Properties

Label 117.5.j.b.109.1
Level $117$
Weight $5$
Character 117.109
Analytic conductor $12.094$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,5,Mod(73,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([0, 1]))
 
N = Newforms(chi, 5, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.73");
 
S:= CuspForms(chi, 5);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 5 \)
Character orbit: \([\chi]\) \(=\) 117.j (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(12.0942856808\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(10\) over \(\Q(i)\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 5446 x^{16} - 1452 x^{15} + 106320 x^{13} + 8376897 x^{12} - 1643220 x^{11} + 1054152 x^{10} + \cdots + 2103506496 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{25}]\)
Coefficient ring index: \( 2^{22}\cdot 3^{10} \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 109.1
Root \(-5.39509 + 5.39509i\) of defining polynomial
Character \(\chi\) \(=\) 117.109
Dual form 117.5.j.b.73.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-5.39509 + 5.39509i) q^{2} -42.2140i q^{4} +(17.6256 - 17.6256i) q^{5} +(26.0542 + 26.0542i) q^{7} +(141.427 + 141.427i) q^{8} +190.184i q^{10} +(-141.872 - 141.872i) q^{11} +(-154.603 - 68.2564i) q^{13} -281.130 q^{14} -850.600 q^{16} +216.815i q^{17} +(-101.874 + 101.874i) q^{19} +(-744.048 - 744.048i) q^{20} +1530.83 q^{22} -31.5880i q^{23} +3.67533i q^{25} +(1202.35 - 465.848i) q^{26} +(1099.85 - 1099.85i) q^{28} -634.240 q^{29} +(-750.494 + 750.494i) q^{31} +(2326.23 - 2326.23i) q^{32} +(-1169.74 - 1169.74i) q^{34} +918.442 q^{35} +(-1868.84 - 1868.84i) q^{37} -1099.24i q^{38} +4985.48 q^{40} +(399.410 - 399.410i) q^{41} -1574.71i q^{43} +(-5989.00 + 5989.00i) q^{44} +(170.420 + 170.420i) q^{46} +(-661.037 - 661.037i) q^{47} -1043.36i q^{49} +(-19.8287 - 19.8287i) q^{50} +(-2881.38 + 6526.41i) q^{52} +2764.37 q^{53} -5001.17 q^{55} +7369.54i q^{56} +(3421.79 - 3421.79i) q^{58} +(-2131.00 - 2131.00i) q^{59} -1556.43 q^{61} -8097.96i q^{62} +11490.9i q^{64} +(-3928.03 + 1521.91i) q^{65} +(81.1721 - 81.1721i) q^{67} +9152.65 q^{68} +(-4955.08 + 4955.08i) q^{70} +(-6425.97 + 6425.97i) q^{71} +(2565.20 + 2565.20i) q^{73} +20165.1 q^{74} +(4300.51 + 4300.51i) q^{76} -7392.73i q^{77} +1133.16 q^{79} +(-14992.4 + 14992.4i) q^{80} +4309.71i q^{82} +(-4665.02 + 4665.02i) q^{83} +(3821.50 + 3821.50i) q^{85} +(8495.72 + 8495.72i) q^{86} -40129.2i q^{88} +(-9509.38 - 9509.38i) q^{89} +(-2249.69 - 5806.42i) q^{91} -1333.46 q^{92} +7132.72 q^{94} +3591.18i q^{95} +(-2592.99 + 2592.99i) q^{97} +(5629.01 + 5629.01i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q - 24 q^{5} - 24 q^{7} - 372 q^{11} - 224 q^{13} - 480 q^{14} - 2328 q^{16} - 840 q^{19} - 228 q^{20} + 3536 q^{22} + 828 q^{26} - 1984 q^{28} + 5064 q^{29} + 1712 q^{31} + 7260 q^{32} + 8040 q^{34}+ \cdots - 11544 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −5.39509 + 5.39509i −1.34877 + 1.34877i −0.461777 + 0.886996i \(0.652788\pi\)
−0.886996 + 0.461777i \(0.847212\pi\)
\(3\) 0 0
\(4\) 42.2140i 2.63838i
\(5\) 17.6256 17.6256i 0.705025 0.705025i −0.260460 0.965485i \(-0.583874\pi\)
0.965485 + 0.260460i \(0.0838742\pi\)
\(6\) 0 0
\(7\) 26.0542 + 26.0542i 0.531718 + 0.531718i 0.921083 0.389365i \(-0.127306\pi\)
−0.389365 + 0.921083i \(0.627306\pi\)
\(8\) 141.427 + 141.427i 2.20980 + 2.20980i
\(9\) 0 0
\(10\) 190.184i 1.90184i
\(11\) −141.872 141.872i −1.17250 1.17250i −0.981612 0.190885i \(-0.938864\pi\)
−0.190885 0.981612i \(-0.561136\pi\)
\(12\) 0 0
\(13\) −154.603 68.2564i −0.914810 0.403884i
\(14\) −281.130 −1.43433
\(15\) 0 0
\(16\) −850.600 −3.32266
\(17\) 216.815i 0.750226i 0.926979 + 0.375113i \(0.122396\pi\)
−0.926979 + 0.375113i \(0.877604\pi\)
\(18\) 0 0
\(19\) −101.874 + 101.874i −0.282199 + 0.282199i −0.833986 0.551786i \(-0.813946\pi\)
0.551786 + 0.833986i \(0.313946\pi\)
\(20\) −744.048 744.048i −1.86012 1.86012i
\(21\) 0 0
\(22\) 1530.83 3.16287
\(23\) 31.5880i 0.0597126i −0.999554 0.0298563i \(-0.990495\pi\)
0.999554 0.0298563i \(-0.00950497\pi\)
\(24\) 0 0
\(25\) 3.67533i 0.00588053i
\(26\) 1202.35 465.848i 1.77862 0.689124i
\(27\) 0 0
\(28\) 1099.85 1099.85i 1.40287 1.40287i
\(29\) −634.240 −0.754150 −0.377075 0.926183i \(-0.623070\pi\)
−0.377075 + 0.926183i \(0.623070\pi\)
\(30\) 0 0
\(31\) −750.494 + 750.494i −0.780951 + 0.780951i −0.979991 0.199041i \(-0.936217\pi\)
0.199041 + 0.979991i \(0.436217\pi\)
\(32\) 2326.23 2326.23i 2.27171 2.27171i
\(33\) 0 0
\(34\) −1169.74 1169.74i −1.01188 1.01188i
\(35\) 918.442 0.749749
\(36\) 0 0
\(37\) −1868.84 1868.84i −1.36511 1.36511i −0.867266 0.497845i \(-0.834125\pi\)
−0.497845 0.867266i \(-0.665875\pi\)
\(38\) 1099.24i 0.761246i
\(39\) 0 0
\(40\) 4985.48 3.11593
\(41\) 399.410 399.410i 0.237603 0.237603i −0.578254 0.815857i \(-0.696266\pi\)
0.815857 + 0.578254i \(0.196266\pi\)
\(42\) 0 0
\(43\) 1574.71i 0.851656i −0.904804 0.425828i \(-0.859983\pi\)
0.904804 0.425828i \(-0.140017\pi\)
\(44\) −5989.00 + 5989.00i −3.09349 + 3.09349i
\(45\) 0 0
\(46\) 170.420 + 170.420i 0.0805388 + 0.0805388i
\(47\) −661.037 661.037i −0.299247 0.299247i 0.541472 0.840719i \(-0.317867\pi\)
−0.840719 + 0.541472i \(0.817867\pi\)
\(48\) 0 0
\(49\) 1043.36i 0.434551i
\(50\) −19.8287 19.8287i −0.00793150 0.00793150i
\(51\) 0 0
\(52\) −2881.38 + 6526.41i −1.06560 + 2.41361i
\(53\) 2764.37 0.984111 0.492056 0.870564i \(-0.336246\pi\)
0.492056 + 0.870564i \(0.336246\pi\)
\(54\) 0 0
\(55\) −5001.17 −1.65328
\(56\) 7369.54i 2.34998i
\(57\) 0 0
\(58\) 3421.79 3421.79i 1.01718 1.01718i
