# Properties

 Label 117.4.g.c Level $117$ Weight $4$ Character orbit 117.g Analytic conductor $6.903$ Analytic rank $0$ Dimension $2$ Inner twists $2$

# Related objects

Show commands: Magma / PariGP / SageMath

## Newspace parameters

comment: Compute space of new eigenforms

[N,k,chi] = [117,4,Mod(55,117)]

mf = mfinit([N,k,chi],0)

lf = mfeigenbasis(mf)

from sage.modular.dirichlet import DirichletCharacter

H = DirichletGroup(117, base_ring=CyclotomicField(6))

chi = DirichletCharacter(H, H._module([0, 2]))

N = Newforms(chi, 4, names="a")

//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code

chi := DirichletCharacter("117.55");

S:= CuspForms(chi, 4);

N := Newforms(S);

 Level: $$N$$ $$=$$ $$117 = 3^{2} \cdot 13$$ Weight: $$k$$ $$=$$ $$4$$ Character orbit: $$[\chi]$$ $$=$$ 117.g (of order $$3$$, degree $$2$$, minimal)

## Newform invariants

comment: select newform

sage: f = N[0] # Warning: the index may be different

gp: f = lf[1] \\ Warning: the index may be different

 Self dual: no Analytic conductor: $$6.90322347067$$ Analytic rank: $$0$$ Dimension: $$2$$ Coefficient field: $$\Q(\sqrt{-3})$$ comment: defining polynomial  gp: f.mod \\ as an extension of the character field Defining polynomial: $$x^{2} - x + 1$$ x^2 - x + 1 Coefficient ring: $$\Z[a_1, \ldots, a_{13}]$$ Coefficient ring index: $$1$$ Twist minimal: no (minimal twist has level 13) Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

## $q$-expansion

comment: q-expansion

sage: f.q_expansion() # note that sage often uses an isomorphic number field

gp: mfcoefs(f, 20)

Coefficients of the $$q$$-expansion are expressed in terms of a primitive root of unity $$\zeta_{6}$$. We also show the integral $$q$$-expansion of the trace form.

