4 55700.4i −0.465271 0.465271i
\(347\) 74667.2 0.620113 0.310056 0.950718i \(-0.399652\pi\)
0.310056 + 0.950718i \(0.399652\pi\)
\(348\) 0 0
\(349\) −89108.0 89108.0i −0.731587 0.731587i 0.239347 0.970934i \(-0.423067\pi\)
−0.970934 + 0.239347i \(0.923067\pi\)
\(350\) 104774.i 0.855295i
\(351\) 0 0
\(352\) 178433. 1.44009
\(353\) 16373.7 16373.7i 0.131400 0.131400i −0.638348 0.769748i \(-0.720382\pi\)
0.769748 + 0.638348i \(0.220382\pi\)
\(354\) 0 0
\(355\) 27377.9i 0.217242i
\(356\) −6793.73 + 6793.73i −0.0536054 + 0.0536054i
\(357\) 0 0
\(358\) 242573. + 242573.i 1.89267 + 1.89267i
\(359\) 81223.2 + 81223.2i 0.630218 + 0.630218i 0.948123 0.317905i \(-0.102979\pi\)
−0.317905 + 0.948123i \(0.602979\pi\)
\(360\) 0 0
\(361\) 150648.i 1.15598i
\(362\) −249361. 249361.i −1.90288 1.90288i
\(363\) 0 0
\(364\) 85952.7 + 120842.i 0.648719 + 0.912039i
\(365\) −22461.8 −0.168601
\(366\) 0 0
\(367\) 30462.2 0.226167 0.113084 0.993585i \(-0.463927\pi\)
0.113084 + 0.993585i \(0.463927\pi\)
\(368\) 118798.i 0.877230i
\(369\) 0 0
\(370\) 24043.4 24043.4i 0.175628 0.175628i
\(371\) −11363.3 11363.3i −0.0825578 0.0825578i
\(372\) 0 0
\(373\) 188516. 1.35497 0.677486 0.735536i \(-0.263069\pi\)
0.677486 + 0.735536i \(0.263069\pi\)
\(374\) 443286.i 3.16914i
\(375\) 0 0
\(376\) 431533.i 3.05238i
\(377\) 12954.6 76784.7i 0.0911467 0.540247i
\(378\) 0 0
\(379\) −36802.3 + 36802.3i −0.256210 + 0.256210i −0.823511 0.567300i \(-0.807988\pi\)
0.567300 + 0.823511i \(0.307988\pi\)
\(380\) 99056.0 0.685983
\(381\) 0 0
\(382\) 26847.1 26847.1i 0.183980 0.183980i
\(383\) 49201.0 49201.0i 0.335410 0.335410i −0.519226 0.854637i \(-0.673780\pi\)
0.854637 + 0.519226i \(0.173780\pi\)
\(384\) 0 0
\(385\) −14329.1 14329.1i −0.0966714 0.0966714i
\(386\) 135935. 0.912338
\(387\) 0 0
\(388\) 49662.3 + 49662.3i 0.329886 + 0.329886i
\(389\) 189271.i 1.25079i 0.780307 + 0.625396i \(0.215063\pi\)
−0.780307 + 0.625396i \(0.784937\pi\)
\(390\) 0 0
\(391\) −94546.6 −0.618433
\(392\) −187276. + 187276.i −1.21874 + 1.21874i
\(393\) 0 0
\(394\) 196492.i 1.26576i
\(395\) −20440.0 + 20440.0i −0.131005 + 0.131005i
\(396\) 0 0
\(397\) −53096.3 53096.3i −0.336886 0.336886i 0.518308 0.855194i \(-0.326562\pi\)
−0.855194 + 0.518308i \(0.826562\pi\)
\(398\) 141411. + 141411.i 0.892723 + 0.892723i
\(399\) 0 0
\(400\) 284676.i 1.77922i
\(401\) −194820. 194820.i −1.21156 1.21156i −0.970513 0.241048i \(-0.922509\pi\)
−0.241048 0.970513i \(-0.577491\pi\)
\(402\) 0 0
\(403\) −186980. 262876.i −1.15129 1.61861i
\(404\) 208944. 1.28017
\(405\) 0 0
\(406\) −80680.5 −0.489459
\(407\) 147738.i 0.891876i
\(408\) 0 0
\(409\) −183911. + 183911.i −1.09941 + 1.09941i −0.104932 + 0.994479i \(0.533463\pi\)
−0.994479 + 0.104932i \(0.966537\pi\)
\(410\) 3852.72 + 3852.72i 0.0229192 + 0.0229192i
\(411\) 0 0
\(412\) 380706. 2.24282
\(413\) 110123.i 0.645620i
\(414\) 0 0
\(415\) 55887.2i 0.324501i
\(416\) 107874. + 151660.i 0.623345 + 0.876366i
\(417\) 0 0
\(418\) −438810. + 438810.i −2.51145 + 2.51145i
\(419\) 251451. 1.43227 0.716137 0.697960i \(-0.245909\pi\)
0.716137 + 0.697960i \(0.245909\pi\)
\(420\) 0 0
\(421\) −244452. + 244452.i −1.37921 + 1.37921i −0.533243 + 0.845962i \(0.679027\pi\)
−0.845962 + 0.533243i \(0.820973\pi\)
\(422\) 387939. 387939.i 2.17840 2.17840i
\(423\) 0 0
\(424\) −68472.2 68472.2i −0.380875 0.380875i
\(425\) −226562. −1.25432
