Properties

Label 117.4.g.c.100.1
Level $117$
Weight $4$
Character 117.100
Analytic conductor $6.903$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [117,4,Mod(55,117)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(117, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("117.55");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 117.g (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.90322347067\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{13}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 13)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 100.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 117.100
Dual form 117.4.g.c.55.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.00000 - 3.46410i) q^{2} +(-4.00000 - 6.92820i) q^{4} -17.0000 q^{5} +(-10.0000 - 17.3205i) q^{7} +O(q^{10})\) \(q+(2.00000 - 3.46410i) q^{2} +(-4.00000 - 6.92820i) q^{4} -17.0000 q^{5} +(-10.0000 - 17.3205i) q^{7} +(-34.0000 + 58.8897i) q^{10} +(-16.0000 + 27.7128i) q^{11} +(-45.5000 - 11.2583i) q^{13} -80.0000 q^{14} +(32.0000 - 55.4256i) q^{16} +(-6.50000 - 11.2583i) q^{17} +(-15.0000 - 25.9808i) q^{19} +(68.0000 + 117.779i) q^{20} +(64.0000 + 110.851i) q^{22} +(39.0000 - 67.5500i) q^{23} +164.000 q^{25} +(-130.000 + 135.100i) q^{26} +(-80.0000 + 138.564i) q^{28} +(98.5000 - 170.607i) q^{29} -74.0000 q^{31} +(-128.000 - 221.703i) q^{32} -52.0000 q^{34} +(170.000 + 294.449i) q^{35} +(113.500 - 196.588i) q^{37} -120.000 q^{38} +(-82.5000 + 142.894i) q^{41} +(78.0000 + 135.100i) q^{43} +256.000 q^{44} +(-156.000 - 270.200i) q^{46} +162.000 q^{47} +(-28.5000 + 49.3634i) q^{49} +(328.000 - 568.113i) q^{50} +(104.000 + 360.267i) q^{52} -93.0000 q^{53} +(272.000 - 471.118i) q^{55} +(-394.000 - 682.428i) q^{58} +(-432.000 - 748.246i) q^{59} +(-72.5000 - 125.574i) q^{61} +(-148.000 + 256.344i) q^{62} -512.000 q^{64} +(773.500 + 191.392i) q^{65} +(-431.000 + 746.514i) q^{67} +(-52.0000 + 90.0666i) q^{68} +1360.00 q^{70} +(327.000 + 566.381i) q^{71} +215.000 q^{73} +(-454.000 - 786.351i) q^{74} +(-120.000 + 207.846i) q^{76} +640.000 q^{77} -76.0000 q^{79} +(-544.000 + 942.236i) q^{80} +(330.000 + 571.577i) q^{82} -628.000 q^{83} +(110.500 + 191.392i) q^{85} +624.000 q^{86} +(-133.000 + 230.363i) q^{89} +(260.000 + 900.666i) q^{91} -624.000 q^{92} +(324.000 - 561.184i) q^{94} +(255.000 + 441.673i) q^{95} +(-119.000 - 206.114i) q^{97} +(114.000 + 197.454i) q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 4 q^{2} - 8 q^{4} - 34 q^{5} - 20 q^{7}+O(q^{10}) \) Copy content Toggle raw display \( 2 q + 4 q^{2} - 8 q^{4} - 34 q^{5} - 20 q^{7} - 68 q^{10} - 32 q^{11} - 91 q^{13} - 160 q^{14} + 64 q^{16} - 13 q^{17} - 30 q^{19} + 136 q^{20} + 128 q^{22} + 78 q^{23} + 328 q^{25} - 260 q^{26} - 160 q^{28} + 197 q^{29} - 148 q^{31} - 256 q^{32} - 104 q^{34} + 340 q^{35} + 227 q^{37} - 240 q^{38} - 165 q^{41} + 156 q^{43} + 512 q^{44} - 312 q^{46} + 324 q^{47} - 57 q^{49} + 656 q^{50} + 208 q^{52} - 186 q^{53} + 544 q^{55} - 788 q^{58} - 864 q^{59} - 145 q^{61} - 296 q^{62} - 1024 q^{64} + 1547 q^{65} - 862 q^{67} - 104 q^{68} + 2720 q^{70} + 654 q^{71} + 430 q^{73} - 908 q^{74} - 240 q^{76} + 1280 q^{77} - 152 q^{79} - 1088 q^{80} + 660 q^{82} - 1256 q^{83} + 221 q^{85} + 1248 q^{86} - 266 q^{89} + 520 q^{91} - 1248 q^{92} + 648 q^{94} + 510 q^{95} - 238 q^{97} + 228 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 3.46410i 0.707107 1.22474i −0.258819 0.965926i \(-0.583333\pi\)
0.965926 0.258819i \(-0.0833333\pi\)
\(3\) 0 0
\(4\) −4.00000 6.92820i −0.500000 0.866025i
\(5\) −17.0000 −1.52053 −0.760263 0.649615i \(-0.774930\pi\)
−0.760263 + 0.649615i \(0.774930\pi\)
\(6\) 0 0
\(7\) −10.0000 17.3205i −0.539949 0.935220i −0.998906 0.0467610i \(-0.985110\pi\)
0.458957 0.888459i \(-0.348223\pi\)
\(8\) 0 0
\(9\) 0 0
\(10\) −34.0000 + 58.8897i −1.07517 + 1.86226i
\(11\) −16.0000 + 27.7128i −0.438562 + 0.759612i −0.997579 0.0695447i \(-0.977845\pi\)
0.559017 + 0.829156i \(0.311179\pi\)
\(12\) 0 0
\(13\) −45.5000 11.2583i −0.970725 0.240192i
\(14\) −80.0000 −1.52721
\(15\) 0 0
\(16\) 32.0000 55.4256i 0.500000 0.866025i
\(17\) −6.50000 11.2583i −0.0927342 0.160620i 0.815927 0.578156i \(-0.196227\pi\)
−0.908661 + 0.417535i \(0.862894\pi\)
\(18\) 0 0
\(19\) −15.0000 25.9808i −0.181118 0.313705i 0.761144 0.648583i \(-0.224638\pi\)
−0.942261 + 0.334878i \(0.891305\pi\)
\(20\) 68.0000 + 117.779i 0.760263 + 1.31681i
\(21\) 0 0
\(22\) 64.0000 + 110.851i 0.620220 + 1.07425i
\(23\) 39.0000 67.5500i 0.353568 0.612398i −0.633304 0.773903i \(-0.718302\pi\)
0.986872 + 0.161506i \(0.0516350\pi\)