 $$f(q)$$ $$=$$ $$q + ( - 4 \zeta_{6} + 4) q^{2} - 8 \zeta_{6} q^{4} - 17 q^{5} - 20 \zeta_{6} q^{7} +O(q^{10})$$ q + (-4*z + 4) * q^2 - 8*z * q^4 - 17 * q^5 - 20*z * q^7 $$q + ( - 4 \zeta_{6} + 4) q^{2} - 8 \zeta_{6} q^{4} - 17 q^{5} - 20 \zeta_{6} q^{7} + (68 \zeta_{6} - 68) q^{10} + (32 \zeta_{6} - 32) q^{11} + ( - 13 \zeta_{6} - 39) q^{13} - 80 q^{14} + ( - 64 \zeta_{6} + 64) q^{16} - 13 \zeta_{6} q^{17} - 30 \zeta_{6} q^{19} + 136 \zeta_{6} q^{20} + 128 \zeta_{6} q^{22} + ( - 78 \zeta_{6} + 78) q^{23} + 164 q^{25} + (156 \zeta_{6} - 208) q^{26} + (160 \zeta_{6} - 160) q^{28} + ( - 197 \zeta_{6} + 197) q^{29} - 74 q^{31} - 256 \zeta_{6} q^{32} - 52 q^{34} + 340 \zeta_{6} q^{35} + ( - 227 \zeta_{6} + 227) q^{37} - 120 q^{38} + (165 \zeta_{6} - 165) q^{41} + 156 \zeta_{6} q^{43} + 256 q^{44} - 312 \zeta_{6} q^{46} + 162 q^{47} + (57 \zeta_{6} - 57) q^{49} + ( - 656 \zeta_{6} + 656) q^{50} + (416 \zeta_{6} - 104) q^{52} - 93 q^{53} + ( - 544 \zeta_{6} + 544) q^{55} - 788 \zeta_{6} q^{58} - 864 \zeta_{6} q^{59} - 145 \zeta_{6} q^{61} + (296 \zeta_{6} - 296) q^{62} - 512 q^{64} + (221 \zeta_{6} + 663) q^{65} + (862 \zeta_{6} - 862) q^{67} + (104 \zeta_{6} - 104) q^{68} + 1360 q^{70} + 654 \zeta_{6} q^{71} + 215 q^{73} - 908 \zeta_{6} q^{74} + (240 \zeta_{6} - 240) q^{76} + 640 q^{77} - 76 q^{79} + (1088 \zeta_{6} - 1088) q^{80} + 660 \zeta_{6} q^{82} - 628 q^{83} + 221 \zeta_{6} q^{85} + 624 q^{86} + (266 \zeta_{6} - 266) q^{89} + (1040 \zeta_{6} - 260) q^{91} - 624 q^{92} + ( - 648 \zeta_{6} + 648) q^{94} + 510 \zeta_{6} q^{95} - 238 \zeta_{6} q^{97} + 228 \zeta_{6} q^{98} +O(q^{100})$$ q + (-4*z + 4) * q^2 - 8*z * q^4 - 17 * q^5 - 20*z * q^7 + (68*z - 68) * q^10 + (32*z - 32) * q^11 + (-13*z - 39) * q^13 - 80 * q^14 + (-64*z + 64) * q^16 - 13*z * q^17 - 30*z * q^19 + 136*z * q^20 + 128*z * q^22 + (-78*z + 78) * q^23 + 164 * q^25 + (156*z - 208) * q^26 + (160*z - 160) * q^28 + (-197*z + 197) * q^29 - 74 * q^31 - 256*z * q^32 - 52 * q^34 + 340*z * q^35 + (-227*z + 227) * q^37 - 120 * q^38 + (165*z - 165) * q^41 + 156*z * q^43 + 256 * q^44 - 312*z * q^46 + 162 * q^47 + (57*z - 57) * q^49 + (-656*z + 656) * q^50 + (416*z - 104) * q^52 - 93 * q^53 + (-544*z + 544) * q^55 - 788*z * q^58 - 864*z * q^59 - 145*z * q^61 + (296*z - 296) * q^62 - 512 * q^64 + (221*z + 663) * q^65 + (862*z - 862) * q^67 + (104*z - 104) * q^68 + 1360 * q^70 + 654*z * q^71 + 215 * q^73 - 908*z * q^74 + (240*z - 240) * q^76 + 640 * q^77 - 76 * q^79 + (1088*z - 1088) * q^80 + 660*z * q^82 - 628 * q^83 + 221*z * q^85 + 624 * q^86 + (266*z - 266) * q^89 + (1040*z - 260) * q^91 - 624 * q^92 + (-648*z + 648) * q^94 + 510*z * q^95 - 238*z * q^97 + 228*z * q^98 $$\operatorname{Tr}(f)(q)$$ $$=$$ $$2 q + 4 q^{2} - 8 q^{4} - 34 q^{5} - 20 q^{7}+O(q^{10})$$ 2 * q + 4 * q^2 - 8 * q^4 - 34 * q^5 - 20 * q^7 $$2 q + 4 q^{2} - 8 q^{4} - 34 q^{5} - 20 q^{7} - 68 q^{10} - 32 q^{11} - 91 q^{13} - 160 q^{14} + 64 q^{16} - 13 q^{17} - 30 q^{19} + 136 q^{20} + 128 q^{22} + 78 q^{23} + 328 q^{25} - 260 q^{26} - 160 q^{28} + 197 q^{29} - 148 q^{31} - 256 q^{32} - 104 q^{34} + 340 q^{35} + 227 q^{37} - 240 q^{38} - 165 q^{41} + 156 q^{43} + 512 q^{44} - 312 q^{46} + 324 q^{47} - 57 q^{49} + 656 q^{50} + 208 q^{52} - 186 q^{53} + 544 q^{55} - 788 q^{58} - 864 q^{59} - 145 q^{61} - 296 q^{62} - 1024 q^{64} + 1547 q^{65} - 862 q^{67} - 104 q^{68} + 2720 q^{70} + 654 q^{71} + 430 q^{73} - 908 q^{74} - 240 q^{76} + 1280 q^{77} - 152 q^{79} - 1088 q^{80} + 660 q^{82} - 1256 q^{83} + 221 q^{85} + 1248 q^{86} - 266 q^{89} + 520 q^{91} - 1248 q^{92} + 648 q^{94} + 510 q^{95} - 238 q^{97} + 228 q^{98}+O(q^{100})$$ 2 * q + 4 * q^2 - 8 * q^4 - 34 * q^5 - 20 * q^7 - 68 * q^10 - 32 * q^11 - 91 * q^13 - 160 * q^14 + 64 * q^16 - 13 * q^17 - 30 * q^19 + 136 * q^20 + 128 * q^22 + 78 * q^23 + 328 * q^25 - 260 * q^26 - 160 * q^28 + 197 * q^29 - 148 * q^31 - 256 * q^32 - 104 * q^34 + 340 * q^35 + 227 * q^37 - 240 * q^38 - 165 * q^41 + 156 * q^43 + 512 * q^44 - 312 * q^46 + 324 * q^47 - 57 * q^49 + 656 * q^50 + 208 * q^52 - 186 * q^53 + 544 * q^55 - 788 * q^58 - 864 * q^59 - 145 * q^61 - 296 * q^62 - 1024 * q^64 + 1547 * q^65 - 862 * q^67 - 104 * q^68 + 2720 * q^70 + 654 * q^71 + 430 * q^73 - 908 * q^74 - 240 * q^76 + 1280 * q^77 - 152 * q^79 - 1088 * q^80 + 660 * q^82 - 1256 * q^83 + 221 * q^85 + 1248 * q^86 - 266 * q^89 + 520 * q^91 - 1248 * q^92 + 648 * q^94 + 510 * q^95 - 238 * q^97 + 228 * q^98