\(426\) 0 0
\(427\) 33777.7 + 33777.7i 0.185257 + 0.185257i
\(428\) 525666.i 2.86961i
\(429\) 0 0
\(430\) −67025.0 −0.362493
\(431\) 16725.2 16725.2i 0.0900360 0.0900360i −0.660654 0.750690i \(-0.729721\pi\)
0.750690 + 0.660654i \(0.229721\pi\)
\(432\) 0 0
\(433\) 301479.i 1.60798i 0.594640 + 0.803992i \(0.297295\pi\)
−0.594640 + 0.803992i \(0.702705\pi\)
\(434\) −236340. + 236340.i −1.25475 + 1.25475i
\(435\) 0 0
\(436\) 204838. + 204838.i 1.07755 + 1.07755i
\(437\) 93592.0 + 93592.0i 0.490090 + 0.490090i
\(438\) 0 0
\(439\) 19395.7i 0.100641i 0.998733 + 0.0503207i \(0.0160243\pi\)
−0.998733 + 0.0503207i \(0.983976\pi\)
\(440\) −86343.2 86343.2i −0.445987 0.445987i
\(441\) 0 0
\(442\) 376774. 267993.i 1.92857 1.37176i
\(443\) −45077.6 −0.229696 −0.114848 0.993383i \(-0.536638\pi\)
−0.114848 + 0.993383i \(0.536638\pi\)
\(444\) 0 0
\(445\) 1369.42 0.00691541
\(446\) 78229.0i 0.393277i
\(447\) 0 0
\(448\) 5913.42 5913.42i 0.0294634 0.0294634i
\(449\) 103299. + 103299.i 0.512395 + 0.512395i 0.915260 0.402864i \(-0.131985\pi\)
−0.402864 + 0.915260i \(0.631985\pi\)
\(450\) 0 0
\(451\) −23673.6 −0.116389
\(452\) 614547.i 3.00800i
\(453\) 0 0
\(454\) 141661.i 0.687286i
\(455\) 3516.31 20841.9i 0.0169849 0.100673i
\(456\) 0 0
\(457\) 242426. 242426.i 1.16077 1.16077i 0.176464 0.984307i \(-0.443534\pi\)
0.984307 0.176464i \(-0.0564660\pi\)
\(458\) 38388.8 0.183009
\(459\) 0 0
\(460\) −32995.9 + 32995.9i −0.155935 + 0.155935i
\(461\) −263580. + 263580.i −1.24026 + 1.24026i −0.280361 + 0.959895i \(0.590454\pi\)
−0.959895 + 0.280361i \(0.909546\pi\)
\(462\) 0 0
\(463\) 188223. + 188223.i 0.878034 + 0.878034i 0.993331 0.115297i \(-0.0367819\pi\)
−0.115297 + 0.993331i \(0.536782\pi\)
\(464\) −219214. −1.01820
\(465\) 0 0
\(466\) −64782.5 64782.5i −0.298322 0.298322i
\(467\) 185241.i 0.849383i −0.905338 0.424692i \(-0.860383\pi\)
0.905338 0.424692i \(-0.139617\pi\)
\(468\) 0 0
\(469\) −82926.6 −0.377006
\(470\) −77926.2 + 77926.2i −0.352767 + 0.352767i
\(471\) 0 0
\(472\) 663569.i 2.97853i
\(473\) 205923. 205923.i 0.920411 0.920411i
\(474\) 0 0
\(475\) 224275. + 224275.i 0.994015 + 0.994015i
\(476\) −234930. 234930.i −1.03687 1.03687i
\(477\) 0 0
\(478\) 627438.i 2.74609i
\(479\) 160707. + 160707.i 0.700429 + 0.700429i 0.964503 0.264073i \(-0.0850661\pi\)
−0.264073 + 0.964503i \(0.585066\pi\)
\(480\) 0 0
\(481\) −125571. + 89316.8i −0.542750 + 0.386049i
\(482\) 388216. 1.67101
\(483\) 0 0
\(484\) 420457. 1.79486
\(485\) 10010.5i 0.0425572i
\(486\) 0 0
\(487\) −6674.93 + 6674.93i −0.0281442 + 0.0281442i −0.721039 0.692895i \(-0.756335\pi\)
0.692895 + 0.721039i \(0.256335\pi\)
\(488\) 203535. + 203535.i 0.854671 + 0.854671i
\(489\) 0 0
\(490\) 67636.7 0.281702
\(491\) 219127.i 0.908937i −0.890763 0.454468i \(-0.849829\pi\)
0.890763 0.454468i \(-0.150171\pi\)
\(492\) 0 0
\(493\) 174464.i 0.717812i
\(494\) −638256. 107682.i −2.61542 0.441255i
\(495\) 0 0
\(496\) −642150. + 642150.i −2.61019 + 2.61019i
\(497\) −128553. −0.520437
\(498\) 0 0
\(499\) 102393. 102393.i 0.411215 0.411215i −0.470947 0.882162i \(-0.656088\pi\)
0.882162 + 0.470947i \(0.156088\pi\)
\(500\) −161656. + 161656.i −0.646624 + 0.646624i
\(501\) 0 0
\(502\) −439937. 439937.i −1.74575 1.74575i
\(503\) −230420. −0.910717 −0.455358 0.890308i \(-0.650489\pi\)
−0.455358 + 0.890308i \(0.650489\pi\)
\(504\) 0 0