\(24\) 0 0
\(25\) 164.000 1.31200
\(26\) −130.000 + 135.100i −0.980581 + 1.01905i
\(27\) 0 0
\(28\) −80.0000 + 138.564i −0.539949 + 0.935220i
\(29\) 98.5000 170.607i 0.630724 1.09245i −0.356680 0.934227i \(-0.616091\pi\)
0.987404 0.158219i \(-0.0505752\pi\)
\(30\) 0 0
\(31\) −74.0000 −0.428735 −0.214368 0.976753i \(-0.568769\pi\)
−0.214368 + 0.976753i \(0.568769\pi\)
\(32\) −128.000 221.703i −0.707107 1.22474i
\(33\) 0 0
\(34\) −52.0000 −0.262292
\(35\) 170.000 + 294.449i 0.821007 + 1.42203i
\(36\) 0 0
\(37\) 113.500 196.588i 0.504305 0.873482i −0.495683 0.868504i \(-0.665082\pi\)
0.999988 0.00497814i \(-0.00158460\pi\)
\(38\) −120.000 −0.512278
\(39\) 0 0
\(40\) 0 0
\(41\) −82.5000 + 142.894i −0.314252 + 0.544301i −0.979278 0.202520i \(-0.935087\pi\)
0.665026 + 0.746820i \(0.268420\pi\)
\(42\) 0 0
\(43\) 78.0000 + 135.100i 0.276625 + 0.479129i 0.970544 0.240924i \(-0.0774506\pi\)
−0.693919 + 0.720053i \(0.744117\pi\)
\(44\) 256.000 0.877124
\(45\) 0 0
\(46\) −156.000 270.200i −0.500021 0.866061i
\(47\) 162.000 0.502769 0.251384 0.967887i \(-0.419114\pi\)
0.251384 + 0.967887i \(0.419114\pi\)
\(48\) 0 0
\(49\) −28.5000 + 49.3634i −0.0830904 + 0.143917i
\(50\) 328.000 568.113i 0.927724 1.60687i
\(51\) 0 0
\(52\) 104.000 + 360.267i 0.277350 + 0.960769i
\(53\) −93.0000 −0.241029 −0.120514 0.992712i \(-0.538454\pi\)
−0.120514 + 0.992712i \(0.538454\pi\)
\(54\) 0 0
\(55\) 272.000 471.118i 0.666845 1.15501i
\(56\) 0 0
\(57\) 0 0
\(58\) −394.000 682.428i −0.891978 1.54495i
\(59\) −432.000 748.246i −0.953248 1.65107i −0.738328 0.674442i \(-0.764384\pi\)
−0.214919 0.976632i \(-0.568949\pi\)
\(60\) 0 0
\(61\) −72.5000 125.574i −0.152175 0.263575i 0.779852 0.625964i \(-0.215294\pi\)
−0.932027 + 0.362389i \(0.881961\pi\)
\(62\) −148.000 + 256.344i −0.303162 + 0.525091i
\(63\) 0 0
\(64\) −512.000 −1.00000
\(65\) 773.500 + 191.392i 1.47601 + 0.365219i
\(66\) 0 0
\(67\) −431.000 + 746.514i −0.785896 + 1.36121i 0.142566 + 0.989785i \(0.454465\pi\)
−0.928462 + 0.371427i \(0.878869\pi\)
\(68\) −52.0000 + 90.0666i −0.0927342 + 0.160620i
\(69\) 0 0
\(70\) 1360.00 2.32216
\(71\) 327.000 + 566.381i 0.546588 + 0.946718i 0.998505 + 0.0546585i \(0.0174070\pi\)
−0.451917 + 0.892060i \(0.649260\pi\)
\(72\) 0 0
\(73\) 215.000 0.344710 0.172355 0.985035i \(-0.444862\pi\)
0.172355 + 0.985035i \(0.444862\pi\)
\(74\) −454.000 786.351i −0.713195 1.23529i
\(75\) 0 0
\(76\) −120.000 + 207.846i −0.181118 + 0.313705i
\(77\) 640.000 0.947205
\(78\) 0 0
\(79\) −76.0000 −0.108236 −0.0541182 0.998535i \(-0.517235\pi\)
−0.0541182 + 0.998535i \(0.517235\pi\)
\(80\) −544.000 + 942.236i −0.760263 + 1.31681i
\(81\) 0 0
\(82\) 330.000 + 571.577i 0.444420 + 0.769757i
\(83\) −628.000 −0.830505 −0.415253 0.909706i \(-0.636307\pi\)
−0.415253 + 0.909706i \(0.636307\pi\)
\(84\) 0 0
\(85\) 110.500 + 191.392i 0.141005 + 0.244227i
\(86\) 624.000 0.782415
\(87\) 0 0
\(88\) 0 0
\(89\) −133.000 + 230.363i −0.158404 + 0.274364i −0.934293 0.356505i \(-0.883968\pi\)
0.775889 + 0.630869i \(0.217302\pi\)
\(90\) 0 0
\(91\) 260.000 + 900.666i 0.299510 + 1.03753i
\(92\) −624.000 −0.707136
\(93\) 0 0
\(94\) 324.000 561.184i 0.355511 0.615763i
\(95\) 255.000 + 441.673i 0.275394 + 0.476997i
\(96\) 0 0
\(97\) −119.000 206.114i −0.124563 0.215750i 0.796999 0.603981i \(-0.206420\pi\)
−0.921562 + 0.388231i \(0.873086\pi\)
\(98\) 114.000 + 197.454i 0.117508 + 0.203529i
\(99\) 0 0
\(100\) −656.000 1136.23i −0.656000 1.13623i
\(101\) −409.500 + 709.275i −0.403433 + 0.698767i −0.994138 0.108121i \(-0.965517\pi\)
0.590704 + 0.806888i \(0.298850\pi\)
\(102\) 0 0
\(103\) 1638.00 1.56696 0.783480 0.621417i \(-0.213443\pi\)
0.783480 + 0.621417i \(0.213443\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) −186.000 + 322.161i −0.170433 + 0.295199i
\(107\) 261.000 452.065i 0.235811 0.408437i −0.723697 0.690118i \(-0.757559\pi\)
0.959508 + 0.281681i \(0.0908919\pi\)
\(108\) 0 0
\(109\) −1634.00 −1.43586 −0.717930 0.696115i \(-0.754910\pi\)
−0.717930 + 0.696115i \(0.754910\pi\)
\(110\) −1088.00 1884.47i −0.943061 1.63343i
\(111\) 0 0
\(112\) −1280.00 −1.07990
\(113\) 163.500 + 283.190i 0.136113 + 0.235755i 0.926022 0.377469i \(-0.123206\pi\)
−0.789909 + 0.613224i \(0.789872\pi\)
\(114\) 0 0
\(115\) −663.000 + 1148.35i −0.537609 + 0.931167i
\(116\) −1576.00 −1.26145
\(117\) 0 0
\(118\) −3456.00 −2.69619
\(119\) −130.000 + 225.167i −0.100144 + 0.173454i
\(120\) 0 0
\(121\) 153.500 + 265.870i 0.115327 + 0.199752i
\(122\) −580.000 −0.430416
\(123\) 0 0
\(124\) 296.000 + 512.687i 0.214368 + 0.371296i
\(125\) −663.000 −0.474404
\(126\) 0 0