\(59\) −2131.00 2131.00i −0.612181 0.612181i 0.331333 0.943514i \(-0.392502\pi\)
−0.943514 + 0.331333i \(0.892502\pi\)
\(60\) 0 0
\(61\) −1556.43 −0.418283 −0.209142 0.977885i \(-0.567067\pi\)
−0.209142 + 0.977885i \(0.567067\pi\)
\(62\) 8097.96i 2.10665i
\(63\) 0 0
\(64\) 11490.9i 2.80539i
\(65\) −3928.03 + 1521.91i −0.929712 + 0.360216i
\(66\) 0 0
\(67\) 81.1721 81.1721i 0.0180824 0.0180824i −0.698008 0.716090i \(-0.745930\pi\)
0.716090 + 0.698008i \(0.245930\pi\)
\(68\) 9152.65 1.97938
\(69\) 0 0
\(70\) −4955.08 + 4955.08i −1.01124 + 1.01124i
\(71\) −6425.97 + 6425.97i −1.27474 + 1.27474i −0.331169 + 0.943571i \(0.607443\pi\)
−0.943571 + 0.331169i \(0.892557\pi\)
\(72\) 0 0
\(73\) 2565.20 + 2565.20i 0.481366 + 0.481366i 0.905568 0.424201i \(-0.139445\pi\)
−0.424201 + 0.905568i \(0.639445\pi\)
\(74\) 20165.1 3.68245
\(75\) 0 0
\(76\) 4300.51 + 4300.51i 0.744549 + 0.744549i
\(77\) 7392.73i 1.24688i
\(78\) 0 0
\(79\) 1133.16 0.181568 0.0907839 0.995871i \(-0.471063\pi\)
0.0907839 + 0.995871i \(0.471063\pi\)
\(80\) −14992.4 + 14992.4i −2.34256 + 2.34256i
\(81\) 0 0
\(82\) 4309.71i 0.640945i
\(83\) −4665.02 + 4665.02i −0.677169 + 0.677169i −0.959359 0.282190i \(-0.908939\pi\)
0.282190 + 0.959359i \(0.408939\pi\)
\(84\) 0 0
\(85\) 3821.50 + 3821.50i 0.528928 + 0.528928i
\(86\) 8495.72 + 8495.72i 1.14869 + 1.14869i
\(87\) 0 0
\(88\) 40129.2i 5.18197i
\(89\) −9509.38 9509.38i −1.20053 1.20053i −0.974006 0.226521i \(-0.927265\pi\)
−0.226521 0.974006i \(-0.572735\pi\)
\(90\) 0 0
\(91\) −2249.69 5806.42i −0.271669 0.701174i
\(92\) −1333.46 −0.157544
\(93\) 0 0
\(94\) 7132.72 0.807234
\(95\) 3591.18i 0.397915i
\(96\) 0 0
\(97\) −2592.99 + 2592.99i −0.275586 + 0.275586i −0.831344 0.555758i \(-0.812428\pi\)
0.555758 + 0.831344i \(0.312428\pi\)
\(98\) 5629.01 + 5629.01i 0.586111 + 0.586111i
\(99\) 0 0
\(100\) 155.150 0.0155150
\(101\) 3169.30i 0.310685i −0.987861 0.155342i \(-0.950352\pi\)
0.987861 0.155342i \(-0.0496481\pi\)
\(102\) 0 0
\(103\) 837.656i 0.0789571i 0.999220 + 0.0394785i \(0.0125697\pi\)
−0.999220 + 0.0394785i \(0.987430\pi\)
\(104\) −12211.8 31518.4i −1.12905 2.91405i
\(105\) 0 0
\(106\) −14914.0 + 14914.0i −1.32734 + 1.32734i
\(107\) −2575.64 −0.224966 −0.112483 0.993654i \(-0.535880\pi\)
−0.112483 + 0.993654i \(0.535880\pi\)
\(108\) 0 0
\(109\) 14711.8 14711.8i 1.23826 1.23826i 0.277555 0.960710i \(-0.410476\pi\)
0.960710 0.277555i \(-0.0895240\pi\)
\(110\) 26981.8 26981.8i 2.22990 2.22990i
\(111\) 0 0
\(112\) −22161.7 22161.7i −1.76672 1.76672i
\(113\) −2115.72 −0.165692 −0.0828458 0.996562i \(-0.526401\pi\)
−0.0828458 + 0.996562i \(0.526401\pi\)
\(114\) 0 0
\(115\) −556.757 556.757i −0.0420989 0.0420989i
\(116\) 26773.9i 1.98973i
\(117\) 0 0
\(118\) 22993.9 1.65139
\(119\) −5648.95 + 5648.95i −0.398909 + 0.398909i
\(120\) 0 0
\(121\) 25614.4i 1.74950i
\(122\) 8397.09 8397.09i 0.564169 0.564169i
\(123\) 0 0
\(124\) 31681.4 + 31681.4i 2.06044 + 2.06044i
\(125\) 11080.8 + 11080.8i 0.709171 + 0.709171i
\(126\) 0 0
\(127\) 8241.86i 0.510996i −0.966810 0.255498i \(-0.917761\pi\)
0.966810 0.255498i \(-0.0822394\pi\)
\(128\) −24774.6 24774.6i −1.51212 1.51212i
\(129\) 0 0
\(130\) 12981.2 29403.0i 0.768121 1.73982i
\(131\) 14460.4 0.842629 0.421315 0.906915i \(-0.361569\pi\)
0.421315 + 0.906915i \(0.361569\pi\)
\(132\) 0 0
\(133\) −5308.49 −0.300101
\(134\) 875.862i 0.0487782i
\(135\) 0 0
\(136\) −30663.6 + 30663.6i −1.65785 + 1.65785i
\(137\) −6841.36 6841.36i −0.364503 0.364503i 0.500965 0.865468i \(-0.332979\pi\)
−0.865468 + 0.500965i \(0.832979\pi\)
\(138\) 0 0
\(139\) −20952.3 −1.08443 −0.542216 0.840239i \(-0.682415\pi\)
−0.542216 + 0.840239i \(0.682415\pi\)
\(140\) 38771.2i 1.97812i
\(141\) 0 0
\(142\) 69337.4i 3.43867i
\(143\) 12250.2 + 31617.5i 0.599060 + 1.54617i
\(144\) 0 0
\(145\) −11178.9 + 11178.9i −0.531695 + 0.531695i
\(146\) −27679.0 −1.29851
\(147\) 0 0
\(148\) −78891.2 + 78891.2i −3.60168 + 3.60168i
\(149\) 3142.63 3142.63i 0.141553 0.141553i −0.632779 0.774332i \(-0.718086\pi\)
0.774332 + 0.632779i \(0.218086\pi\)
\(150\) 0 0
\(151\) 15748.1 + 15748.1i 0.690678 + 0.690678i 0.962381 0.271703i \(-0.0875869\pi\)
−0.271703 + 0.962381i \(0.587587\pi\)
\(152\) −28815.5 −1.24721
\(153\) 0 0
\(154\) 39884.5 + 39884.5i 1.68175 + 1.68175i
\(155\) 26455.8i 1.10118i
\(156\) 0 0
\(157\) 1199.88 0.0486786 0.0243393 0.999704i \(-0.492252\pi\)
0.0243393 + 0.999704i \(0.492252\pi\)
\(158\) −6113.52 + 6113.52i −0.244894 + 0.244894i
\(159\) 0 0
\(160\) 82002.6i 3.20323i
\(161\) 822.999 822.999i 0.0317503 0.0317503i
\(162\) 0 0
\(163\) 9254.30 + 9254.30i 0.348312 + 0.348312i 0.859481 0.511169i \(-0.170787\pi\)
−0.511169 + 0.859481i \(0.670787\pi\)
\(164\) −16860.7 16860.7i −0.626886 0.626886i
\(165\) 0 0
\(166\) 50336.4i 1.82669i
\(167\) 3520.69 + 3520.69i 0.126239 + 0.126239i 0.767404 0.641164i \(-0.221548\pi\)
−0.641164 + 0.767404i \(0.721548\pi\)
\(168\) 0 0
\(169\) 19243.1 + 21105.3i 0.673756 + 0.738954i
\(170\) −41234.7 −1.42681
\(171\) 0 0
\(172\) −66475.0 −2.24699
\(173\) 48893.1i 1.63364i −0.576896 0.816818i \(-0.695736\pi\)
0.576896 0.816818i \(-0.304264\pi\)
\(174\) 0 0
\(175\) −95.7577 + 95.7577i −0.00312678 + 0.00312678i
\(176\) 120677. + 120677.i 3.89581 + 3.89581i
\(177\) 0 0
\(178\) 102608. 3.23848
\(179\) 2018.23i 0.0629891i −0.999504 0.0314946i \(-0.989973\pi\)
0.999504 0.0314946i \(-0.0100267\pi\)
\(180\) 0 0
\(181\) 16380.3i 0.499994i 0.968247 + 0.249997i \(0.0804296\pi\)
−0.968247 + 0.249997i \(0.919570\pi\)
\(182\) 43463.5 + 19188.9i 1.31214 + 0.579304i
\(183\) 0 0
\(184\) 4467.40 4467.40i 0.131953 0.131953i
\(185\) −65878.8 −1.92487
\(186\) 0 0
