Properties

Label 117.4.g.a
Level $117$
Weight $4$
Character orbit 117.g
Analytic conductor $6.903$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [117,4,Mod(55,117)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("117.55"); S:= CuspForms(chi, 4); N := Newforms(S);
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(117, base_ring=CyclotomicField(6)) chi = DirichletCharacter(H, H._module([0, 2])) N = Newforms(chi, 4, names="a")
 
Level: \( N \) \(=\) \( 117 = 3^{2} \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 117.g (of order \(3\), degree \(2\), minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,-1] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(2)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(6.90322347067\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 39)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + (\zeta_{6} - 1) q^{2} + 7 \zeta_{6} q^{4} - 7 q^{5} + 10 \zeta_{6} q^{7} - 15 q^{8} + ( - 7 \zeta_{6} + 7) q^{10} + (22 \zeta_{6} - 22) q^{11} + ( - 13 \zeta_{6} - 39) q^{13} - 10 q^{14} + (41 \zeta_{6} - 41) q^{16}+ \cdots + 243 \zeta_{6} q^{98}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - q^{2} + 7 q^{4} - 14 q^{5} + 10 q^{7} - 30 q^{8} + 7 q^{10} - 22 q^{11} - 91 q^{13} - 20 q^{14} - 41 q^{16} + 37 q^{17} - 30 q^{19} - 49 q^{20} - 22 q^{22} - 162 q^{23} - 152 q^{25} + 65 q^{26} - 70 q^{28}+ \cdots + 243 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).

\(n\) \(28\) \(92\)
\(\chi(n)\) \(-\zeta_{6}\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
55.1
0.500000 0.866025i
0.500000 + 0.866025i
−0.500000 0.866025i 0 3.50000 6.06218i −7.00000 0 5.00000 8.66025i −15.0000 0 3.50000 + 6.06218i
100.1 −0.500000 + 0.866025i 0 3.50000 + 6.06218i −7.00000 0 5.00000 + 8.66025i −15.0000 0 3.50000 6.06218i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
13.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 117.4.g.a 2
3.b odd 2 1 39.4.e.b 2
12.b even 2 1 624.4.q.c 2
13.c even 3 1 inner 117.4.g.a 2
13.c even 3 1 1521.4.a.h 1
13.e even 6 1 1521.4.a.e 1
39.h odd 6 1 507.4.a.d 1
39.i odd 6 1 39.4.e.b 2
39.i odd 6 1 507.4.a.b 1
39.k even 12 2 507.4.b.d 2
156.p even 6 1 624.4.q.c 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
39.4.e.b 2 3.b odd 2 1
39.4.e.b 2 39.i odd 6 1
117.4.g.a 2 1.a even 1 1 trivial
117.4.g.a 2 13.c even 3 1 inner
507.4.a.b 1 39.i odd 6 1
507.4.a.d 1 39.h odd 6 1
507.4.b.d 2 39.k even 12 2
624.4.q.c 2 12.b even 2 1
624.4.q.c 2 156.p even 6 1
1521.4.a.e 1 13.e even 6 1
1521.4.a.h 1 13.c even 3 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{2} + T_{2} + 1 \) acting on \(S_{4}^{\mathrm{new}}(117, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} + T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} \) Copy content Toggle raw display
$5$ \( (T + 7)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 10T + 100 \) Copy content Toggle raw display
$11$ \( T^{2} + 22T + 484 \) Copy content Toggle raw display
$13$ \( T^{2} + 91T + 2197 \) Copy content Toggle raw display
$17$ \( T^{2} - 37T + 1369 \) Copy content Toggle raw display
$19$ \( T^{2} + 30T + 900 \) Copy content Toggle raw display
$23$ \( T^{2} + 162T + 26244 \) Copy content Toggle raw display
$29$ \( T^{2} + 113T + 12769 \) Copy content Toggle raw display
$31$ \( (T - 196)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 13T + 169 \) Copy content Toggle raw display
$41$ \( T^{2} - 285T + 81225 \) Copy content Toggle raw display
$43$ \( T^{2} - 246T + 60516 \) Copy content Toggle raw display
$47$ \( (T - 462)^{2} \) Copy content Toggle raw display
$53$ \( (T - 537)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 576T + 331776 \) Copy content Toggle raw display
$61$ \( T^{2} - 635T + 403225 \) Copy content Toggle raw display
$67$ \( T^{2} + 202T + 40804 \) Copy content Toggle raw display
$71$ \( T^{2} + 1086 T + 1179396 \) Copy content Toggle raw display
$73$ \( (T + 805)^{2} \) Copy content Toggle raw display
$79$ \( (T - 884)^{2} \) Copy content Toggle raw display
$83$ \( (T + 518)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} - 194T + 37636 \) Copy content Toggle raw display
$97$ \( T^{2} - 1202 T + 1444804 \) Copy content Toggle raw display
show more
show less