\(127\) 1079.00 1868.88i 0.753904 1.30580i −0.192014 0.981392i \(-0.561502\pi\)
0.945918 0.324407i \(-0.105165\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 2210.00 2296.70i 1.49100 1.54949i
\(131\) −730.000 −0.486873 −0.243437 0.969917i \(-0.578275\pi\)
−0.243437 + 0.969917i \(0.578275\pi\)
\(132\) 0 0
\(133\) −300.000 + 519.615i −0.195589 + 0.338770i
\(134\) 1724.00 + 2986.06i 1.11142 + 1.92504i
\(135\) 0 0
\(136\) 0 0
\(137\) 835.500 + 1447.13i 0.521033 + 0.902456i 0.999701 + 0.0244601i \(0.00778666\pi\)
−0.478667 + 0.877996i \(0.658880\pi\)
\(138\) 0 0
\(139\) −456.000 789.815i −0.278255 0.481951i 0.692696 0.721229i \(-0.256423\pi\)
−0.970951 + 0.239278i \(0.923089\pi\)
\(140\) 1360.00 2355.59i 0.821007 1.42203i
\(141\) 0 0
\(142\) 2616.00 1.54598
\(143\) 1040.00 1080.80i 0.608176 0.632035i
\(144\) 0 0
\(145\) −1674.50 + 2900.32i −0.959032 + 1.66109i
\(146\) 430.000 744.782i 0.243747 0.422182i
\(147\) 0 0
\(148\) −1816.00 −1.00861
\(149\) −1057.50 1831.64i −0.581435 1.00707i −0.995310 0.0967407i \(-0.969158\pi\)
0.413875 0.910334i \(-0.364175\pi\)
\(150\) 0 0
\(151\) 514.000 0.277011 0.138506 0.990362i \(-0.455770\pi\)
0.138506 + 0.990362i \(0.455770\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 1280.00 2217.03i 0.669775 1.16008i
\(155\) 1258.00 0.651903
\(156\) 0 0
\(157\) 2901.00 1.47468 0.737341 0.675521i \(-0.236081\pi\)
0.737341 + 0.675521i \(0.236081\pi\)
\(158\) −152.000 + 263.272i −0.0765346 + 0.132562i
\(159\) 0 0
\(160\) 2176.00 + 3768.94i 1.07517 + 1.86226i
\(161\) −1560.00 −0.763635
\(162\) 0 0
\(163\) −1180.00 2043.82i −0.567023 0.982112i −0.996858 0.0792052i \(-0.974762\pi\)
0.429835 0.902907i \(-0.358572\pi\)
\(164\) 1320.00 0.628504
\(165\) 0 0
\(166\) −1256.00 + 2175.46i −0.587256 + 1.01716i
\(167\) 140.000 242.487i 0.0648714 0.112361i −0.831766 0.555127i \(-0.812670\pi\)
0.896637 + 0.442767i \(0.146003\pi\)
\(168\) 0 0
\(169\) 1943.50 + 1024.51i 0.884615 + 0.466321i
\(170\) 884.000 0.398822
\(171\) 0 0
\(172\) 624.000 1080.80i 0.276625 0.479129i
\(173\) 663.000 + 1148.35i 0.291370 + 0.504667i 0.974134 0.225972i \(-0.0725557\pi\)
−0.682764 + 0.730639i \(0.739222\pi\)
\(174\) 0 0
\(175\) −1640.00 2840.56i −0.708413 1.22701i
\(176\) 1024.00 + 1773.62i 0.438562 + 0.759612i
\(177\) 0 0
\(178\) 532.000 + 921.451i 0.224017 + 0.388009i
\(179\) 2132.00 3692.73i 0.890241 1.54194i 0.0506550 0.998716i \(-0.483869\pi\)
0.839586 0.543227i \(-0.182798\pi\)
\(180\) 0 0
\(181\) −403.000 −0.165496 −0.0827479 0.996571i \(-0.526370\pi\)
−0.0827479 + 0.996571i \(0.526370\pi\)
\(182\) 3640.00 + 900.666i 1.48250 + 0.366823i
\(183\) 0 0
\(184\) 0 0
\(185\) −1929.50 + 3341.99i −0.766809 + 1.32815i
\(186\) 0 0
\(187\) 416.000 0.162679
\(188\) −648.000 1122.37i −0.251384 0.435410i
\(189\) 0 0
\(190\) 2040.00 0.778932
\(191\) −623.000 1079.07i −0.236014 0.408788i 0.723553 0.690269i \(-0.242508\pi\)
−0.959567 + 0.281481i \(0.909174\pi\)
\(192\) 0 0
\(193\) −133.500 + 231.229i −0.0497904 + 0.0862394i −0.889846 0.456260i \(-0.849189\pi\)
0.840056 + 0.542500i \(0.182522\pi\)
\(194\) −952.000 −0.352318
\(195\) 0 0
\(196\) 456.000 0.166181
\(197\) 639.000 1106.78i 0.231101 0.400278i −0.727032 0.686604i \(-0.759101\pi\)
0.958132 + 0.286326i \(0.0924339\pi\)
\(198\) 0 0
\(199\) −2119.00 3670.22i −0.754834 1.30741i −0.945457 0.325747i \(-0.894384\pi\)
0.190623 0.981663i \(-0.438949\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 1638.00 + 2837.10i 0.570541 + 0.988206i
\(203\) −3940.00 −1.36224
\(204\) 0 0
\(205\) 1402.50 2429.20i 0.477829 0.827623i
\(206\) 3276.00 5674.20i 1.10801 1.91913i
\(207\) 0 0
\(208\) −2080.00 + 2161.60i −0.693375 + 0.720577i
\(209\) 960.000 0.317725
\(210\) 0 0
\(211\) −1535.00 + 2658.70i −0.500823 + 0.867452i 0.499176 + 0.866501i \(0.333636\pi\)
−1.00000 0.000951154i \(0.999697\pi\)
\(212\) 372.000 + 644.323i 0.120514 + 0.208737i
\(213\) 0 0
\(214\) −1044.00 1808.26i −0.333488 0.577618i
\(215\) −1326.00 2296.70i −0.420616 0.728528i
\(216\) 0 0
\(217\) 740.000 + 1281.72i 0.231495 + 0.400962i
\(218\) −3268.00 + 5660.34i −1.01531 + 1.75856i
\(219\) 0 0
\(220\) −4352.00 −1.33369
\(221\) 169.000 + 585.433i 0.0514397 + 0.178192i
\(222\) 0 0
\(223\) 2689.00 4657.48i 0.807483 1.39860i −0.107119 0.994246i \(-0.534162\pi\)
0.914602 0.404356i \(-0.132504\pi\)
\(224\) −2560.00 + 4434.05i −0.763604 + 1.32260i
\(225\) 0 0
\(226\) 1308.00 0.384986
\(227\) −1987.00 3441.58i −0.580977 1.00628i −0.995364 0.0961811i \(-0.969337\pi\)
0.414387 0.910101i \(-0.363996\pi\)
\(228\) 0 0
\(229\) −6298.00 −1.81740 −0.908698 0.417455i \(-0.862922\pi\)
−0.908698 + 0.417455i \(0.862922\pi\)