\(187\) 30760.1 30760.1i 0.879638 0.879638i
\(188\) −27905.1 + 27905.1i −0.789528 + 0.789528i
\(189\) 0 0
\(190\) −19374.8 19374.8i −0.536697 0.536697i
\(191\) 57513.6 1.57654 0.788268 0.615332i \(-0.210978\pi\)
0.788268 + 0.615332i \(0.210978\pi\)
\(192\) 0 0
\(193\) −16470.6 16470.6i −0.442175 0.442175i 0.450567 0.892742i \(-0.351222\pi\)
−0.892742 + 0.450567i \(0.851222\pi\)
\(194\) 27978.8i 0.743406i
\(195\) 0 0
\(196\) −44044.4 −1.14651
\(197\) 24506.7 24506.7i 0.631469 0.631469i −0.316968 0.948436i \(-0.602665\pi\)
0.948436 + 0.316968i \(0.102665\pi\)
\(198\) 0 0
\(199\) 27560.8i 0.695963i −0.937501 0.347982i \(-0.886867\pi\)
0.937501 0.347982i \(-0.113133\pi\)
\(200\) −519.791 + 519.791i −0.0129948 + 0.0129948i
\(201\) 0 0
\(202\) 17098.6 + 17098.6i 0.419043 + 0.419043i
\(203\) −16524.6 16524.6i −0.400996 0.400996i
\(204\) 0 0
\(205\) 14079.7i 0.335032i
\(206\) −4519.23 4519.23i −0.106495 0.106495i
\(207\) 0 0
\(208\) 131505. + 58058.9i 3.03960 + 1.34197i
\(209\) 28906.2 0.661756
\(210\) 0 0
\(211\) 48729.8 1.09454 0.547268 0.836957i \(-0.315668\pi\)
0.547268 + 0.836957i \(0.315668\pi\)
\(212\) 116695.i 2.59646i
\(213\) 0 0
\(214\) 13895.8 13895.8i 0.303429 0.303429i
\(215\) −27755.3 27755.3i −0.600439 0.600439i
\(216\) 0 0
\(217\) −39107.0 −0.830491
\(218\) 158743.i 3.34028i
\(219\) 0 0
\(220\) 211120.i 4.36197i
\(221\) 14799.0 33520.3i 0.303004 0.686315i
\(222\) 0 0
\(223\) −58941.0 + 58941.0i −1.18524 + 1.18524i −0.206876 + 0.978367i \(0.566330\pi\)
−0.978367 + 0.206876i \(0.933670\pi\)
\(224\) 121216. 2.41582
\(225\) 0 0
\(226\) 11414.5 11414.5i 0.223480 0.223480i
\(227\) −19785.2 + 19785.2i −0.383962 + 0.383962i −0.872527 0.488565i \(-0.837520\pi\)
0.488565 + 0.872527i \(0.337520\pi\)
\(228\) 0 0
\(229\) −62319.6 62319.6i −1.18837 1.18837i −0.977517 0.210858i \(-0.932374\pi\)
−0.210858 0.977517i \(-0.567626\pi\)
\(230\) 6007.52 0.113564
\(231\) 0 0
\(232\) −89698.8 89698.8i −1.66652 1.66652i
\(233\) 11660.7i 0.214789i 0.994216 + 0.107394i \(0.0342508\pi\)
−0.994216 + 0.107394i \(0.965749\pi\)
\(234\) 0 0
\(235\) −23302.4 −0.421954
\(236\) −89958.2 + 89958.2i −1.61516 + 1.61516i
\(237\) 0 0
\(238\) 60953.2i 1.07608i
\(239\) −35963.3 + 35963.3i −0.629599 + 0.629599i −0.947967 0.318368i \(-0.896865\pi\)
0.318368 + 0.947967i \(0.396865\pi\)
\(240\) 0 0
\(241\) −5021.39 5021.39i −0.0864550 0.0864550i 0.662557 0.749012i \(-0.269471\pi\)
−0.749012 + 0.662557i \(0.769471\pi\)
\(242\) −138192. 138192.i −2.35968 2.35968i
\(243\) 0 0
\(244\) 65703.2i 1.10359i
\(245\) −18389.8 18389.8i −0.306369 0.306369i
\(246\) 0 0
\(247\) 22703.6 8796.47i 0.372135 0.144183i
\(248\) −212280. −3.45149
\(249\) 0 0
\(250\) −119564. −1.91302
\(251\) 33336.1i 0.529136i 0.964367 + 0.264568i \(0.0852294\pi\)
−0.964367 + 0.264568i \(0.914771\pi\)
\(252\) 0 0
\(253\) −4481.45 + 4481.45i −0.0700129 + 0.0700129i
\(254\) 44465.6 + 44465.6i 0.689218 + 0.689218i
\(255\) 0 0
\(256\) 83468.7 1.27363
\(257\) 46144.5i 0.698640i 0.937003 + 0.349320i \(0.113587\pi\)
−0.937003 + 0.349320i \(0.886413\pi\)
\(258\) 0 0
\(259\) 97382.1i 1.45171i
\(260\) 64246.0 + 165818.i 0.950385 + 2.45293i
\(261\) 0 0
\(262\) −78015.0 + 78015.0i −1.13652 + 1.13652i
\(263\) 86819.8 1.25518 0.627592 0.778543i \(-0.284041\pi\)
0.627592 + 0.778543i \(0.284041\pi\)
\(264\) 0 0
\(265\) 48723.7 48723.7i 0.693823 0.693823i
\(266\) 28639.8 28639.8i 0.404768 0.404768i
\(267\) 0 0
\(268\) −3426.60 3426.60i −0.0477083 0.0477083i
\(269\) 66198.6 0.914838 0.457419 0.889251i \(-0.348774\pi\)
0.457419 + 0.889251i \(0.348774\pi\)
\(270\) 0 0
\(271\) 37598.3 + 37598.3i 0.511952 + 0.511952i 0.915124 0.403172i \(-0.132092\pi\)
−0.403172 + 0.915124i \(0.632092\pi\)
\(272\) 184423.i 2.49275i
\(273\) 0 0
\(274\) 73819.5 0.983264
\(275\) 521.427 521.427i 0.00689490 0.00689490i
\(276\) 0 0
\(277\) 48047.1i 0.626192i 0.949721 + 0.313096i \(0.101366\pi\)
−0.949721 + 0.313096i \(0.898634\pi\)
\(278\) 113040. 113040.i 1.46265 1.46265i
\(279\) 0 0
\(280\) 129893. + 129893.i 1.65679 + 1.65679i
\(281\) 3560.42 + 3560.42i 0.0450909 + 0.0450909i 0.729293 0.684202i \(-0.239849\pi\)
−0.684202 + 0.729293i \(0.739849\pi\)
\(282\) 0 0
\(283\) 4833.10i 0.0603466i 0.999545 + 0.0301733i \(0.00960592\pi\)
−0.999545 + 0.0301733i \(0.990394\pi\)
\(284\) 271266. + 271266.i 3.36325 + 3.36325i
\(285\) 0 0
\(286\) −236670. 104489.i −2.89342 1.27743i
\(287\) 20812.6 0.252676
\(288\) 0 0
\(289\) 36512.1 0.437161
\(290\) 120622.i 1.43427i
\(291\) 0 0
\(292\) 108288. 108288.i 1.27003 1.27003i
\(293\) −78570.2 78570.2i −0.915213 0.915213i 0.0814629 0.996676i \(-0.474041\pi\)
−0.996676 + 0.0814629i \(0.974041\pi\)
\(294\) 0 0
\(295\) −75120.5 −0.863206
\(296\) 528609.i 6.03324i
\(297\) 0 0
\(298\) 33909.5i 0.381847i
\(299\) −2156.08 + 4883.59i −0.0241170 + 0.0546257i
\(300\) 0 0
\(301\) 41027.9 41027.9i 0.452841 0.452841i
\(302\) −169925. −1.86314
\(303\) 0 0
\(304\) 86654.1 86654.1i 0.937652 0.937652i
\(305\) −27433.1 + 27433.1i −0.294900 + 0.294900i
\(306\) 0 0
\(307\) −36999.3 36999.3i −0.392570 0.392570i 0.483032 0.875602i \(-0.339535\pi\)
−0.875602 + 0.483032i \(0.839535\pi\)
\(308\) −312077. −3.28973
\(309\) 0 0
\(310\) −142732. 142732.i −1.48524 1.48524i
\(311\) 50001.9i 0.516971i −0.966015 0.258485i \(-0.916777\pi\)
0.966015 0.258485i \(-0.0832234\pi\)
\(312\) 0 0
\(313\) 99016.7 1.01069 0.505347 0.862916i \(-0.331364\pi\)
0.505347 + 0.862916i \(0.331364\pi\)
\(314\) −6473.46 + 6473.46i −0.0656564 + 0.0656564i
\(315\) 0 0
\(316\) 47835.4i 0.479044i
\(317\) −64312.4 + 64312.4i −0.639994 + 0.639994i −0.950554 0.310560i \(-0.899484\pi\)
0.310560 + 0.950554i \(0.399484\pi\)