## Character values

We give the values of $$\chi$$ on generators for $$\left(\mathbb{Z}/117\mathbb{Z}\right)^\times$$.

 $$n$$ $$28$$ $$92$$ $$\chi(n)$$ $$-\zeta_{6}$$ $$1$$

## Embeddings

For each embedding $$\iota_m$$ of the coefficient field, the values $$\iota_m(a_n)$$ are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field

gp: mfembed(f)

Label   $$\iota_m(\nu)$$ $$a_{2}$$ $$a_{3}$$ $$a_{4}$$ $$a_{5}$$ $$a_{6}$$ $$a_{7}$$ $$a_{8}$$ $$a_{9}$$ $$a_{10}$$
55.1
 0.5 − 0.866025i 0.5 + 0.866025i
2.00000 + 3.46410i 0 −4.00000 + 6.92820i −17.0000 0 −10.0000 + 17.3205i 0 0 −34.0000 58.8897i
100.1 2.00000 3.46410i 0 −4.00000 6.92820i −17.0000 0 −10.0000 17.3205i 0 0 −34.0000 + 58.8897i
 $$n$$: e.g. 2-40 or 990-1000 Significant digits: Format: Complex embeddings Normalized embeddings Satake parameters Satake angles

## Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

## Twists

By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 117.4.g.c 2
3.b odd 2 1 13.4.c.a 2
12.b even 2 1 208.4.i.b 2
13.c even 3 1 inner 117.4.g.c 2
13.c even 3 1 1521.4.a.b 1
13.e even 6 1 1521.4.a.k 1
39.d odd 2 1 169.4.c.d 2
39.f even 4 2 169.4.e.c 4
39.h odd 6 1 169.4.a.a 1
39.h odd 6 1 169.4.c.d 2
39.i odd 6 1 13.4.c.a 2
39.i odd 6 1 169.4.a.d 1
39.k even 12 2 169.4.b.c 2
39.k even 12 2 169.4.e.c 4
156.p even 6 1 208.4.i.b 2

By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
13.4.c.a 2 3.b odd 2 1
13.4.c.a 2 39.i odd 6 1
117.4.g.c 2 1.a even 1 1 trivial
117.4.g.c 2 13.c even 3 1 inner
169.4.a.a 1 39.h odd 6 1
169.4.a.d 1 39.i odd 6 1
169.4.b.c 2 39.k even 12 2
169.4.c.d 2 39.d odd 2 1
169.4.c.d 2 39.h odd 6 1
169.4.e.c 4 39.f even 4 2
169.4.e.c 4 39.k even 12 2
208.4.i.b 2 12.b even 2 1
208.4.i.b 2 156.p even 6 1
1521.4.a.b 1 13.c even 3 1
1521.4.a.k 1 13.e even 6 1

## Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator $$T_{2}^{2} - 4T_{2} + 16$$ acting on $$S_{4}^{\mathrm{new}}(117, [\chi])$$.

## Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ $$T^{2} - 4T + 16$$
$3$ $$T^{2}$$
$5$ $$(T + 17)^{2}$$
$7$ $$T^{2} + 20T + 400$$
$11$ $$T^{2} + 32T + 1024$$
$13$ $$T^{2} + 91T + 2197$$
$17$ $$T^{2} + 13T + 169$$
$19$ $$T^{2} + 30T + 900$$
$23$ $$T^{2} - 78T + 6084$$
$29$ $$T^{2} - 197T + 38809$$
$31$ $$(T + 74)^{2}$$
$37$ $$T^{2} - 227T + 51529$$
$41$ $$T^{2} + 165T + 27225$$
$43$ $$T^{2} - 156T + 24336$$
$47$ $$(T - 162)^{2}$$
$53$ $$(T + 93)^{2}$$
$59$ $$T^{2} + 864T + 746496$$
$61$ $$T^{2} + 145T + 21025$$
$67$ $$T^{2} + 862T + 743044$$
$71$ $$T^{2} - 654T + 427716$$
$73$ $$(T - 215)^{2}$$
$79$ $$(T + 76)^{2}$$
$83$ $$(T + 628)^{2}$$
$89$ $$T^{2} + 266T + 70756$$
$97$ $$T^{2} + 238T + 56644$$