\(230\) 2652.00 + 4593.40i 0.760294 + 1.31687i
\(231\) 0 0
\(232\) 0 0
\(233\) −4030.00 −1.13311 −0.566554 0.824025i \(-0.691724\pi\)
−0.566554 + 0.824025i \(0.691724\pi\)
\(234\) 0 0
\(235\) −2754.00 −0.764473
\(236\) −3456.00 + 5985.97i −0.953248 + 1.65107i
\(237\) 0 0
\(238\) 520.000 + 900.666i 0.141624 + 0.245301i
\(239\) 984.000 0.266317 0.133158 0.991095i \(-0.457488\pi\)
0.133158 + 0.991095i \(0.457488\pi\)
\(240\) 0 0
\(241\) −471.500 816.662i −0.126025 0.218281i 0.796108 0.605154i \(-0.206889\pi\)
−0.922133 + 0.386873i \(0.873555\pi\)
\(242\) 1228.00 0.326194
\(243\) 0 0
\(244\) −580.000 + 1004.59i −0.152175 + 0.263575i
\(245\) 484.500 839.179i 0.126341 0.218829i
\(246\) 0 0
\(247\) 390.000 + 1351.00i 0.100466 + 0.348024i
\(248\) 0 0
\(249\) 0 0
\(250\) −1326.00 + 2296.70i −0.335454 + 0.581024i
\(251\) −1365.00 2364.25i −0.343259 0.594542i 0.641777 0.766891i \(-0.278198\pi\)
−0.985036 + 0.172349i \(0.944864\pi\)
\(252\) 0 0
\(253\) 1248.00 + 2161.60i 0.310123 + 0.537149i
\(254\) −4316.00 7475.53i −1.06618 1.84668i
\(255\) 0 0
\(256\) −2048.00 3547.24i −0.500000 0.866025i
\(257\) −942.500 + 1632.46i −0.228761 + 0.396225i −0.957441 0.288629i \(-0.906801\pi\)
0.728680 + 0.684854i \(0.240134\pi\)
\(258\) 0 0
\(259\) −4540.00 −1.08920
\(260\) −1768.00 6124.53i −0.421718 1.46087i
\(261\) 0 0
\(262\) −1460.00 + 2528.79i −0.344271 + 0.596296i
\(263\) 2016.00 3491.81i 0.472669 0.818686i −0.526842 0.849963i \(-0.676624\pi\)
0.999511 + 0.0312769i \(0.00995738\pi\)
\(264\) 0 0
\(265\) 1581.00 0.366491
\(266\) 1200.00 + 2078.46i 0.276604 + 0.479093i
\(267\) 0 0
\(268\) 6896.00 1.57179
\(269\) 2003.00 + 3469.30i 0.453997 + 0.786345i 0.998630 0.0523292i \(-0.0166645\pi\)
−0.544633 + 0.838674i \(0.683331\pi\)
\(270\) 0 0
\(271\) 2148.00 3720.45i 0.481482 0.833952i −0.518292 0.855204i \(-0.673432\pi\)
0.999774 + 0.0212520i \(0.00676523\pi\)
\(272\) −832.000 −0.185468
\(273\) 0 0
\(274\) 6684.00 1.47371
\(275\) −2624.00 + 4544.90i −0.575393 + 0.996610i
\(276\) 0 0
\(277\) 2775.50 + 4807.31i 0.602035 + 1.04275i 0.992513 + 0.122142i \(0.0389765\pi\)
−0.390478 + 0.920612i \(0.627690\pi\)
\(278\) −3648.00 −0.787023
\(279\) 0 0
\(280\) 0 0
\(281\) 5557.00 1.17973 0.589863 0.807504i \(-0.299182\pi\)
0.589863 + 0.807504i \(0.299182\pi\)
\(282\) 0 0
\(283\) −1560.00 + 2702.00i −0.327676 + 0.567552i −0.982050 0.188619i \(-0.939599\pi\)
0.654374 + 0.756171i \(0.272932\pi\)
\(284\) 2616.00 4531.04i 0.546588 0.946718i
\(285\) 0 0
\(286\) −1664.00 5764.27i −0.344036 1.19178i
\(287\) 3300.00 0.678721
\(288\) 0 0
\(289\) 2372.00 4108.42i 0.482801 0.836235i
\(290\) 6698.00 + 11601.3i 1.35628 + 2.34914i
\(291\) 0 0
\(292\) −860.000 1489.56i −0.172355 0.298528i
\(293\) 4150.50 + 7188.88i 0.827559 + 1.43337i 0.899948 + 0.435998i \(0.143604\pi\)
−0.0723887 + 0.997376i \(0.523062\pi\)
\(294\) 0 0
\(295\) 7344.00 + 12720.2i 1.44944 + 2.51050i
\(296\) 0 0
\(297\) 0 0
\(298\) −8460.00 −1.64455
\(299\) −2535.00 + 2634.45i −0.490310 + 0.509546i
\(300\) 0 0
\(301\) 1560.00 2702.00i 0.298727 0.517411i
\(302\) 1028.00 1780.55i 0.195877 0.339268i
\(303\) 0 0
\(304\) −1920.00 −0.362235
\(305\) 1232.50 + 2134.75i 0.231386 + 0.400772i
\(306\) 0 0
\(307\) 8678.00 1.61329 0.806644 0.591037i \(-0.201281\pi\)
0.806644 + 0.591037i \(0.201281\pi\)
\(308\) −2560.00 4434.05i −0.473602 0.820303i
\(309\) 0 0
\(310\) 2516.00 4357.84i 0.460965 0.798415i
\(311\) −8658.00 −1.57862 −0.789309 0.613996i \(-0.789561\pi\)
−0.789309 + 0.613996i \(0.789561\pi\)
\(312\) 0 0
\(313\) −5250.00 −0.948075 −0.474038 0.880505i \(-0.657204\pi\)
−0.474038 + 0.880505i \(0.657204\pi\)
\(314\) 5802.00 10049.4i 1.04276 1.80611i
\(315\) 0 0
\(316\) 304.000 + 526.543i 0.0541182 + 0.0937354i
\(317\) −6413.00 −1.13625 −0.568123 0.822944i \(-0.692330\pi\)
−0.568123 + 0.822944i \(0.692330\pi\)
\(318\) 0 0
\(319\) 3152.00 + 5459.42i 0.553223 + 0.958210i
\(320\) 8704.00 1.52053
\(321\) 0 0
\(322\) −3120.00 + 5404.00i −0.539971 + 0.935258i
\(323\) −195.000 + 337.750i −0.0335916 + 0.0581824i
\(324\) 0 0
\(325\) −7462.00 1846.37i −1.27359 0.315132i
\(326\) −9440.00 −1.60378
\(327\) 0 0
\(328\) 0 0
\(329\) −1620.00 2805.92i −0.271470 0.470199i
\(330\) 0 0
\(331\) −1744.00 3020.70i −0.289604 0.501609i 0.684111 0.729378i \(-0.260190\pi\)
−0.973715 + 0.227769i \(0.926857\pi\)
\(332\) 2512.00 + 4350.91i 0.415253 + 0.719239i
\(333\) 0 0
\(334\) −560.000 969.948i −0.0917420 0.158902i
\(335\) 7327.00 12690.7i 1.19498 2.06976i
\(336\) 0 0
\(337\) −1833.00 −0.296290 −0.148145 0.988966i \(-0.547330\pi\)
−0.148145 + 0.988966i \(0.547330\pi\)
\(338\) 7436.00 4683.47i 1.19664 0.753689i