\(318\) 0 0
\(319\) 89981.1 + 89981.1i 0.884239 + 0.884239i
\(320\) 202534. + 202534.i 1.97787 + 1.97787i
\(321\) 0 0
\(322\) 8880.31i 0.0856479i
\(323\) −22087.8 22087.8i −0.211713 0.211713i
\(324\) 0 0
\(325\) 250.865 568.217i 0.00237505 0.00537957i
\(326\) −99855.6 −0.939588
\(327\) 0 0
\(328\) 112975. 1.05011
\(329\) 34445.6i 0.318231i
\(330\) 0 0
\(331\) −132098. + 132098.i −1.20570 + 1.20570i −0.233297 + 0.972405i \(0.574951\pi\)
−0.972405 + 0.233297i \(0.925049\pi\)
\(332\) 196929. + 196929.i 1.78663 + 1.78663i
\(333\) 0 0
\(334\) −37988.9 −0.340536
\(335\) 2861.42i 0.0254971i
\(336\) 0 0
\(337\) 150689.i 1.32685i −0.748244 0.663423i \(-0.769103\pi\)
0.748244 0.663423i \(-0.230897\pi\)
\(338\) −217683. 10046.3i −1.90543 0.0879375i
\(339\) 0 0
\(340\) 161321. 161321.i 1.39551 1.39551i
\(341\) 212948. 1.83133
\(342\) 0 0
\(343\) 89740.0 89740.0i 0.762777 0.762777i
\(344\) 222707. 222707.i 1.88199 1.88199i
\(345\) 0 0
\(346\) 263783. + 263783.i 2.20340 + 2.20340i
\(347\) −59463.6 −0.493847 −0.246923 0.969035i \(-0.579420\pi\)
−0.246923 + 0.969035i \(0.579420\pi\)
\(348\) 0 0
\(349\) 43463.0 + 43463.0i 0.356836 + 0.356836i 0.862645 0.505809i \(-0.168806\pi\)
−0.505809 + 0.862645i \(0.668806\pi\)
\(350\) 1033.24i 0.00843464i
\(351\) 0 0
\(352\) −660056. −5.32715
\(353\) 64237.6 64237.6i 0.515513 0.515513i −0.400697 0.916210i \(-0.631232\pi\)
0.916210 + 0.400697i \(0.131232\pi\)
\(354\) 0 0
\(355\) 226523.i 1.79745i
\(356\) −401429. + 401429.i −3.16744 + 3.16744i
\(357\) 0 0
\(358\) 10888.6 + 10888.6i 0.0849581 + 0.0849581i
\(359\) −18911.7 18911.7i −0.146738 0.146738i 0.629921 0.776659i \(-0.283087\pi\)
−0.776659 + 0.629921i \(0.783087\pi\)
\(360\) 0 0
\(361\) 109564.i 0.840727i
\(362\) −88373.2 88373.2i −0.674378 0.674378i
\(363\) 0 0
\(364\) −245112. + 94968.5i −1.84996 + 0.716765i
\(365\) 90426.5 0.678750
\(366\) 0 0
\(367\) 159803. 1.18646 0.593229 0.805034i \(-0.297853\pi\)
0.593229 + 0.805034i \(0.297853\pi\)
\(368\) 26868.7i 0.198405i
\(369\) 0 0
\(370\) 355422. 355422.i 2.59622 2.59622i
\(371\) 72023.4 + 72023.4i 0.523270 + 0.523270i
\(372\) 0 0
\(373\) 15973.6 0.114812 0.0574059 0.998351i \(-0.481717\pi\)
0.0574059 + 0.998351i \(0.481717\pi\)
\(374\) 331907.i 2.37286i
\(375\) 0 0
\(376\) 186977.i 1.32255i
\(377\) 98055.4 + 43290.9i 0.689905 + 0.304589i
\(378\) 0 0
\(379\) −152306. + 152306.i −1.06032 + 1.06032i −0.0622636 + 0.998060i \(0.519832\pi\)
−0.998060 + 0.0622636i \(0.980168\pi\)
\(380\) 151598. 1.04985
\(381\) 0 0
\(382\) −310291. + 310291.i −2.12639 + 2.12639i
\(383\) 113449. 113449.i 0.773399 0.773399i −0.205300 0.978699i \(-0.565817\pi\)
0.978699 + 0.205300i \(0.0658169\pi\)
\(384\) 0 0
\(385\) −130301. 130301.i −0.879079 0.879079i
\(386\) 177721. 1.19279
\(387\) 0 0
\(388\) 109461. + 109461.i 0.727100 + 0.727100i
\(389\) 72934.4i 0.481985i 0.970527 + 0.240992i \(0.0774728\pi\)
−0.970527 + 0.240992i \(0.922527\pi\)
\(390\) 0 0
\(391\) 6848.76 0.0447980
\(392\) 147559. 147559.i 0.960272 0.960272i
\(393\) 0 0
\(394\) 264431.i 1.70342i
\(395\) 19972.7 19972.7i 0.128010 0.128010i
\(396\) 0 0
\(397\) −157471. 157471.i −0.999124 0.999124i 0.000875739 1.00000i \(-0.499721\pi\)
−1.00000 0.000875739i \(0.999721\pi\)
\(398\) 148693. + 148693.i 0.938696 + 0.938696i
\(399\) 0 0
\(400\) 3126.24i 0.0195390i
\(401\) −215812. 215812.i −1.34210 1.34210i −0.893963 0.448140i \(-0.852086\pi\)
−0.448140 0.893963i \(-0.647914\pi\)
\(402\) 0 0
\(403\) 167254. 64802.6i 1.02984 0.399008i
\(404\) −133789. −0.819704
\(405\) 0 0
\(406\) 178304. 1.08170
\(407\) 530272.i 3.20118i
\(408\) 0 0
\(409\) 189086. 189086.i 1.13035 1.13035i 0.140227 0.990119i \(-0.455217\pi\)
0.990119 0.140227i \(-0.0447833\pi\)
\(410\) 75961.3 + 75961.3i 0.451882 + 0.451882i
\(411\) 0 0
\(412\) 35360.8 0.208319
\(413\) 111043.i 0.651016i
\(414\) 0 0
\(415\) 164448.i 0.954842i
\(416\) −518423. + 200862.i −2.99569 + 1.16068i
\(417\) 0 0
\(418\) −155951. + 155951.i −0.892559 + 0.892559i
\(419\) −128365. −0.731173 −0.365586 0.930777i \(-0.619131\pi\)
−0.365586 + 0.930777i \(0.619131\pi\)
\(420\) 0 0
\(421\) −143608. + 143608.i −0.810244 + 0.810244i −0.984670 0.174426i \(-0.944193\pi\)
0.174426 + 0.984670i \(0.444193\pi\)
\(422\) −262902. + 262902.i −1.47628 + 1.47628i
\(423\) 0 0
\(424\) 390957. + 390957.i 2.17469 + 2.17469i
\(425\) −796.868 −0.00441172
\(426\) 0 0
\(427\) −40551.6 40551.6i −0.222409 0.222409i
\(428\) 108728.i 0.593546i
\(429\) 0 0
\(430\) 299485. 1.61971
\(431\) −97112.9 + 97112.9i −0.522784 + 0.522784i −0.918411 0.395627i \(-0.870527\pi\)
0.395627 + 0.918411i \(0.370527\pi\)
\(432\) 0 0
\(433\) 207477.i 1.10661i −0.832980 0.553304i \(-0.813367\pi\)
0.832980 0.553304i \(-0.186633\pi\)
\(434\) 210986. 210986.i 1.12014 1.12014i
\(435\) 0 0
\(436\) −621045. 621045.i −3.26701 3.26701i
\(437\) 3217.99 + 3217.99i 0.0168509 + 0.0168509i
\(438\) 0 0
\(439\) 278696.i 1.44611i 0.690791 + 0.723054i \(0.257262\pi\)
−0.690791 + 0.723054i \(0.742738\pi\)
\(440\) −707301. 707301.i −3.65342 3.65342i
\(441\) 0 0
\(442\) 101003. + 260687.i 0.516999 + 1.33437i
\(443\) 343219. 1.74889 0.874447 0.485121i \(-0.161224\pi\)
0.874447 + 0.485121i \(0.161224\pi\)
\(444\) 0 0
\(445\) −335217. −1.69280
\(446\) 635984.i 3.19725i
\(447\) 0 0
\(448\) −299386. + 299386.i −1.49168 + 1.49168i
\(449\) −176502. 176502.i −0.875502 0.875502i 0.117563 0.993065i \(-0.462492\pi\)
−0.993065 + 0.117563i \(0.962492\pi\)
\(450\) 0 0
\(451\) −113330. −0.557177
\(452\) 89312.9i 0.437157i
\(453\) 0 0
\(454\) 213486.i 1.03576i
\(455\) −141994. 62689.5i −0.685878 0.302811i
\(456\) 0 0