\(505\) −21058.6 21058.6i −0.0825748 0.0825748i
\(506\) 292338.i 1.14179i
\(507\) 0 0
\(508\) 60243.7 0.233445
\(509\) 8315.17 8315.17i 0.0320949 0.0320949i −0.690877 0.722972i \(-0.742775\pi\)
0.722972 + 0.690877i \(0.242775\pi\)
\(510\) 0 0
\(511\) 105469.i 0.403909i
\(512\) −415507. + 415507.i −1.58503 + 1.58503i
\(513\) 0 0
\(514\) −118846. 118846.i −0.449840 0.449840i
\(515\) −38369.8 38369.8i −0.144669 0.144669i
\(516\) 0 0
\(517\) 478830.i 1.79143i
\(518\) 112895. + 112895.i 0.420743 + 0.420743i
\(519\) 0 0
\(520\) 21188.3 125588.i 0.0783590 0.464451i
\(521\) −142578. −0.525264 −0.262632 0.964896i \(-0.584590\pi\)
−0.262632 + 0.964896i \(0.584590\pi\)
\(522\) 0 0
\(523\) −299990. −1.09674 −0.548371 0.836235i \(-0.684752\pi\)
−0.548371 + 0.836235i \(0.684752\pi\)
\(524\) 569519.i 2.07417i
\(525\) 0 0
\(526\) 164445. 164445.i 0.594359 0.594359i
\(527\) 511062. + 511062.i 1.84015 + 1.84015i
\(528\) 0 0
\(529\) 217489. 0.777189
\(530\) 24729.4i 0.0880364i
\(531\) 0 0
\(532\) 465115.i 1.64338i
\(533\) −14312.1 20121.5i −0.0503790 0.0708283i
\(534\) 0 0
\(535\) 52979.6 52979.6i 0.185098 0.185098i
\(536\) −499692. −1.73929
\(537\) 0 0
\(538\) 306670. 306670.i 1.05951 1.05951i
\(539\) −207802. + 207802.i −0.715274 + 0.715274i
\(540\) 0 0
\(541\) 254443. + 254443.i 0.869354 + 0.869354i 0.992401 0.123047i \(-0.0392665\pi\)
−0.123047 + 0.992401i \(0.539267\pi\)
\(542\) 380775. 1.29619
\(543\) 0 0
\(544\) −294845. 294845.i −0.996314 0.996314i
\(545\) 41289.6i 0.139010i
\(546\) 0 0
\(547\) 230552. 0.770538 0.385269 0.922804i \(-0.374109\pi\)
0.385269 + 0.922804i \(0.374109\pi\)
\(548\) 159928. 159928.i 0.532552 0.532552i
\(549\) 0 0
\(550\) 700531.i 2.31581i
\(551\) 172702. 172702.i 0.568845 0.568845i
\(552\) 0 0
\(553\) −95975.6 95975.6i −0.313842 0.313842i
\(554\) −160496. 160496.i −0.522932 0.522932i
\(555\) 0 0
\(556\) 908106.i 2.93756i
\(557\) −38481.0 38481.0i −0.124033 0.124033i 0.642366 0.766398i \(-0.277953\pi\)
−0.766398 + 0.642366i \(0.777953\pi\)
\(558\) 0 0
\(559\) 299518. + 50532.6i 0.958515 + 0.161714i
\(560\) −59501.9 −0.189738
\(561\) 0 0
\(562\) −864244. −2.73630
\(563\) 41906.4i 0.132210i 0.997813 + 0.0661048i \(0.0210572\pi\)
−0.997813 + 0.0661048i \(0.978943\pi\)
\(564\) 0 0
\(565\) −61937.6 + 61937.6i −0.194025 + 0.194025i
\(566\) −507619. 507619.i −1.58455 1.58455i
\(567\) 0 0
\(568\) −774621. −2.40100
\(569\) 80590.0i 0.248918i −0.992225 0.124459i \(-0.960280\pi\)
0.992225 0.124459i \(-0.0397196\pi\)
\(570\) 0 0
\(571\) 412664.i 1.26568i 0.774281 + 0.632841i \(0.218111\pi\)
−0.774281 + 0.632841i \(0.781889\pi\)
\(572\) 574692. + 807964.i 1.75648 + 2.46945i
\(573\) 0 0
\(574\) −18090.4 + 18090.4i −0.0549065 + 0.0549065i
\(575\) −149413. −0.451912
\(576\) 0 0
\(577\) −292623. + 292623.i −0.878935 + 0.878935i −0.993424 0.114490i \(-0.963477\pi\)
0.114490 + 0.993424i \(0.463477\pi\)
\(578\) −305760. + 305760.i −0.915220 + 0.915220i
\(579\) 0 0
\(580\) 60886.2 + 60886.2i 0.180993 + 0.180993i
\(581\) 262417. 0.777392
\(582\) 0 0
\(583\) −75976.9 75976.9i −0.223534 0.223534i
\(584\) 635527.i 1.86341i
\(585\) 0 0
\(586\) −672096. −1.95720
\(587\) 26371.4 26371.4i 0.0765344 0.0765344i −0.667803 0.744338i \(-0.732765\pi\)
0.744338 + 0.667803i \(0.232765\pi\)
\(588\) 0 0
\(589\) 1.01180e6i 2.91652i
\(590\) 119827. 119827.i 0.344232 0.344232i
\(591\) 0 0
\(592\) 306743. + 306743.i 0.875248 + 0.875248i