\(339\) 0 0
\(340\) 884.000 1531.13i 0.141005 0.244227i
\(341\) 1184.00 2050.75i 0.188027 0.325672i
\(342\) 0 0
\(343\) −5720.00 −0.900440
\(344\) 0 0
\(345\) 0 0
\(346\) 5304.00 0.824118
\(347\) 3615.00 + 6261.36i 0.559260 + 0.968667i 0.997558 + 0.0698377i \(0.0222481\pi\)
−0.438298 + 0.898830i \(0.644419\pi\)
\(348\) 0 0
\(349\) 2629.00 4553.56i 0.403230 0.698414i −0.590884 0.806757i \(-0.701221\pi\)
0.994114 + 0.108342i \(0.0345543\pi\)
\(350\) −13120.0 −2.00370
\(351\) 0 0
\(352\) 8192.00 1.24044
\(353\) 1581.50 2739.24i 0.238455 0.413017i −0.721816 0.692085i \(-0.756692\pi\)
0.960271 + 0.279068i \(0.0900256\pi\)
\(354\) 0 0
\(355\) −5559.00 9628.47i −0.831102 1.43951i
\(356\) 2128.00 0.316808
\(357\) 0 0
\(358\) −8528.00 14770.9i −1.25899 2.18064i
\(359\) 10068.0 1.48014 0.740068 0.672532i \(-0.234793\pi\)
0.740068 + 0.672532i \(0.234793\pi\)
\(360\) 0 0
\(361\) 2979.50 5160.65i 0.434393 0.752390i
\(362\) −806.000 + 1396.03i −0.117023 + 0.202690i
\(363\) 0 0
\(364\) 5200.00 5404.00i 0.748775 0.778150i
\(365\) −3655.00 −0.524141
\(366\) 0 0
\(367\) −3719.00 + 6441.50i −0.528965 + 0.916195i 0.470464 + 0.882419i \(0.344086\pi\)
−0.999429 + 0.0337755i \(0.989247\pi\)
\(368\) −2496.00 4323.20i −0.353568 0.612398i
\(369\) 0 0
\(370\) 7718.00 + 13368.0i 1.08443 + 1.87829i
\(371\) 930.000 + 1610.81i 0.130143 + 0.225415i
\(372\) 0 0
\(373\) 4841.50 + 8385.72i 0.672073 + 1.16407i 0.977315 + 0.211790i \(0.0679294\pi\)
−0.305242 + 0.952275i \(0.598737\pi\)
\(374\) 832.000 1441.07i 0.115031 0.199240i
\(375\) 0 0
\(376\) 0 0
\(377\) −6402.50 + 6653.67i −0.874657 + 0.908970i
\(378\) 0 0
\(379\) 531.000 919.719i 0.0719674 0.124651i −0.827796 0.561029i \(-0.810406\pi\)
0.899763 + 0.436378i \(0.143739\pi\)
\(380\) 2040.00 3533.38i 0.275394 0.476997i
\(381\) 0 0
\(382\) −4984.00 −0.667549
\(383\) −1766.00 3058.80i −0.235609 0.408087i 0.723840 0.689968i \(-0.242375\pi\)
−0.959450 + 0.281880i \(0.909042\pi\)
\(384\) 0 0
\(385\) −10880.0 −1.44025
\(386\) 534.000 + 924.915i 0.0704142 + 0.121961i
\(387\) 0 0
\(388\) −952.000 + 1648.91i −0.124563 + 0.215750i
\(389\) 11063.0 1.44194 0.720972 0.692964i \(-0.243696\pi\)
0.720972 + 0.692964i \(0.243696\pi\)
\(390\) 0 0
\(391\) −1014.00 −0.131151
\(392\) 0 0
\(393\) 0 0
\(394\) −2556.00 4427.12i −0.326826 0.566079i
\(395\) 1292.00 0.164576
\(396\) 0 0
\(397\) 2993.00 + 5184.03i 0.378374 + 0.655362i 0.990826 0.135145i \(-0.0431501\pi\)
−0.612452 + 0.790508i \(0.709817\pi\)
\(398\) −16952.0 −2.13499
\(399\) 0 0
\(400\) 5248.00 9089.80i 0.656000 1.13623i
\(401\) 2967.50 5139.86i 0.369551 0.640081i −0.619945 0.784646i \(-0.712845\pi\)
0.989495 + 0.144565i \(0.0461782\pi\)
\(402\) 0 0
\(403\) 3367.00 + 833.116i 0.416184 + 0.102979i
\(404\) 6552.00 0.806867
\(405\) 0 0
\(406\) −7880.00 + 13648.6i −0.963246 + 1.66839i
\(407\) 3632.00 + 6290.81i 0.442338 + 0.766152i
\(408\) 0 0
\(409\) 7544.50 + 13067.5i 0.912106 + 1.57981i 0.811083 + 0.584931i \(0.198878\pi\)
0.101023 + 0.994884i \(0.467788\pi\)
\(410\) −5610.00 9716.81i −0.675752 1.17044i
\(411\) 0 0
\(412\) −6552.00 11348.4i −0.783480 1.35703i
\(413\) −8640.00 + 14964.9i −1.02941 + 1.78299i
\(414\) 0 0
\(415\) 10676.0 1.26281
\(416\) 3328.00 + 11528.5i 0.392232 + 1.35873i
\(417\) 0 0
\(418\) 1920.00 3325.54i 0.224666 0.389132i
\(419\) −5407.00 + 9365.20i −0.630428 + 1.09193i 0.357037 + 0.934090i \(0.383787\pi\)
−0.987464 + 0.157843i \(0.949546\pi\)
\(420\) 0 0
\(421\) −6535.00 −0.756524 −0.378262 0.925699i \(-0.623478\pi\)
−0.378262 + 0.925699i \(0.623478\pi\)
\(422\) 6140.00 + 10634.8i 0.708271 + 1.22676i
\(423\) 0 0
\(424\) 0 0
\(425\) −1066.00 1846.37i −0.121667 0.210734i
\(426\) 0 0
\(427\) −1450.00 + 2511.47i −0.164334 + 0.284634i
\(428\) −4176.00 −0.471623
\(429\) 0 0
\(430\) −10608.0 −1.18968
\(431\) 990.000 1714.73i 0.110642 0.191637i −0.805387 0.592749i \(-0.798043\pi\)
0.916029 + 0.401112i \(0.131376\pi\)
\(432\) 0 0
\(433\) 3464.50 + 6000.69i 0.384511 + 0.665993i 0.991701 0.128564i \(-0.0410368\pi\)
−0.607190 + 0.794556i \(0.707703\pi\)
\(434\) 5920.00 0.654767
\(435\) 0 0
\(436\) 6536.00 + 11320.7i 0.717930 + 1.24349i
\(437\) −2340.00 −0.256150
\(438\) 0 0
\(439\) 2288.00 3962.93i 0.248748 0.430844i −0.714431 0.699706i \(-0.753314\pi\)
0.963179 + 0.268862i \(0.0866476\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 2366.00 + 585.433i 0.254613 + 0.0630005i
\(443\) 8812.00 0.945081 0.472540 0.881309i \(-0.343337\pi\)
0.472540 + 0.881309i \(0.343337\pi\)
\(444\) 0 0
\(445\) 2261.00 3916.17i 0.240858 0.417178i
\(446\) −10756.0 18629.9i −1.14195 1.97792i
\(447\) 0 0