\(457\) 284006. 284006.i 1.35986 1.35986i 0.485784 0.874079i \(-0.338534\pi\)
0.874079 0.485784i \(-0.161466\pi\)
\(458\) 672440. 3.20570
\(459\) 0 0
\(460\) −23503.0 + 23503.0i −0.111073 + 0.111073i
\(461\) 244619. 244619.i 1.15103 1.15103i 0.164686 0.986346i \(-0.447339\pi\)
0.986346 0.164686i \(-0.0526612\pi\)
\(462\) 0 0
\(463\) 89908.4 + 89908.4i 0.419409 + 0.419409i 0.885000 0.465591i \(-0.154158\pi\)
−0.465591 + 0.885000i \(0.654158\pi\)
\(464\) 539485. 2.50578
\(465\) 0 0
\(466\) −62910.4 62910.4i −0.289702 0.289702i
\(467\) 135947.i 0.623357i 0.950188 + 0.311679i \(0.100891\pi\)
−0.950188 + 0.311679i \(0.899109\pi\)
\(468\) 0 0
\(469\) 4229.75 0.0192295
\(470\) 125719. 125719.i 0.569120 0.569120i
\(471\) 0 0
\(472\) 602763.i 2.70559i
\(473\) −223408. + 223408.i −0.998565 + 0.998565i
\(474\) 0 0
\(475\) −374.420 374.420i −0.00165948 0.00165948i
\(476\) 238465. + 238465.i 1.05247 + 1.05247i
\(477\) 0 0
\(478\) 388051.i 1.69837i
\(479\) 245796. + 245796.i 1.07128 + 1.07128i 0.997256 + 0.0740240i \(0.0235842\pi\)
0.0740240 + 0.997256i \(0.476416\pi\)
\(480\) 0 0
\(481\) 161368. + 416488.i 0.697472 + 1.80016i
\(482\) 54181.7 0.233216
\(483\) 0 0
\(484\) 1.08129e6 4.61584
\(485\) 91406.0i 0.388590i
\(486\) 0 0
\(487\) 57471.5 57471.5i 0.242323 0.242323i −0.575488 0.817810i \(-0.695188\pi\)
0.817810 + 0.575488i \(0.195188\pi\)
\(488\) −220122. 220122.i −0.924322 0.924322i
\(489\) 0 0
\(490\) 198430. 0.826446
\(491\) 273989.i 1.13650i −0.822855 0.568251i \(-0.807620\pi\)
0.822855 0.568251i \(-0.192380\pi\)
\(492\) 0 0
\(493\) 137513.i 0.565783i
\(494\) −75030.0 + 169946.i −0.307455 + 0.696396i
\(495\) 0 0
\(496\) 638370. 638370.i 2.59483 2.59483i
\(497\) −334847. −1.35561
\(498\) 0 0
\(499\) −3284.85 + 3284.85i −0.0131921 + 0.0131921i −0.713672 0.700480i \(-0.752969\pi\)
0.700480 + 0.713672i \(0.252969\pi\)
\(500\) 467765. 467765.i 1.87106 1.87106i
\(501\) 0 0
\(502\) −179851. 179851.i −0.713685 0.713685i
\(503\) −464818. −1.83716 −0.918580 0.395235i \(-0.870663\pi\)
−0.918580 + 0.395235i \(0.870663\pi\)
\(504\) 0 0
\(505\) −55860.8 55860.8i −0.219041 0.219041i
\(506\) 48355.7i 0.188863i
\(507\) 0 0
\(508\) −347922. −1.34820
\(509\) −138065. + 138065.i −0.532903 + 0.532903i −0.921435 0.388532i \(-0.872982\pi\)
0.388532 + 0.921435i \(0.372982\pi\)
\(510\) 0 0
\(511\) 133669.i 0.511903i
\(512\) −53927.2 + 53927.2i −0.205716 + 0.205716i
\(513\) 0 0
\(514\) −248954. 248954.i −0.942307 0.942307i
\(515\) 14764.2 + 14764.2i 0.0556667 + 0.0556667i
\(516\) 0 0
\(517\) 187566.i 0.701734i
\(518\) 525385. + 525385.i 1.95803 + 1.95803i
\(519\) 0 0
\(520\) −770770. 340291.i −2.85048 1.25847i
\(521\) −7527.60 −0.0277320 −0.0138660 0.999904i \(-0.504414\pi\)
−0.0138660 + 0.999904i \(0.504414\pi\)
\(522\) 0 0
\(523\) 101541. 0.371226 0.185613 0.982623i \(-0.440573\pi\)
0.185613 + 0.982623i \(0.440573\pi\)
\(524\) 610430.i 2.22317i
\(525\) 0 0
\(526\) −468401. + 468401.i −1.69296 + 1.69296i
\(527\) −162719. 162719.i −0.585890 0.585890i
\(528\) 0 0
\(529\) 278843. 0.996434
\(530\) 525738.i 1.87162i
\(531\) 0 0
\(532\) 224093.i 0.791780i
\(533\) −89012.3 + 34487.7i −0.313325 + 0.121398i
\(534\) 0 0
\(535\) −45397.3 + 45397.3i −0.158607 + 0.158607i
\(536\) 22959.9 0.0799171
\(537\) 0 0
\(538\) −357148. + 357148.i −1.23391 + 1.23391i
\(539\) −148023. + 148023.i −0.509510 + 0.509510i
\(540\) 0 0
\(541\) −319986. 319986.i −1.09329 1.09329i −0.995175 0.0981197i \(-0.968717\pi\)
−0.0981197 0.995175i \(-0.531283\pi\)
\(542\) −405693. −1.38102
\(543\) 0 0
\(544\) 504363. + 504363.i 1.70430 + 1.70430i
\(545\) 518610.i 1.74601i
\(546\) 0 0
\(547\) −4392.73 −0.0146811 −0.00734056 0.999973i \(-0.502337\pi\)
−0.00734056 + 0.999973i \(0.502337\pi\)
\(548\) −288801. + 288801.i −0.961697 + 0.961697i
\(549\) 0 0
\(550\) 5626.29i 0.0185993i
\(551\) 64612.6 64612.6i 0.212821 0.212821i
\(552\) 0 0
\(553\) 29523.7 + 29523.7i 0.0965429 + 0.0965429i
\(554\) −259219. 259219.i −0.844592 0.844592i
\(555\) 0 0
\(556\) 884482.i 2.86114i
\(557\) −149881. 149881.i −0.483101 0.483101i 0.423020 0.906120i \(-0.360970\pi\)
−0.906120 + 0.423020i \(0.860970\pi\)
\(558\) 0 0
\(559\) −107484. + 243455.i −0.343970 + 0.779104i
\(560\) −781228. −2.49116
\(561\) 0 0
\(562\) −38417.6 −0.121635
\(563\) 229570.i 0.724266i 0.932126 + 0.362133i \(0.117951\pi\)
−0.932126 + 0.362133i \(0.882049\pi\)
\(564\) 0 0
\(565\) −37290.8 + 37290.8i −0.116817 + 0.116817i
\(566\) −26075.0 26075.0i −0.0813939 0.0813939i
\(567\) 0 0
\(568\) −1.81761e6 −5.63384
\(569\) 81898.7i 0.252960i 0.991969 + 0.126480i \(0.0403680\pi\)
−0.991969 + 0.126480i \(0.959632\pi\)
\(570\) 0 0
\(571\) 508689.i 1.56020i −0.625655 0.780100i \(-0.715168\pi\)
0.625655 0.780100i \(-0.284832\pi\)
\(572\) 1.33470e6 517130.i 4.07937 1.58055i
\(573\) 0 0
\(574\) −112286. + 112286.i −0.340802 + 0.340802i
\(575\) 116.096 0.000351142
\(576\) 0 0
\(577\) 160019. 160019.i 0.480639 0.480639i −0.424697 0.905336i \(-0.639619\pi\)
0.905336 + 0.424697i \(0.139619\pi\)
\(578\) −196986. + 196986.i −0.589631 + 0.589631i
\(579\) 0 0
\(580\) 471906. + 471906.i 1.40281 + 1.40281i
\(581\) −243087. −0.720126
\(582\) 0 0
\(583\) −392187. 392187.i −1.15387 1.15387i
\(584\) 725578.i 2.12745i
\(585\) 0 0
\(586\) 847787. 2.46883
\(587\) 12874.3 12874.3i 0.0373635 0.0373635i −0.688178 0.725542i \(-0.741589\pi\)
0.725542 + 0.688178i \(0.241589\pi\)
\(588\) 0 0
\(589\) 152912.i 0.440768i
\(590\) 405282. 405282.i 1.16427 1.16427i
\(591\) 0 0
\(592\) 1.58963e6 + 1.58963e6i 4.53580 + 4.53580i
\(593\) 4806.93 + 4806.93i 0.0136697 + 0.0136697i 0.713909 0.700239i \(-0.246923\pi\)
−0.700239 + 0.713909i \(0.746923\pi\)