\(593\) 45844.5 + 45844.5i 0.130370 + 0.130370i 0.769281 0.638911i \(-0.220615\pi\)
−0.638911 + 0.769281i \(0.720615\pi\)
\(594\) 0 0
\(595\) 47355.2i 0.133762i
\(596\) 844404. + 844404.i 2.37716 + 2.37716i
\(597\) 0 0
\(598\) 248475. 176736.i 0.694833 0.494223i
\(599\) −459477. −1.28059 −0.640295 0.768129i \(-0.721188\pi\)
−0.640295 + 0.768129i \(0.721188\pi\)
\(600\) 0 0
\(601\) −103816. −0.287418 −0.143709 0.989620i \(-0.545903\pi\)
−0.143709 + 0.989620i \(0.545903\pi\)
\(602\) 314714.i 0.868408i
\(603\) 0 0
\(604\) 750811. 750811.i 2.05806 2.05806i
\(605\) −42376.1 42376.1i −0.115774 0.115774i
\(606\) 0 0
\(607\) 406615. 1.10359 0.551793 0.833981i \(-0.313944\pi\)
0.551793 + 0.833981i \(0.313944\pi\)
\(608\) 583736.i 1.57910i
\(609\) 0 0
\(610\) 73508.6i 0.197551i
\(611\) 406984. 289481.i 1.09017 0.775422i
\(612\) 0 0
\(613\) 321793. 321793.i 0.856358 0.856358i −0.134549 0.990907i \(-0.542959\pi\)
0.990907 + 0.134549i \(0.0429586\pi\)
\(614\) 797362. 2.11504
\(615\) 0 0
\(616\) 405423. 405423.i 1.06843 1.06843i
\(617\) 225476. 225476.i 0.592284 0.592284i −0.345964 0.938248i \(-0.612448\pi\)
0.938248 + 0.345964i \(0.112448\pi\)
\(618\) 0 0
\(619\) −71621.9 71621.9i −0.186924 0.186924i 0.607441 0.794365i \(-0.292196\pi\)
−0.794365 + 0.607441i \(0.792196\pi\)
\(620\) 356712. 0.927971
\(621\) 0 0
\(622\) 144551. + 144551.i 0.373629 + 0.373629i
\(623\) 6430.10i 0.0165669i
\(624\) 0 0
\(625\) −341392. −0.873964
\(626\) 150464. 150464.i 0.383959 0.383959i
\(627\) 0 0
\(628\) 897961.i 2.27687i
\(629\) 244125. 244125.i 0.617036 0.617036i
\(630\) 0 0
\(631\) 77694.6 + 77694.6i 0.195134 + 0.195134i 0.797910 0.602776i \(-0.205939\pi\)
−0.602776 + 0.797910i \(0.705939\pi\)
\(632\) −578322. 578322.i −1.44789 1.44789i
\(633\) 0 0
\(634\) 1.12275e6i 2.79321i
\(635\) −6071.71 6071.71i −0.0150579 0.0150579i
\(636\) 0 0
\(637\) −302252. 50993.8i −0.744886 0.125672i
\(638\) −539442. −1.32527
\(639\) 0 0
\(640\) 78067.8 0.190595
\(641\) 409275.i 0.996092i 0.867151 + 0.498046i \(0.165949\pi\)
−0.867151 + 0.498046i \(0.834051\pi\)
\(642\) 0 0
\(643\) 173185. 173185.i 0.418880 0.418880i −0.465938 0.884817i \(-0.654283\pi\)
0.884817 + 0.465938i \(0.154283\pi\)
\(644\) −154932. 154932.i −0.373567 0.373567i
\(645\) 0 0
\(646\) 1.45019e6 3.47504
\(647\) 239759.i 0.572752i 0.958117 + 0.286376i \(0.0924507\pi\)
−0.958117 + 0.286376i \(0.907549\pi\)
\(648\) 0 0
\(649\) 736297.i 1.74809i
\(650\) 595421. 423513.i 1.40928 1.00240i
\(651\) 0 0
\(652\) 234080. 234080.i 0.550641 0.550641i
\(653\) 112205. 0.263138 0.131569 0.991307i \(-0.457998\pi\)
0.131569 + 0.991307i \(0.457998\pi\)
\(654\) 0 0
\(655\) −57399.4 + 57399.4i −0.133790 + 0.133790i
\(656\) −49152.6 + 49152.6i −0.114219 + 0.114219i
\(657\) 0 0
\(658\) −365901. 365901.i −0.845107 0.845107i
\(659\) −377953. −0.870295 −0.435147 0.900359i \(-0.643304\pi\)
−0.435147 + 0.900359i \(0.643304\pi\)
\(660\) 0 0
\(661\) −130696. 130696.i −0.299129 0.299129i 0.541544 0.840673i \(-0.317840\pi\)
−0.840673 + 0.541544i \(0.817840\pi\)
\(662\) 377491.i 0.861371i
\(663\) 0 0
\(664\) 1.58125e6 3.58645
\(665\) 46877.0 46877.0i 0.106003 0.106003i
\(666\) 0 0
\(667\) 115055.i 0.258616i
\(668\) −278733. + 278733.i −0.624649 + 0.624649i
\(669\) 0 0
\(670\) 90234.5 + 90234.5i 0.201012 + 0.201012i
\(671\) 225842. + 225842.i 0.501603 + 0.501603i
