Properties

Label 117.4.l
Level $117$
Weight $4$
Character orbit 117.l
Rep. character $\chi_{117}(4,\cdot)$
Character field $\Q(\zeta_{6})$
Dimension $80$
Newform subspaces $1$
Sturm bound $56$
Trace bound $0$

Related objects

Downloads

Learn more

Defining parameters

Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 117.l (of order \(6\) and degree \(2\))
Character conductor: \(\operatorname{cond}(\chi)\) \(=\) \( 117 \)
Character field: \(\Q(\zeta_{6})\)
Newform subspaces: \( 1 \)
Sturm bound: \(56\)
Trace bound: \(0\)

Dimensions

The following table gives the dimensions of various subspaces of \(M_{4}(117, [\chi])\).

Total New Old
Modular forms 88 88 0
Cusp forms 80 80 0
Eisenstein series 8 8 0

Trace form

\( 80 q - q^{3} - 306 q^{4} + 42 q^{6} - 3 q^{7} - 17 q^{9} - 10 q^{10} - 101 q^{12} - 13 q^{13} + 126 q^{14} - 63 q^{15} + 1102 q^{16} - 138 q^{17} - 168 q^{18} - 96 q^{19} - 387 q^{20} - 249 q^{21} + 62 q^{22}+ \cdots - 2331 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Decomposition of \(S_{4}^{\mathrm{new}}(117, [\chi])\) into newform subspaces

Label Char Prim Dim $A$ Field CM Minimal twist Traces Sato-Tate $q$-expansion
$a_{2}$ $a_{3}$ $a_{5}$ $a_{7}$
117.4.l.a 117.l 117.l $80$ $6.903$ None 117.4.l.a \(0\) \(-1\) \(0\) \(-3\) $\mathrm{SU}(2)[C_{6}]$