\(594\) 0 0
\(595\) 199132.i 0.562481i
\(596\) −132663. 132663.i −0.373471 0.373471i
\(597\) 0 0
\(598\) −14715.2 37979.7i −0.0411494 0.106206i
\(599\) −295770. −0.824330 −0.412165 0.911109i \(-0.635227\pi\)
−0.412165 + 0.911109i \(0.635227\pi\)
\(600\) 0 0
\(601\) −504060. −1.39551 −0.697756 0.716336i \(-0.745818\pi\)
−0.697756 + 0.716336i \(0.745818\pi\)
\(602\) 442698.i 1.22156i
\(603\) 0 0
\(604\) 664793. 664793.i 1.82227 1.82227i
\(605\) 451470. + 451470.i 1.23344 + 1.23344i
\(606\) 0 0
\(607\) −224718. −0.609903 −0.304952 0.952368i \(-0.598640\pi\)
−0.304952 + 0.952368i \(0.598640\pi\)
\(608\) 473965.i 1.28215i
\(609\) 0 0
\(610\) 296008.i 0.795506i
\(611\) 57078.3 + 147318.i 0.152893 + 0.394616i
\(612\) 0 0
\(613\) −354062. + 354062.i −0.942232 + 0.942232i −0.998420 0.0561878i \(-0.982105\pi\)
0.0561878 + 0.998420i \(0.482105\pi\)
\(614\) 399230. 1.05898
\(615\) 0 0
\(616\) 1.04553e6 1.04553e6i 2.75535 2.75535i
\(617\) 159963. 159963.i 0.420195 0.420195i −0.465076 0.885271i \(-0.653973\pi\)
0.885271 + 0.465076i \(0.153973\pi\)
\(618\) 0 0
\(619\) −493946. 493946.i −1.28913 1.28913i −0.935313 0.353821i \(-0.884882\pi\)
−0.353821 0.935313i \(-0.615118\pi\)
\(620\) 1.11681e6 2.90533
\(621\) 0 0
\(622\) 269765. + 269765.i 0.697276 + 0.697276i
\(623\) 495518.i 1.27668i
\(624\) 0 0
\(625\) 388314. 0.994085
\(626\) −534204. + 534204.i −1.36320 + 1.36320i
\(627\) 0 0
\(628\) 50651.7i 0.128433i
\(629\) 405193. 405193.i 1.02414 1.02414i
\(630\) 0 0
\(631\) −337240. 337240.i −0.846993 0.846993i 0.142763 0.989757i \(-0.454401\pi\)
−0.989757 + 0.142763i \(0.954401\pi\)
\(632\) 160260. + 160260.i 0.401228 + 0.401228i
\(633\) 0 0
\(634\) 693942.i 1.72641i
\(635\) −145268. 145268.i −0.360265 0.360265i
\(636\) 0 0
\(637\) −71215.8 + 161306.i −0.175508 + 0.397532i
\(638\) −970913. −2.38528
\(639\) 0 0
\(640\) −873336. −2.13217
\(641\) 121982.i 0.296880i −0.988921 0.148440i \(-0.952575\pi\)
0.988921 0.148440i \(-0.0474252\pi\)
\(642\) 0 0
\(643\) 496461. 496461.i 1.20078 1.20078i 0.226850 0.973930i \(-0.427157\pi\)
0.973930 0.226850i \(-0.0728427\pi\)
\(644\) −34742.1 34742.1i −0.0837692 0.0837692i
\(645\) 0 0
\(646\) 238332. 0.571107
\(647\) 367939.i 0.878956i 0.898253 + 0.439478i \(0.144837\pi\)
−0.898253 + 0.439478i \(0.855163\pi\)
\(648\) 0 0
\(649\) 604660.i 1.43556i
\(650\) 1712.14 + 4419.02i 0.00405241 + 0.0104592i
\(651\) 0 0
\(652\) 390661. 390661.i 0.918979 0.918979i
\(653\) −24379.6 −0.0571743 −0.0285872 0.999591i \(-0.509101\pi\)
−0.0285872 + 0.999591i \(0.509101\pi\)
\(654\) 0 0
\(655\) 254873. 254873.i 0.594074 0.594074i
\(656\) −339739. + 339739.i −0.789473 + 0.789473i
\(657\) 0 0
\(658\) 185837. + 185837.i 0.429221 + 0.429221i
\(659\) 230704. 0.531231 0.265616 0.964079i \(-0.414425\pi\)
0.265616 + 0.964079i \(0.414425\pi\)
\(660\) 0 0
\(661\) −94783.2 94783.2i −0.216934 0.216934i 0.590271 0.807205i \(-0.299021\pi\)
−0.807205 + 0.590271i \(0.799021\pi\)
\(662\) 1.42536e6i 3.25244i
\(663\) 0 0
\(664\) −1.31952e6 −2.99282
\(665\) −93565.4 + 93565.4i −0.211579 + 0.211579i
\(666\) 0 0
\(667\) 20034.4i 0.0450323i
\(668\) 148622. 148622.i 0.333067 0.333067i
\(669\) 0 0
\(670\) 15437.6 + 15437.6i 0.0343899 + 0.0343899i
\(671\) 220814. + 220814.i 0.490436 + 0.490436i
\(672\) 0 0
\(673\) 583502.i 1.28829i 0.764905 + 0.644143i \(0.222786\pi\)
−0.764905 + 0.644143i \(0.777214\pi\)
\(674\) 812979. + 812979.i 1.78961 + 1.78961i
\(675\) 0 0
\(676\) 890939. 812331.i 1.94964 1.77762i
\(677\) 317649. 0.693060 0.346530 0.938039i \(-0.387360\pi\)
0.346530 + 0.938039i \(0.387360\pi\)
\(678\) 0 0
\(679\) −135116. −0.293068
\(680\) 1.08093e6i 2.33765i
\(681\) 0 0
\(682\) −1.14888e6 + 1.14888e6i −2.47004 + 2.47004i
\(683\) 580148. + 580148.i 1.24365 + 1.24365i 0.958476 + 0.285172i \(0.0920508\pi\)
0.285172 + 0.958476i \(0.407949\pi\)
\(684\) 0 0
\(685\) −241166. −0.513968
\(686\) 968311.i 2.05763i
\(687\) 0 0
\(688\) 1.33945e6i 2.82976i
\(689\) −427379. 188686.i −0.900275 0.397466i
\(690\) 0 0
\(691\) −254193. + 254193.i −0.532363 + 0.532363i −0.921275 0.388912i \(-0.872851\pi\)
0.388912 + 0.921275i \(0.372851\pi\)
\(692\) −2.06397e6 −4.31015
\(693\) 0 0
\(694\) 320812. 320812.i 0.666088 0.666088i
\(695\) −369298. + 369298.i −0.764552 + 0.764552i
\(696\) 0 0
\(697\) 86598.3 + 86598.3i 0.178256 + 0.178256i
\(698\) −468974. −0.962582
\(699\) 0 0
\(700\) 4042.32 + 4042.32i 0.00824963 + 0.00824963i
\(701\) 756736.i 1.53996i −0.638070 0.769978i \(-0.720267\pi\)
0.638070 0.769978i \(-0.279733\pi\)
\(702\) 0 0
\(703\) 380772. 0.770467
\(704\) 1.63024e6 1.63024e6i 3.28931 3.28931i
\(705\) 0 0
\(706\) 693135.i 1.39062i
\(707\) 82573.5 82573.5i 0.165197 0.165197i
\(708\) 0 0
\(709\) 144273. + 144273.i 0.287006 + 0.287006i 0.835895 0.548889i \(-0.184949\pi\)
−0.548889 + 0.835895i \(0.684949\pi\)
\(710\) −1.22211e6 1.22211e6i −2.42435 2.42435i
\(711\) 0 0
\(712\) 2.68977e6i 5.30585i
\(713\) 23706.6 + 23706.6i 0.0466326 + 0.0466326i
\(714\) 0 0
\(715\) 773196. + 341362.i 1.51244 + 0.667733i
\(716\) −85197.9 −0.166189
\(717\) 0 0
\(718\) 204061. 0.395832
\(719\) 73910.3i 0.142971i 0.997442 + 0.0714853i \(0.0227739\pi\)
−0.997442 + 0.0714853i \(0.977226\pi\)
\(720\) 0 0
\(721\) −21824.4 + 21824.4i −0.0419829 + 0.0419829i
\(722\) −591110. 591110.i −1.13395 1.13395i
\(723\) 0 0
\(724\) 691479. 1.31917
\(725\) 2331.04i 0.00443480i
\(726\) 0 0
\(727\) 714716.i 1.35227i −0.736776 0.676137i \(-0.763653\pi\)
0.736776 0.676137i \(-0.236347\pi\)
\(728\) 503018. 1.13935e6i 0.949119 2.14979i
\(729\) 0 0
\(730\) −487859. + 487859.i −0.915480 + 0.915480i
\(731\) 341422. 0.638935
\(732\) 0 0