\(672\) 0 0
\(673\) 423645.i 0.935345i 0.883902 + 0.467672i \(0.154907\pi\)
−0.883902 + 0.467672i \(0.845093\pi\)
\(674\) 348145. + 348145.i 0.766374 + 0.766374i
\(675\) 0 0
\(676\) −339298. + 976926.i −0.742486 + 2.13781i
\(677\) −660988. −1.44217 −0.721085 0.692847i \(-0.756356\pi\)
−0.721085 + 0.692847i \(0.756356\pi\)
\(678\) 0 0
\(679\) 47004.2 0.101952
\(680\) 285349.i 0.617104i
\(681\) 0 0
\(682\) −1.58020e6 + 1.58020e6i −3.39738 + 3.39738i
\(683\) 224471. + 224471.i 0.481193 + 0.481193i 0.905513 0.424319i \(-0.139487\pi\)
−0.424319 + 0.905513i \(0.639487\pi\)
\(684\) 0 0
\(685\) −32236.9 −0.0687024
\(686\) 738002.i 1.56823i
\(687\) 0 0
\(688\) 855097.i 1.80650i
\(689\) 18644.4 110510.i 0.0392745 0.232788i
\(690\) 0 0
\(691\) 497029. 497029.i 1.04094 1.04094i 0.0418150 0.999125i \(-0.486686\pi\)
0.999125 0.0418150i \(-0.0133140\pi\)
\(692\) −394747. −0.824340
\(693\) 0 0
\(694\) 381494. 381494.i 0.792080 0.792080i
\(695\) 91524.2 91524.2i 0.189481 0.189481i
\(696\) 0 0
\(697\) 39118.6 + 39118.6i 0.0805226 + 0.0805226i
\(698\) −910553. −1.86894
\(699\) 0 0
\(700\) −371263. 371263.i −0.757680 0.757680i
\(701\) 187813.i 0.382199i 0.981571 + 0.191099i \(0.0612053\pi\)
−0.981571 + 0.191099i \(0.938795\pi\)
\(702\) 0 0
\(703\) −483320. −0.977966
\(704\) 39538.0 39538.0i 0.0797754 0.0797754i
\(705\) 0 0
\(706\) 167315.i 0.335680i
\(707\) 98880.4 98880.4i 0.197821 0.197821i
\(708\) 0 0
\(709\) −163815. 163815.i −0.325883 0.325883i 0.525136 0.851019i \(-0.324015\pi\)
−0.851019 + 0.525136i \(0.824015\pi\)
\(710\) 139881. + 139881.i 0.277487 + 0.277487i
\(711\) 0 0
\(712\) 38746.0i 0.0764305i
\(713\) 337035. + 337035.i 0.662974 + 0.662974i
\(714\) 0 0
\(715\) 23510.5 139352.i 0.0459886 0.272585i
\(716\) 1.71910e6 3.35333
\(717\) 0 0
\(718\) 829981. 1.60998
\(719\) 752295.i 1.45523i −0.685987 0.727613i \(-0.740630\pi\)
0.685987 0.727613i \(-0.259370\pi\)
\(720\) 0 0
\(721\) 180164. 180164.i 0.346576 0.346576i
\(722\) −769702. 769702.i −1.47655 1.47655i
\(723\) 0 0
\(724\) −1.76722e6 −3.37142
\(725\) 275707.i 0.524532i
\(726\) 0 0
\(727\) 267294.i 0.505732i −0.967501 0.252866i \(-0.918627\pi\)
0.967501 0.252866i \(-0.0813731\pi\)
\(728\) 589694. + 99489.1i 1.11266 + 0.187721i
\(729\) 0 0
\(730\) −114763. + 114763.i −0.215357 + 0.215357i
\(731\) −680538. −1.27355
\(732\) 0 0
\(733\) −8050.21 + 8050.21i −0.0149830 + 0.0149830i −0.714559 0.699576i \(-0.753372\pi\)
0.699576 + 0.714559i \(0.253372\pi\)
\(734\) 155639. 155639.i 0.288887 0.288887i
\(735\) 0 0
\(736\) −194445. 194445.i −0.358955 0.358955i
\(737\) −554459. −1.02079
\(738\) 0 0
\(739\) −158151. 158151.i −0.289590 0.289590i 0.547328 0.836918i \(-0.315645\pi\)
−0.836918 + 0.547328i \(0.815645\pi\)
\(740\) 170395.i 0.311166i
\(741\) 0 0
\(742\) −116117. −0.210905
\(743\) 361688. 361688.i 0.655174 0.655174i −0.299061 0.954234i \(-0.596673\pi\)
0.954234 + 0.299061i \(0.0966732\pi\)
\(744\) 0 0
\(745\) 170208.i 0.306667i
\(746\) 963177. 963177.i 1.73073 1.73073i
\(747\) 0 0
\(748\) −1.57078e6 1.57078e6i −2.80744 2.80744i
\(749\) 248765. + 248765.i 0.443430 + 0.443430i
\(750\) 0 0
\(751\) 554610.i 0.983349i −0.870779 0.491675i \(-0.836385\pi\)
0.870779 0.491675i \(-0.163615\pi\)
\(752\) −994174. 994174.i −1.75803 1.75803i
\(753\) 0 0
\(754\) −326125. 458502.i −0.573642 0.806489i
\(755\) −151342. −0.265501
\(756\) 0 0