\(448\) 5120.00 + 8868.10i 0.539949 + 0.935220i
\(449\) 959.000 + 1661.04i 0.100797 + 0.174586i 0.912013 0.410160i \(-0.134527\pi\)
−0.811216 + 0.584747i \(0.801194\pi\)
\(450\) 0 0
\(451\) −2640.00 4572.61i −0.275638 0.477419i
\(452\) 1308.00 2265.52i 0.136113 0.235755i
\(453\) 0 0
\(454\) −15896.0 −1.64325
\(455\) −4420.00 15311.3i −0.455413 1.57760i
\(456\) 0 0
\(457\) 5880.50 10185.3i 0.601922 1.04256i −0.390608 0.920557i \(-0.627735\pi\)
0.992530 0.122002i \(-0.0389314\pi\)
\(458\) −12596.0 + 21816.9i −1.28509 + 2.22585i
\(459\) 0 0
\(460\) 10608.0 1.07522
\(461\) 450.500 + 780.289i 0.0455138 + 0.0788323i 0.887885 0.460066i \(-0.152174\pi\)
−0.842371 + 0.538898i \(0.818841\pi\)
\(462\) 0 0
\(463\) 1372.00 0.137715 0.0688577 0.997626i \(-0.478065\pi\)
0.0688577 + 0.997626i \(0.478065\pi\)
\(464\) −6304.00 10918.8i −0.630724 1.09245i
\(465\) 0 0
\(466\) −8060.00 + 13960.3i −0.801228 + 1.38777i
\(467\) 6396.00 0.633772 0.316886 0.948464i \(-0.397363\pi\)
0.316886 + 0.948464i \(0.397363\pi\)
\(468\) 0 0
\(469\) 17240.0 1.69738
\(470\) −5508.00 + 9540.14i −0.540564 + 0.936284i
\(471\) 0 0
\(472\) 0 0
\(473\) −4992.00 −0.485269
\(474\) 0 0
\(475\) −2460.00 4260.84i −0.237626 0.411581i
\(476\) 2080.00 0.200287
\(477\) 0 0
\(478\) 1968.00 3408.68i 0.188314 0.326170i
\(479\) 1635.00 2831.90i 0.155960 0.270131i −0.777448 0.628947i \(-0.783486\pi\)
0.933408 + 0.358816i \(0.116819\pi\)
\(480\) 0 0
\(481\) −7377.50 + 7666.92i −0.699345 + 0.726781i
\(482\) −3772.00 −0.356452
\(483\) 0 0
\(484\) 1228.00 2126.96i 0.115327 0.199752i
\(485\) 2023.00 + 3503.94i 0.189401 + 0.328053i
\(486\) 0 0
\(487\) −9960.00 17251.2i −0.926757 1.60519i −0.788711 0.614765i \(-0.789251\pi\)
−0.138046 0.990426i \(-0.544082\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −1938.00 3356.71i −0.178673 0.309471i
\(491\) 3276.00 5674.20i 0.301108 0.521534i −0.675280 0.737562i \(-0.735977\pi\)
0.976387 + 0.216028i \(0.0693103\pi\)
\(492\) 0 0
\(493\) −2561.00 −0.233959
\(494\) 5460.00 + 1351.00i 0.497281 + 0.123045i
\(495\) 0 0
\(496\) −2368.00 + 4101.50i −0.214368 + 0.371296i
\(497\) 6540.00 11327.6i 0.590260 1.02236i
\(498\) 0 0
\(499\) 1746.00 0.156637 0.0783183 0.996928i \(-0.475045\pi\)
0.0783183 + 0.996928i \(0.475045\pi\)
\(500\) 2652.00 + 4593.40i 0.237202 + 0.410846i
\(501\) 0 0
\(502\) −10920.0 −0.970883
\(503\) 7346.00 + 12723.6i 0.651177 + 1.12787i 0.982838 + 0.184473i \(0.0590577\pi\)
−0.331661 + 0.943399i \(0.607609\pi\)
\(504\) 0 0
\(505\) 6961.50 12057.7i 0.613431 1.06249i
\(506\) 9984.00 0.877160
\(507\) 0 0
\(508\) −17264.0 −1.50781
\(509\) 4038.50 6994.89i 0.351677 0.609122i −0.634867 0.772622i \(-0.718945\pi\)
0.986543 + 0.163500i \(0.0522784\pi\)
\(510\) 0 0
\(511\) −2150.00 3723.91i −0.186126 0.322380i
\(512\) −16384.0 −1.41421
\(513\) 0 0
\(514\) 3770.00 + 6529.83i 0.323517 + 0.560347i
\(515\) −27846.0 −2.38260
\(516\) 0 0
\(517\) −2592.00 + 4489.48i −0.220495 + 0.381909i
\(518\) −9080.00 + 15727.0i −0.770178 + 1.33399i
\(519\) 0 0
\(520\) 0 0
\(521\) −11247.0 −0.945758 −0.472879 0.881127i \(-0.656785\pi\)
−0.472879 + 0.881127i \(0.656785\pi\)
\(522\) 0 0
\(523\) −1366.00 + 2365.98i −0.114208 + 0.197815i −0.917463 0.397821i \(-0.869767\pi\)
0.803255 + 0.595636i \(0.203100\pi\)
\(524\) 2920.00 + 5057.59i 0.243437 + 0.421645i
\(525\) 0 0
\(526\) −8064.00 13967.3i −0.668455 1.15780i
\(527\) 481.000 + 833.116i 0.0397584 + 0.0688636i
\(528\) 0 0
\(529\) 3041.50 + 5268.03i 0.249979 + 0.432977i
\(530\) 3162.00 5476.74i 0.259148 0.448858i
\(531\) 0 0
\(532\) 4800.00 0.391177
\(533\) 5362.50 5572.87i 0.435789 0.452885i
\(534\) 0 0
\(535\) −4437.00 + 7685.11i −0.358557 + 0.621040i
\(536\) 0 0
\(537\) 0 0
\(538\) 16024.0 1.28410
\(539\) −912.000 1579.63i −0.0728806 0.126233i
\(540\) 0 0
\(541\) −18375.0 −1.46026 −0.730132 0.683306i \(-0.760542\pi\)
−0.730132 + 0.683306i \(0.760542\pi\)
\(542\) −8592.00 14881.8i −0.680919 1.17939i
\(543\) 0 0
\(544\) −1664.00 + 2882.13i −0.131146 + 0.227151i
\(545\) 27778.0 2.18326
\(546\) 0 0
\(547\) −10346.0 −0.808708 −0.404354 0.914603i \(-0.632504\pi\)
−0.404354 + 0.914603i \(0.632504\pi\)
\(548\) 6684.00 11577.0i 0.521033 0.902456i
\(549\) 0 0
\(550\) 10496.0 + 18179.6i 0.813729 + 1.40942i
\(551\) −5910.00 −0.456941
\(552\) 0 0
\(553\) 760.000 + 1316.36i 0.0584421 + 0.101225i
\(554\) 22204.0 1.70281
\(555\) 0 0
\(556\) −3648.00 + 6318.52i −0.278255 + 0.481951i
\(557\) 172.500 298.779i 0.0131222 0.0227283i −0.859390 0.511321i \(-0.829156\pi\)
0.872512 + 0.488593i \(0.162490\pi\)
\(558\) 0 0
\(559\) −2028.00 7025.20i −0.153444 0.531546i
\(560\) 21760.0 1.64201
\(561\) 0 0