\(733\) −180248. + 180248.i −0.335476 + 0.335476i −0.854662 0.519186i \(-0.826235\pi\)
0.519186 + 0.854662i \(0.326235\pi\)
\(734\) −862150. + 862150.i −1.60026 + 1.60026i
\(735\) 0 0
\(736\) −73481.0 73481.0i −0.135650 0.135650i
\(737\) −23032.1 −0.0424032
\(738\) 0 0
\(739\) 538336. + 538336.i 0.985744 + 0.985744i 0.999900 0.0141555i \(-0.00450600\pi\)
−0.0141555 + 0.999900i \(0.504506\pi\)
\(740\) 2.78101e6i 5.07854i
\(741\) 0 0
\(742\) −777145. −1.41154
\(743\) 53537.5 53537.5i 0.0969796 0.0969796i −0.656952 0.753932i \(-0.728155\pi\)
0.753932 + 0.656952i \(0.228155\pi\)
\(744\) 0 0
\(745\) 110781.i 0.199597i
\(746\) −86179.3 + 86179.3i −0.154855 + 0.154855i
\(747\) 0 0
\(748\) −1.29851e6 1.29851e6i −2.32082 2.32082i
\(749\) −67106.2 67106.2i −0.119619 0.119619i
\(750\) 0 0
\(751\) 334548.i 0.593169i 0.955007 + 0.296585i \(0.0958477\pi\)
−0.955007 + 0.296585i \(0.904152\pi\)
\(752\) 562279. + 562279.i 0.994297 + 0.994297i
\(753\) 0 0
\(754\) −762577. + 295460.i −1.34135 + 0.519703i
\(755\) 555141. 0.973890
\(756\) 0 0
\(757\) −335226. −0.584986 −0.292493 0.956268i \(-0.594485\pi\)
−0.292493 + 0.956268i \(0.594485\pi\)
\(758\) 1.64341e6i 2.86027i
\(759\) 0 0
\(760\) −507891. + 507891.i −0.879312 + 0.879312i
\(761\) 243144. + 243144.i 0.419851 + 0.419851i 0.885152 0.465302i \(-0.154054\pi\)
−0.465302 + 0.885152i \(0.654054\pi\)
\(762\) 0 0
\(763\) 766609. 1.31682
\(764\) 2.42788e6i 4.15950i
\(765\) 0 0
\(766\) 1.22414e6i 2.08628i
\(767\) 184005. + 474914.i 0.312780 + 0.807280i
\(768\) 0 0
\(769\) 134055. 134055.i 0.226688 0.226688i −0.584620 0.811308i \(-0.698756\pi\)
0.811308 + 0.584620i \(0.198756\pi\)
\(770\) 1.40598e6 2.37136
\(771\) 0 0
\(772\) −695290. + 695290.i −1.16662 + 1.16662i
\(773\) 488147. 488147.i 0.816943 0.816943i −0.168721 0.985664i \(-0.553964\pi\)
0.985664 + 0.168721i \(0.0539637\pi\)
\(774\) 0 0
\(775\) −2758.31 2758.31i −0.00459240 0.00459240i
\(776\) −733438. −1.21798
\(777\) 0 0
\(778\) −393488. 393488.i −0.650088 0.650088i
\(779\) 81379.0i 0.134103i
\(780\) 0 0
\(781\) 1.82333e6 2.98926
\(782\) −36949.7 + 36949.7i −0.0604223 + 0.0604223i
\(783\) 0 0
\(784\) 887481.i 1.44387i
\(785\) 21148.6 21148.6i 0.0343196 0.0343196i
\(786\) 0 0
\(787\) 644084. + 644084.i 1.03990 + 1.03990i 0.999170 + 0.0407338i \(0.0129695\pi\)
0.0407338 + 0.999170i \(0.487030\pi\)
\(788\) −1.03453e6 1.03453e6i −1.66605 1.66605i
\(789\) 0 0
\(790\) 215509.i 0.345312i
\(791\) −55123.3 55123.3i −0.0881013 0.0881013i
\(792\) 0 0
\(793\) 240629. + 106236.i 0.382650 + 0.168938i
\(794\) 1.69914e6 2.69518
\(795\) 0 0
\(796\) −1.16345e6 −1.83621
\(797\) 519061.i 0.817150i 0.912725 + 0.408575i \(0.133974\pi\)
−0.912725 + 0.408575i \(0.866026\pi\)
\(798\) 0 0
\(799\) 143323. 143323.i 0.224503 0.224503i
\(800\) 8549.67 + 8549.67i 0.0133589 + 0.0133589i
\(801\) 0 0
\(802\) 2.32865e6 3.62039
\(803\) 727862.i 1.12880i
\(804\) 0 0
\(805\) 29011.7i 0.0447695i
\(806\) −552738. + 1.25197e6i −0.850842 + 1.92719i
\(807\) 0 0
\(808\) 448225. 448225.i 0.686551 0.686551i
\(809\) −786528. −1.20176 −0.600879 0.799340i \(-0.705183\pi\)
−0.600879 + 0.799340i \(0.705183\pi\)
\(810\) 0 0
\(811\) −820989. + 820989.i −1.24823 + 1.24823i −0.291733 + 0.956500i \(0.594232\pi\)
−0.956500 + 0.291733i \(0.905768\pi\)
\(812\) −697571. + 697571.i −1.05798 + 1.05798i
\(813\) 0 0
\(814\) −2.86087e6 2.86087e6i −4.31766 4.31766i
\(815\) 326226. 0.491137
\(816\) 0 0
\(817\) 160422. + 160422.i 0.240337 + 0.240337i
\(818\) 2.04027e6i 3.04916i
\(819\) 0 0
\(820\) −594361. −0.883940
\(821\) −266133. + 266133.i −0.394833 + 0.394833i −0.876406 0.481573i \(-0.840066\pi\)
0.481573 + 0.876406i \(0.340066\pi\)
\(822\) 0 0
\(823\) 756731.i 1.11723i −0.829428 0.558614i \(-0.811333\pi\)
0.829428 0.558614i \(-0.188667\pi\)
\(824\) −118467. + 118467.i −0.174479 + 0.174479i
\(825\) 0 0
\(826\) 599088. + 599088.i 0.878072 + 0.878072i
\(827\) 200899. + 200899.i 0.293743 + 0.293743i 0.838557 0.544814i \(-0.183400\pi\)
−0.544814 + 0.838557i \(0.683400\pi\)
\(828\) 0 0
\(829\) 58319.1i 0.0848598i 0.999099 + 0.0424299i \(0.0135099\pi\)
−0.999099 + 0.0424299i \(0.986490\pi\)
\(830\) −887210. 887210.i −1.28786 1.28786i
\(831\) 0 0
\(832\) 784326. 1.77652e6i 1.13305 2.56640i
\(833\) 226216. 0.326012
\(834\) 0 0
\(835\) 124109. 0.178004
\(836\) 1.22025e6i 1.74596i
\(837\) 0 0
\(838\) 692543. 692543.i 0.986186 0.986186i
\(839\) −860228. 860228.i −1.22205 1.22205i −0.966901 0.255151i \(-0.917875\pi\)
−0.255151 0.966901i \(-0.582125\pi\)
\(840\) 0 0
\(841\) −305020. −0.431257
\(842\) 1.54956e6i 2.18567i
\(843\) 0 0
\(844\) 2.05708e6i 2.88780i
\(845\) 711166. + 32821.1i 0.995995 + 0.0459663i
\(846\) 0 0
\(847\) −667364. + 667364.i −0.930241 + 0.930241i
\(848\) −2.35137e6 −3.26986
\(849\) 0 0
\(850\) 4299.17 4299.17i 0.00595042 0.00595042i
\(851\) −59032.8 + 59032.8i −0.0815144 + 0.0815144i
\(852\) 0 0
\(853\) 33807.8 + 33807.8i 0.0464642 + 0.0464642i 0.729957 0.683493i \(-0.239540\pi\)
−0.683493 + 0.729957i \(0.739540\pi\)
\(854\) 437559. 0.599958
\(855\) 0 0
\(856\) −364266. 364266.i −0.497131 0.497131i
\(857\) 754201.i 1.02689i 0.858121 + 0.513447i \(0.171632\pi\)
−0.858121 + 0.513447i \(0.828368\pi\)
\(858\) 0 0
\(859\) −665748. −0.902243 −0.451121 0.892463i \(-0.648976\pi\)
−0.451121 + 0.892463i \(0.648976\pi\)
\(860\) −1.17166e6 + 1.17166e6i −1.58418 + 1.58418i
\(861\) 0 0
\(862\) 1.04787e6i 1.41023i
\(863\) −429331. + 429331.i −0.576462 + 0.576462i −0.933927 0.357465i \(-0.883641\pi\)
0.357465 + 0.933927i \(0.383641\pi\)
\(864\) 0 0
\(865\) −861770. 861770.i −1.15175 1.15175i
\(866\) 1.11936e6 + 1.11936e6i 1.49256 + 1.49256i