\(757\) −307275. −0.536211 −0.268105 0.963390i \(-0.586398\pi\)
−0.268105 + 0.963390i \(0.586398\pi\)
\(758\) 376066.i 0.654523i
\(759\) 0 0
\(760\) 282468. 282468.i 0.489037 0.489037i
\(761\) −428797. 428797.i −0.740427 0.740427i 0.232233 0.972660i \(-0.425397\pi\)
−0.972660 + 0.232233i \(0.925397\pi\)
\(762\) 0 0
\(763\) 193874. 0.333021
\(764\) 190264.i 0.325965i
\(765\) 0 0
\(766\) 502762.i 0.856850i
\(767\) −625820. + 445136.i −1.06380 + 0.756662i
\(768\) 0 0
\(769\) −95508.3 + 95508.3i −0.161506 + 0.161506i −0.783234 0.621728i \(-0.786431\pi\)
0.621728 + 0.783234i \(0.286431\pi\)
\(770\) −146422. −0.246960
\(771\) 0 0
\(772\) 481682. 481682.i 0.808213 0.808213i
\(773\) −499400. + 499400.i −0.835775 + 0.835775i −0.988300 0.152525i \(-0.951260\pi\)
0.152525 + 0.988300i \(0.451260\pi\)
\(774\) 0 0
\(775\) 807638. + 807638.i 1.34466 + 1.34466i
\(776\) 283234. 0.470351
\(777\) 0 0
\(778\) 967036. + 967036.i 1.59766 + 1.59766i
\(779\) 77447.2i 0.127624i
\(780\) 0 0
\(781\) −859521. −1.40914
\(782\) −483064. + 483064.i −0.789934 + 0.789934i
\(783\) 0 0
\(784\) 862902.i 1.40388i
\(785\) 90501.7 90501.7i 0.146865 0.146865i
\(786\) 0 0
\(787\) −404185. 404185.i −0.652576 0.652576i 0.301037 0.953613i \(-0.402667\pi\)
−0.953613 + 0.301037i \(0.902667\pi\)
\(788\) −696264. 696264.i −1.12130 1.12130i
\(789\) 0 0
\(790\) 208867.i 0.334669i
\(791\) −290827. 290827.i −0.464817 0.464817i
\(792\) 0 0
\(793\) −55420.8 + 328491.i −0.0881306 + 0.522369i
\(794\) −542566. −0.860620
\(795\) 0 0
\(796\) 1.00217e6 1.58167
\(797\) 95935.2i 0.151029i 0.997145 + 0.0755147i \(0.0240600\pi\)
−0.997145 + 0.0755147i \(0.975940\pi\)
\(798\) 0 0
\(799\) −791224. + 791224.i −1.23938 + 1.23938i
\(800\) −465948. 465948.i −0.728044 0.728044i
\(801\) 0 0
\(802\) −1.99078e6 −3.09509
\(803\) 705182.i 1.09363i
\(804\) 0 0
\(805\) 31229.8i 0.0481923i
\(806\) −2.29843e6 387776.i −3.53803 0.596913i
\(807\) 0 0
\(808\) 595825. 595825.i 0.912633 0.912633i
\(809\) 1.07612e6 1.64423 0.822115 0.569322i \(-0.192794\pi\)
0.822115 + 0.569322i \(0.192794\pi\)
\(810\) 0 0
\(811\) 144481. 144481.i 0.219669 0.219669i −0.588690 0.808359i \(-0.700356\pi\)
0.808359 + 0.588690i \(0.200356\pi\)
\(812\) −285890. + 285890.i −0.433598 + 0.433598i
\(813\) 0 0
\(814\) 754835. + 754835.i 1.13921 + 1.13921i
\(815\) −47183.8 −0.0710359
\(816\) 0 0
\(817\) 673666. + 673666.i 1.00925 + 1.00925i
\(818\) 1.87930e6i 2.80859i
\(819\) 0 0
\(820\) 27304.1 0.0406069
\(821\) 658649. 658649.i 0.977165 0.977165i −0.0225802 0.999745i \(-0.507188\pi\)
0.999745 + 0.0225802i \(0.00718810\pi\)
\(822\) 0 0
\(823\) 912410.i 1.34707i 0.739155 + 0.673536i \(0.235225\pi\)
−0.739155 + 0.673536i \(0.764775\pi\)
\(824\) 1.08562e6 1.08562e6i 1.59891 1.59891i
\(825\) 0 0
\(826\) 562646. + 562646.i 0.824661 + 0.824661i
\(827\) −136058. 136058.i −0.198936 0.198936i 0.600608 0.799544i \(-0.294925\pi\)
−0.799544 + 0.600608i \(0.794925\pi\)
\(828\) 0 0
\(829\) 548426.i 0.798011i −0.916949 0.399005i \(-0.869355\pi\)
0.916949 0.399005i \(-0.130645\pi\)
\(830\) −285542. 285542.i −0.414490 0.414490i
\(831\) 0 0
\(832\) 57508.6 + 9702.46i 0.0830780 + 0.0140164i
\(833\) 686750. 0.989711
\(834\) 0 0
\(835\) 56184.7 0.0805833
\(836\) 3.10983e6i 4.44963i
\(837\) 0 0
\(838\) 1.28473e6 1.28473e6i 1.82947 1.82947i
\(839\) 607302. + 607302.i 0.862742 + 0.862742i 0.991656 0.128914i \(-0.0411490\pi\)