\(562\) 11114.0 19250.0i 0.834192 1.44486i
\(563\) −4290.00 7430.50i −0.321140 0.556231i 0.659583 0.751631i \(-0.270733\pi\)
−0.980724 + 0.195400i \(0.937399\pi\)
\(564\) 0 0
\(565\) −2779.50 4814.24i −0.206964 0.358472i
\(566\) 6240.00 + 10808.0i 0.463404 + 0.802640i
\(567\) 0 0
\(568\) 0 0
\(569\) −9841.00 + 17045.1i −0.725055 + 1.25583i 0.233897 + 0.972261i \(0.424852\pi\)
−0.958951 + 0.283570i \(0.908481\pi\)
\(570\) 0 0
\(571\) 26624.0 1.95128 0.975639 0.219382i \(-0.0704042\pi\)
0.975639 + 0.219382i \(0.0704042\pi\)
\(572\) −11648.0 2882.13i −0.851446 0.210678i
\(573\) 0 0
\(574\) 6600.00 11431.5i 0.479928 0.831260i
\(575\) 6396.00 11078.2i 0.463881 0.803466i
\(576\) 0 0
\(577\) −14101.0 −1.01739 −0.508694 0.860948i \(-0.669871\pi\)
−0.508694 + 0.860948i \(0.669871\pi\)
\(578\) −9488.00 16433.7i −0.682783 1.18262i
\(579\) 0 0
\(580\) 26792.0 1.91806
\(581\) 6280.00 + 10877.3i 0.448431 + 0.776705i
\(582\) 0 0
\(583\) 1488.00 2577.29i 0.105706 0.183088i
\(584\) 0 0
\(585\) 0 0
\(586\) 33204.0 2.34069
\(587\) 704.000 1219.36i 0.0495012 0.0857386i −0.840213 0.542256i \(-0.817570\pi\)
0.889714 + 0.456518i \(0.150904\pi\)
\(588\) 0 0
\(589\) 1110.00 + 1922.58i 0.0776515 + 0.134496i
\(590\) 58752.0 4.09963
\(591\) 0 0
\(592\) −7264.00 12581.6i −0.504305 0.873482i
\(593\) 1241.00 0.0859389 0.0429694 0.999076i \(-0.486318\pi\)
0.0429694 + 0.999076i \(0.486318\pi\)
\(594\) 0 0
\(595\) 2210.00 3827.83i 0.152271 0.263741i
\(596\) −8460.00 + 14653.1i −0.581435 + 1.00707i
\(597\) 0 0
\(598\) 4056.00 + 14050.4i 0.277361 + 0.960808i
\(599\) −11078.0 −0.755651 −0.377825 0.925877i \(-0.623328\pi\)
−0.377825 + 0.925877i \(0.623328\pi\)
\(600\) 0 0
\(601\) 6908.50 11965.9i 0.468891 0.812143i −0.530477 0.847700i \(-0.677987\pi\)
0.999368 + 0.0355563i \(0.0113203\pi\)
\(602\) −6240.00 10808.0i −0.422464 0.731729i
\(603\) 0 0
\(604\) −2056.00 3561.10i −0.138506 0.239899i
\(605\) −2609.50 4519.79i −0.175357 0.303728i
\(606\) 0 0
\(607\) −4135.00 7162.03i −0.276498 0.478909i 0.694014 0.719962i \(-0.255841\pi\)
−0.970512 + 0.241053i \(0.922507\pi\)
\(608\) −3840.00 + 6651.08i −0.256139 + 0.443646i
\(609\) 0 0
\(610\) 9860.00 0.654459
\(611\) −7371.00 1823.85i −0.488050 0.120761i
\(612\) 0 0
\(613\) −11136.5 + 19289.0i −0.733767 + 1.27092i 0.221496 + 0.975161i \(0.428906\pi\)
−0.955262 + 0.295760i \(0.904427\pi\)
\(614\) 17356.0 30061.5i 1.14077 1.97587i
\(615\) 0 0
\(616\) 0 0
\(617\) −9494.50 16445.0i −0.619504 1.07301i −0.989576 0.144010i \(-0.954000\pi\)
0.370072 0.929003i \(-0.379333\pi\)
\(618\) 0 0
\(619\) 72.0000 0.00467516 0.00233758 0.999997i \(-0.499256\pi\)
0.00233758 + 0.999997i \(0.499256\pi\)
\(620\) −5032.00 8715.68i −0.325952 0.564565i
\(621\) 0 0
\(622\) −17316.0 + 29992.2i −1.11625 + 1.93340i
\(623\) 5320.00 0.342121
\(624\) 0 0
\(625\) −9229.00 −0.590656
\(626\) −10500.0 + 18186.5i −0.670390 + 1.16115i
\(627\) 0 0
\(628\) −11604.0 20098.7i −0.737341 1.27711i
\(629\) −2951.00 −0.187065
\(630\) 0 0
\(631\) 11690.0 + 20247.7i 0.737514 + 1.27741i 0.953611 + 0.301040i \(0.0973339\pi\)
−0.216097 + 0.976372i \(0.569333\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −12826.0 + 22215.3i −0.803447 + 1.39161i
\(635\) −18343.0 + 31771.0i −1.14633 + 1.98550i
\(636\) 0 0
\(637\) 1852.50 1925.17i 0.115226 0.119746i
\(638\) 25216.0 1.56475
\(639\) 0 0
\(640\) 0 0
\(641\) 3191.50 + 5527.84i 0.196656 + 0.340619i 0.947442 0.319927i \(-0.103658\pi\)
−0.750786 + 0.660546i \(0.770325\pi\)
\(642\) 0 0
\(643\) 8552.00 + 14812.5i 0.524507 + 0.908473i 0.999593 + 0.0285332i \(0.00908365\pi\)
−0.475086 + 0.879939i \(0.657583\pi\)
\(644\) 6240.00 + 10808.0i 0.381817 + 0.661327i
\(645\) 0 0
\(646\) 780.000 + 1351.00i 0.0475057 + 0.0822823i
\(647\) 3497.00 6056.98i 0.212490 0.368044i −0.740003 0.672604i \(-0.765176\pi\)
0.952493 + 0.304560i \(0.0985093\pi\)
\(648\) 0 0
\(649\) 27648.0 1.67223
\(650\) −21320.0 + 22156.4i −1.28652 + 1.33699i
\(651\) 0 0
\(652\) −9440.00 + 16350.6i −0.567023 + 0.982112i
\(653\) −2625.00 + 4546.63i −0.157311 + 0.272471i −0.933898 0.357539i \(-0.883616\pi\)
0.776587 + 0.630010i \(0.216949\pi\)
\(654\) 0 0
\(655\) 12410.0 0.740304
\(656\) 5280.00 + 9145.23i 0.314252 + 0.544301i
\(657\) 0 0
\(658\) −12960.0 −0.767832
\(659\) −2170.00 3758.55i −0.128272 0.222173i 0.794735 0.606956i \(-0.207610\pi\)
−0.923007 + 0.384783i \(0.874276\pi\)
\(660\) 0 0
\(661\) 2089.50 3619.12i 0.122953 0.212961i −0.797978 0.602687i \(-0.794097\pi\)
0.920931 + 0.389726i \(0.127430\pi\)
\(662\) −13952.0 −0.819124
\(663\) 0 0
\(664\) 0 0
\(665\) 5100.00 8833.46i 0.297398 0.515108i
\(666\) 0 0