\(867\) 0 0
\(868\) 1.65086e6i 2.19115i
\(869\) −160764. 160764.i −0.212888 0.212888i
\(870\) 0 0
\(871\) −18090.0 + 7008.93i −0.0238452 + 0.00923880i
\(872\) 4.16130e6 5.47263
\(873\) 0 0
\(874\) −34722.7 −0.0454560
\(875\) 577402.i 0.754158i
\(876\) 0 0
\(877\) 450147. 450147.i 0.585268 0.585268i −0.351078 0.936346i \(-0.614185\pi\)
0.936346 + 0.351078i \(0.114185\pi\)
\(878\) −1.50359e6 1.50359e6i −1.95047 1.95047i
\(879\) 0 0
\(880\) 4.25400e6 5.49328
\(881\) 1.29733e6i 1.67147i 0.549130 + 0.835737i \(0.314959\pi\)
−0.549130 + 0.835737i \(0.685041\pi\)
\(882\) 0 0
\(883\) 1.21426e6i 1.55736i −0.627421 0.778680i \(-0.715890\pi\)
0.627421 0.778680i \(-0.284110\pi\)
\(884\) −1.41503e6 624727.i −1.81076 0.799439i
\(885\) 0 0
\(886\) −1.85170e6 + 1.85170e6i −2.35886 + 2.35886i
\(887\) 613983. 0.780385 0.390192 0.920733i \(-0.372408\pi\)
0.390192 + 0.920733i \(0.372408\pi\)
\(888\) 0 0
\(889\) 214735. 214735.i 0.271706 0.271706i
\(890\) 1.80853e6 1.80853e6i 2.28321 2.28321i
\(891\) 0 0
\(892\) 2.48814e6 + 2.48814e6i 3.12712 + 3.12712i
\(893\) 134685. 0.168895
\(894\) 0 0
\(895\) −35572.6 35572.6i −0.0444089 0.0444089i
\(896\) 1.29097e6i 1.60805i
\(897\) 0 0
\(898\) 1.90449e6 2.36171
\(899\) 475993. 475993.i 0.588954 0.588954i
\(900\) 0 0
\(901\) 599357.i 0.738306i
\(902\) 611428. 611428.i 0.751506 0.751506i
\(903\) 0 0
\(904\) −299220. 299220.i −0.366145 0.366145i
\(905\) 288713. + 288713.i 0.352508 + 0.352508i
\(906\) 0 0
\(907\) 715019.i 0.869167i −0.900632 0.434583i \(-0.856896\pi\)
0.900632 0.434583i \(-0.143104\pi\)
\(908\) 835213. + 835213.i 1.01304 + 1.01304i
\(909\) 0 0
\(910\) 1.10429e6 427854.i 1.33352 0.516670i
\(911\) −665942. −0.802416 −0.401208 0.915987i \(-0.631409\pi\)
−0.401208 + 0.915987i \(0.631409\pi\)
\(912\) 0 0
\(913\) 1.32367e6 1.58796
\(914\) 3.06448e6i 3.66829i
\(915\) 0 0
\(916\) −2.63076e6 + 2.63076e6i −3.13538 + 3.13538i
\(917\) 376753. + 376753.i 0.448041 + 0.448041i
\(918\) 0 0
\(919\) −740588. −0.876891 −0.438446 0.898758i \(-0.644471\pi\)
−0.438446 + 0.898758i \(0.644471\pi\)
\(920\) 157481.i 0.186060i
\(921\) 0 0
\(922\) 2.63948e6i 3.10496i
\(923\) 1.43209e6 554860.i 1.68099 0.651299i
\(924\) 0 0
\(925\) 6868.59 6868.59i 0.00802757 0.00802757i
\(926\) −970128. −1.13138
\(927\) 0 0
\(928\) −1.47539e6 + 1.47539e6i −1.71321 + 1.71321i
\(929\) 1.04076e6 1.04076e6i 1.20592 1.20592i 0.233581 0.972337i \(-0.424956\pi\)
0.972337 0.233581i \(-0.0750444\pi\)
\(930\) 0 0
\(931\) 106291. + 106291.i 0.122630 + 0.122630i
\(932\) 492244. 0.566694
\(933\) 0 0
\(934\) −733449. 733449.i −0.840768 0.840768i
\(935\) 1.08433e6i 1.24033i
\(936\) 0 0
\(937\) −324332. −0.369412 −0.184706 0.982794i \(-0.559133\pi\)
−0.184706 + 0.982794i \(0.559133\pi\)
\(938\) −22819.9 + 22819.9i −0.0259363 + 0.0259363i
\(939\) 0 0
\(940\) 983688.i 1.11327i
\(941\) −710945. + 710945.i −0.802891 + 0.802891i −0.983546 0.180656i \(-0.942178\pi\)
0.180656 + 0.983546i \(0.442178\pi\)
\(942\) 0 0
\(943\) −12616.6 12616.6i −0.0141879 0.0141879i
\(944\) 1.81263e6 + 1.81263e6i 2.03407 + 2.03407i
\(945\) 0 0
\(946\) 2.41061e6i 2.69368i
\(947\) −741248. 741248.i −0.826540 0.826540i 0.160497 0.987036i \(-0.448690\pi\)
−0.987036 + 0.160497i \(0.948690\pi\)
\(948\) 0 0
\(949\) −221496. 571679.i −0.245943 0.634775i
\(950\) 4040.06 0.00447653
\(951\) 0 0
\(952\) −1.59783e6 −1.76302
\(953\) 1.16535e6i 1.28313i −0.767068 0.641566i \(-0.778285\pi\)
0.767068 0.641566i \(-0.221715\pi\)
\(954\) 0 0
\(955\) 1.01371e6 1.01371e6i 1.11150 1.11150i
\(956\) 1.51816e6 + 1.51816e6i 1.66112 + 1.66112i
\(957\) 0 0
\(958\) −2.65218e6 −2.88983
\(959\) 356492.i 0.387626i
\(960\) 0 0
\(961\) 202960.i 0.219768i
\(962\) −3.11758e6 1.37640e6i −3.36874 1.48728i
\(963\) 0 0
\(964\) −211973. + 211973.i −0.228101 + 0.228101i
\(965\) −580608. −0.623489
\(966\) 0 0
\(967\) −973688. + 973688.i −1.04128 + 1.04128i −0.0421682 + 0.999111i \(0.513427\pi\)
−0.999111 + 0.0421682i \(0.986573\pi\)
\(968\) −3.62258e6 + 3.62258e6i −3.86605 + 3.86605i
\(969\) 0 0
\(970\) −493144. 493144.i −0.524119 0.524119i
\(971\) −1.67477e6 −1.77630 −0.888150 0.459553i \(-0.848010\pi\)
−0.888150 + 0.459553i \(0.848010\pi\)
\(972\) 0 0
\(973\) −545896. 545896.i −0.576613 0.576613i
\(974\) 620128.i 0.653677i
\(975\) 0 0
\(976\) 1.32390e6 1.38981
\(977\) −85903.0 + 85903.0i −0.0899952 + 0.0899952i −0.750671 0.660676i \(-0.770270\pi\)
0.660676 + 0.750671i \(0.270270\pi\)
\(978\) 0 0
\(979\) 2.69823e6i 2.81523i
\(980\) −776309. + 776309.i −0.808318 + 0.808318i
\(981\) 0 0
\(982\) 1.47820e6 + 1.47820e6i 1.53288 + 1.53288i
\(983\) −1.21292e6 1.21292e6i −1.25524 1.25524i −0.953339 0.301900i \(-0.902379\pi\)
−0.301900 0.953339i \(-0.597621\pi\)
\(984\) 0 0
\(985\) 863890.i 0.890402i
\(986\) 741896. + 741896.i 0.763113 + 0.763113i
\(987\) 0 0
\(988\) −371335. 958409.i −0.380410 0.981832i
\(989\) −49742.0 −0.0508546
\(990\) 0 0
\(991\) −504840. −0.514051 −0.257026 0.966405i \(-0.582742\pi\)
−0.257026 + 0.966405i \(0.582742\pi\)
\(992\) 3.49165e6i 3.54819i
\(993\) 0 0
\(994\) 1.80653e6 1.80653e6i 1.82840 1.82840i
\(995\) −485777. 485777.i −0.490671 0.490671i
\(996\) 0 0
\(997\) −1.39880e6 −1.40723 −0.703614 0.710583i \(-0.748431\pi\)
−0.703614 + 0.710583i \(0.748431\pi\)
\(998\) 35444.1i 0.0355863i
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 117.5.j.b.109.1 20
3.2 odd 2 39.5.g.a.31.10 20
13.8 odd 4 inner 117.5.j.b.73.1 20
39.8 even 4 39.5.g.a.34.10 yes 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
39.5.g.a.31.10 20 3.2 odd 2
39.5.g.a.34.10 yes 20 39.8 even 4
117.5.j.b.73.1 20 13.8 odd 4 inner
117.5.j.b.109.1 20 1.1 even 1 trivial