−0.128914 + 0.991656i \(0.541149\pi\)
\(840\) 0 0
\(841\) −494974. −0.699826
\(842\) 2.49794e6i 3.52336i
\(843\) 0 0
\(844\) 2.74931e6i 3.85957i
\(845\) 132657. 64263.8i 0.185787 0.0900022i
\(846\) 0 0
\(847\) 198976. 198976.i 0.277354 0.277354i
\(848\) −315495. −0.438734
\(849\) 0 0
\(850\) −1.15757e6 + 1.15757e6i −1.60217 + 1.60217i
\(851\) 160996. 160996.i 0.222308 0.222308i
\(852\) 0 0
\(853\) 70501.4 + 70501.4i 0.0968947 + 0.0968947i 0.753892 0.656998i \(-0.228174\pi\)
−0.656998 + 0.753892i \(0.728174\pi\)
\(854\) 345158. 0.473263
\(855\) 0 0
\(856\) 1.49899e6 + 1.49899e6i 2.04574 + 2.04574i
\(857\) 1.39326e6i 1.89702i −0.316753 0.948508i \(-0.602593\pi\)
0.316753 0.948508i \(-0.397407\pi\)
\(858\) 0 0
\(859\) −279190. −0.378367 −0.189184 0.981942i \(-0.560584\pi\)
−0.189184 + 0.981942i \(0.560584\pi\)
\(860\) −237502. + 237502.i −0.321122 + 0.321122i
\(861\) 0 0
\(862\) 170907.i 0.230009i
\(863\) −648628. + 648628.i −0.870912 + 0.870912i −0.992572 0.121660i \(-0.961178\pi\)
0.121660 + 0.992572i \(0.461178\pi\)
\(864\) 0 0
\(865\) 39784.9 + 39784.9i 0.0531723 + 0.0531723i
\(866\) 1.54034e6 + 1.54034e6i 2.05390 + 2.05390i
\(867\) 0 0
\(868\) 1.67493e6i 2.22310i
\(869\) −641707. 641707.i −0.849762 0.849762i
\(870\) 0 0
\(871\) −335204. 471266.i −0.441848 0.621198i
\(872\) 1.16823e6 1.53637
\(873\) 0 0
\(874\) 956372. 1.25200
\(875\) 153004.i 0.199841i
\(876\) 0 0
\(877\) −168969. + 168969.i −0.219689 + 0.219689i −0.808367 0.588678i \(-0.799649\pi\)
0.588678 + 0.808367i \(0.299649\pi\)
\(878\) 99097.8 + 99097.8i 0.128551 + 0.128551i
\(879\) 0 0
\(880\) −397838. −0.513737
\(881\) 325818.i 0.419782i −0.977725 0.209891i \(-0.932689\pi\)
0.977725 0.209891i \(-0.0673109\pi\)
\(882\) 0 0
\(883\) 1.09361e6i 1.40262i 0.712858 + 0.701309i \(0.247401\pi\)
−0.712858 + 0.701309i \(0.752599\pi\)
\(884\) 385462. 2.28472e6i 0.493261 2.92367i
\(885\) 0 0
\(886\) −230313. + 230313.i −0.293394 + 0.293394i
\(887\) −1.24503e6 −1.58246 −0.791228 0.611522i \(-0.790558\pi\)
−0.791228 + 0.611522i \(0.790558\pi\)
\(888\) 0 0
\(889\) 28509.6 28509.6i 0.0360734 0.0360734i
\(890\) 6996.75 6996.75i 0.00883316 0.00883316i
\(891\) 0 0
\(892\) 277203. + 277203.i 0.348392 + 0.348392i
\(893\) 1.56647e6 1.96435
\(894\) 0 0
\(895\) −173261. 173261.i −0.216299 0.216299i
\(896\) 366566.i 0.456600i
\(897\) 0 0
\(898\) 1.05557e6 1.30898
\(899\) 621919. 621919.i 0.769510 0.769510i
\(900\) 0 0
\(901\) 251090.i 0.309300i
\(902\) −120955. + 120955.i −0.148665 + 0.148665i
\(903\) 0 0
\(904\) −1.75244e6 1.75244e6i −2.14440 2.14440i
\(905\) 178110. + 178110.i 0.217466 + 0.217466i
\(906\) 0 0
\(907\) 141672.i 0.172214i 0.996286 + 0.0861070i \(0.0274427\pi\)
−0.996286 + 0.0861070i \(0.972557\pi\)
\(908\) −501972. 501972.i −0.608846 0.608846i
\(909\) 0 0
\(910\) −88521.2 124453.i −0.106897 0.150287i
\(911\) 10630.1 0.0128085 0.00640427 0.999979i \(-0.497961\pi\)
0.00640427 + 0.999979i \(0.497961\pi\)
\(912\) 0 0
\(913\) 1.75456e6 2.10488
\(914\) 2.47724e6i 2.96534i
\(915\) 0 0
\(916\) 136030. 136030.i 0.162122 0.162122i
\(917\) −269518. 269518.i −0.320515 0.320515i
\(918\) 0 0
\(919\) −429402. −0.508432 −0.254216 0.967147i \(-0.581817\pi\)
−0.254216 + 0.967147i \(0.581817\pi\)
\(920\) 188182.i 0.222332i
\(921\) 0 0
\(922\) 2.69340e6i 3.16840i
\(923\) −519632. 730555.i −0.609948 0.857531i
\(924\) 0 0