\(667\) −7683.00 13307.3i −0.446007 0.772508i
\(668\) −2240.00 −0.129743
\(669\) 0 0
\(670\) −29308.0 50762.9i −1.68995 2.92708i
\(671\) 4640.00 0.266953
\(672\) 0 0
\(673\) −11433.5 + 19803.4i −0.654872 + 1.13427i 0.327054 + 0.945006i \(0.393944\pi\)
−0.981926 + 0.189266i \(0.939389\pi\)
\(674\) −3666.00 + 6349.70i −0.209509 + 0.362880i
\(675\) 0 0
\(676\) −676.000 17563.0i −0.0384615 0.999260i
\(677\) −5410.00 −0.307124 −0.153562 0.988139i \(-0.549075\pi\)
−0.153562 + 0.988139i \(0.549075\pi\)
\(678\) 0 0
\(679\) −2380.00 + 4122.28i −0.134515 + 0.232988i
\(680\) 0 0
\(681\) 0 0
\(682\) −4736.00 8202.99i −0.265910 0.460570i
\(683\) −6789.00 11758.9i −0.380342 0.658772i 0.610769 0.791809i \(-0.290861\pi\)
−0.991111 + 0.133037i \(0.957527\pi\)
\(684\) 0 0
\(685\) −14203.5 24601.2i −0.792245 1.37221i
\(686\) −11440.0 + 19814.7i −0.636707 + 1.10281i
\(687\) 0 0
\(688\) 9984.00 0.553251
\(689\) 4231.50 + 1047.02i 0.233973 + 0.0578933i
\(690\) 0 0
\(691\) −6372.00 + 11036.6i −0.350799 + 0.607602i −0.986390 0.164424i \(-0.947423\pi\)
0.635590 + 0.772026i \(0.280757\pi\)
\(692\) 5304.00 9186.80i 0.291370 0.504667i
\(693\) 0 0
\(694\) 28920.0 1.58183
\(695\) 7752.00 + 13426.9i 0.423094 + 0.732820i
\(696\) 0 0
\(697\) 2145.00 0.116568
\(698\) −10516.0 18214.2i −0.570253 0.987707i
\(699\) 0 0
\(700\) −13120.0 + 22724.5i −0.708413 + 1.22701i
\(701\) −16406.0 −0.883946 −0.441973 0.897028i \(-0.645721\pi\)
−0.441973 + 0.897028i \(0.645721\pi\)
\(702\) 0 0
\(703\) −6810.00 −0.365354
\(704\) 8192.00 14189.0i 0.438562 0.759612i
\(705\) 0 0
\(706\) −6326.00 10957.0i −0.337227 0.584094i
\(707\) 16380.0 0.871334
\(708\) 0 0
\(709\) −354.500 614.012i −0.0187779 0.0325243i 0.856484 0.516174i \(-0.172644\pi\)
−0.875262 + 0.483650i \(0.839311\pi\)
\(710\) −44472.0 −2.35071
\(711\) 0 0
\(712\) 0 0
\(713\) −2886.00 + 4998.70i −0.151587 + 0.262556i
\(714\) 0 0
\(715\) −17680.0 + 18373.6i −0.924748 + 0.961026i
\(716\) −34112.0 −1.78048
\(717\) 0 0
\(718\) 20136.0 34876.6i 1.04661 1.81279i
\(719\) −3822.00 6619.90i −0.198243 0.343367i 0.749716 0.661760i \(-0.230190\pi\)
−0.947959 + 0.318393i \(0.896857\pi\)
\(720\) 0 0
\(721\) −16380.0 28371.0i −0.846079 1.46545i
\(722\) −11918.0 20642.6i −0.614324 1.06404i
\(723\) 0 0
\(724\) 1612.00 + 2792.07i 0.0827479 + 0.143324i
\(725\) 16154.0 27979.5i 0.827510 1.43329i
\(726\) 0 0
\(727\) −15808.0 −0.806446 −0.403223 0.915102i \(-0.632110\pi\)
−0.403223 + 0.915102i \(0.632110\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) −7310.00 + 12661.3i −0.370624 + 0.641939i
\(731\) 1014.00 1756.30i 0.0513053 0.0888633i
\(732\) 0 0
\(733\) −2583.00 −0.130157 −0.0650786 0.997880i \(-0.520730\pi\)
−0.0650786 + 0.997880i \(0.520730\pi\)
\(734\) 14876.0 + 25766.0i 0.748070 + 1.29569i
\(735\) 0 0
\(736\) −19968.0 −1.00004
\(737\) −13792.0 23888.4i −0.689328 1.19395i
\(738\) 0 0
\(739\) −2038.00 + 3529.92i −0.101447 + 0.175711i −0.912281 0.409565i \(-0.865680\pi\)
0.810834 + 0.585276i \(0.199014\pi\)
\(740\) 30872.0 1.53362
\(741\) 0 0
\(742\) 7440.00 0.368101
\(743\) −17028.0 + 29493.4i −0.840776 + 1.45627i 0.0484632 + 0.998825i \(0.484568\pi\)
−0.889239 + 0.457442i \(0.848766\pi\)
\(744\) 0 0
\(745\) 17977.5 + 31137.9i 0.884087 + 1.53128i
\(746\) 38732.0 1.90091
\(747\) 0 0
\(748\) −1664.00 2882.13i −0.0813394 0.140884i
\(749\) −10440.0 −0.509305
\(750\) 0 0
\(751\) 182.000 315.233i 0.00884324 0.0153169i −0.861570 0.507639i \(-0.830518\pi\)
0.870413 + 0.492322i \(0.163852\pi\)
\(752\) 5184.00 8978.95i 0.251384 0.435410i
\(753\) 0 0
\(754\) 10244.0 + 35486.3i 0.494780 + 1.71397i
\(755\) −8738.00 −0.421203
\(756\) 0 0
\(757\) 3457.00 5987.70i 0.165980 0.287486i −0.771023 0.636807i \(-0.780255\pi\)
0.937003 + 0.349322i \(0.113588\pi\)
\(758\) −2124.00 3678.88i −0.101777 0.176283i
\(759\) 0 0
\(760\) 0 0
\(761\) 6991.00 + 12108.8i 0.333014 + 0.576797i 0.983101 0.183062i \(-0.0586011\pi\)
−0.650087 + 0.759859i \(0.725268\pi\)
\(762\) 0 0
\(763\) 16340.0 + 28301.7i 0.775292 + 1.34284i
\(764\) −4984.00 + 8632.54i −0.236014 + 0.408788i
\(765\) 0 0
\(766\) −14128.0 −0.666404
\(767\) 11232.0 + 38908.8i 0.528767 + 1.83170i
\(768\) 0 0
\(769\) 9033.00 15645.6i 0.423587 0.733674i −0.572700 0.819765i \(-0.694104\pi\)
0.996287 + 0.0860907i \(0.0274375\pi\)
\(770\) −21760.0 + 37689.4i −1.01841 + 1.76394i
\(771\) 0 0
\(772\) 2136.00 0.0995807
\(773\) 7217.00 + 12500.2i 0.335805 + 0.581632i 0.983639 0.180150i \(-0.0576583\pi\)
−0.647834 + 0.761782i \(0.724325\pi\)
\(774\) 0 0
\(775\) −12136.0 −0.562501
\(776\) 0 0
\(777\) 0 0
\(778\) 22126.0 38323.4i 1.01961 1.76601i
\(779\) 4950.00 0.227666