\(925\) 385794. 385794.i 0.450891 0.450891i
\(926\) 1.92337e6 2.24305
\(927\) 0 0
\(928\) −358802. + 358802.i −0.416638 + 0.416638i
\(929\) 241423. 241423.i 0.279735 0.279735i −0.553268 0.833003i \(-0.686620\pi\)
0.833003 + 0.553268i \(0.186620\pi\)
\(930\) 0 0
\(931\) −679815. 679815.i −0.784317 0.784317i
\(932\) −459111. −0.528550
\(933\) 0 0
\(934\) −946446. 946446.i −1.08493 1.08493i
\(935\) 316624.i 0.362176i
\(936\) 0 0
\(937\) −646943. −0.736864 −0.368432 0.929655i \(-0.620105\pi\)
−0.368432 + 0.929655i \(0.620105\pi\)
\(938\) −423694. + 423694.i −0.481556 + 0.481556i
\(939\) 0 0
\(940\) 552260.i 0.625012i
\(941\) −603375. + 603375.i −0.681410 + 0.681410i −0.960318 0.278908i \(-0.910028\pi\)
0.278908 + 0.960318i \(0.410028\pi\)
\(942\) 0 0
\(943\) 25798.0 + 25798.0i 0.0290110 + 0.0290110i
\(944\) 1.52874e6 + 1.52874e6i 1.71550 + 1.71550i
\(945\) 0 0
\(946\) 2.10423e6i 2.35131i
\(947\) −174701. 174701.i −0.194802 0.194802i 0.602965 0.797768i \(-0.293986\pi\)
−0.797768 + 0.602965i \(0.793986\pi\)
\(948\) 0 0
\(949\) 599374. 426325.i 0.665526 0.473378i
\(950\) 2.29176e6 2.53934
\(951\) 0 0
\(952\) −1.33985e6 −1.47837
\(953\) 1.45954e6i 1.60705i 0.595273 + 0.803524i \(0.297044\pi\)
−0.595273 + 0.803524i \(0.702956\pi\)
\(954\) 0 0
\(955\) −19176.0 + 19176.0i −0.0210257 + 0.0210257i
\(956\) −2.22332e6 2.22332e6i −2.43268 2.43268i
\(957\) 0 0
\(958\) 1.64219e6 1.78934
\(959\) 151368.i 0.164587i
\(960\) 0 0
\(961\) 2.72010e6i 2.94535i
\(962\) −185233. + 1.09792e6i −0.200156 + 1.18637i
\(963\) 0 0
\(964\) 1.37564e6 1.37564e6i 1.48030 1.48030i
\(965\) −97093.4 −0.104264
\(966\) 0 0
\(967\) 228474. 228474.i 0.244334 0.244334i −0.574306 0.818640i \(-0.694728\pi\)
0.818640 + 0.574306i \(0.194728\pi\)
\(968\) 1.19897e6 1.19897e6i 1.27955 1.27955i
\(969\) 0 0
\(970\) −51146.4 51146.4i −0.0543590 0.0543590i
\(971\) 470755. 0.499295 0.249647 0.968337i \(-0.419685\pi\)
0.249647 + 0.968337i \(0.419685\pi\)
\(972\) 0 0
\(973\) 429750. + 429750.i 0.453931 + 0.453931i
\(974\) 68208.0i 0.0718981i
\(975\) 0 0
\(976\) 937814. 0.984503
\(977\) 14992.1 14992.1i 0.0157063 0.0157063i −0.699210 0.714916i \(-0.746465\pi\)
0.714916 + 0.699210i \(0.246465\pi\)
\(978\) 0 0
\(979\) 42992.6i 0.0448568i
\(980\) 239670. 239670.i 0.249552 0.249552i
\(981\) 0 0
\(982\) −1.11958e6 1.11958e6i −1.16100 1.16100i
\(983\) 196293. + 196293.i 0.203141 + 0.203141i 0.801344 0.598203i \(-0.204118\pi\)
−0.598203 + 0.801344i \(0.704118\pi\)
\(984\) 0 0
\(985\) 140347.i 0.144654i
\(986\) 891380. + 891380.i 0.916873 + 0.916873i
\(987\) 0 0
\(988\) −2.64322e6 + 1.88008e6i −2.70782 + 1.92603i
\(989\) −448802. −0.458841
\(990\) 0 0
\(991\) −1.70831e6 −1.73948 −0.869741 0.493508i \(-0.835714\pi\)
−0.869741 + 0.493508i \(0.835714\pi\)
\(992\) 2.10210e6i 2.13614i
\(993\) 0 0
\(994\) −656809. + 656809.i −0.664762 + 0.664762i
\(995\) −101005. 101005.i −0.102023 0.102023i
\(996\) 0 0
\(997\) 1.51922e6 1.52838 0.764190 0.644992i \(-0.223139\pi\)
0.764190 + 0.644992i \(0.223139\pi\)
\(998\) 1.04631e6i 1.05050i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.5.j.b.109.10 20
3.2 odd 2 39.5.g.a.31.1 20
13.8 odd 4 inner 117.5.j.b.73.10 20
39.8 even 4 39.5.g.a.34.1 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.5.g.a.31.1 20 3.2 odd 2
39.5.g.a.34.1 yes 20 39.8 even 4
117.5.j.b.73.10 20 13.8 odd 4 inner
117.5.j.b.109.10 20 1.1 even 1 trivial