Newspace parameters
Level: | \( N \) | \(=\) | \( 117 = 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 117.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(6.90322347067\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Coefficient field: | 4.0.1362828.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} + 23x^{2} + 48 \)
|
Coefficient ring: | \(\Z[a_1, \ldots, a_{5}]\) |
Coefficient ring index: | \( 2^{2} \) |
Twist minimal: | no (minimal twist has level 39) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} + 23x^{2} + 48 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu \)
|
\(\beta_{2}\) | \(=\) |
\( ( \nu^{3} + 19\nu ) / 2 \)
|
\(\beta_{3}\) | \(=\) |
\( \nu^{2} + 12 \)
|
\(\nu\) | \(=\) |
\( \beta_1 \)
|
\(\nu^{2}\) | \(=\) |
\( \beta_{3} - 12 \)
|
\(\nu^{3}\) | \(=\) |
\( 2\beta_{2} - 19\beta_1 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).
\(n\) | \(28\) | \(92\) |
\(\chi(n)\) | \(-1\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
64.1 |
|
− | 4.54739i | 0 | −12.6788 | − | 12.9118i | 0 | − | 16.7289i | 21.2762i | 0 | −58.7151 | |||||||||||||||||||||||||||
64.2 | − | 1.52356i | 0 | 5.67878 | 9.65841i | 0 | 22.3639i | − | 20.8404i | 0 | 14.7151 | |||||||||||||||||||||||||||||
64.3 | 1.52356i | 0 | 5.67878 | − | 9.65841i | 0 | − | 22.3639i | 20.8404i | 0 | 14.7151 | |||||||||||||||||||||||||||||
64.4 | 4.54739i | 0 | −12.6788 | 12.9118i | 0 | 16.7289i | − | 21.2762i | 0 | −58.7151 | ||||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
13.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 117.4.b.e | 4 | |
3.b | odd | 2 | 1 | 39.4.b.b | ✓ | 4 | |
12.b | even | 2 | 1 | 624.4.c.c | 4 | ||
13.b | even | 2 | 1 | inner | 117.4.b.e | 4 | |
13.d | odd | 4 | 2 | 1521.4.a.w | 4 | ||
39.d | odd | 2 | 1 | 39.4.b.b | ✓ | 4 | |
39.f | even | 4 | 2 | 507.4.a.l | 4 | ||
156.h | even | 2 | 1 | 624.4.c.c | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
39.4.b.b | ✓ | 4 | 3.b | odd | 2 | 1 | |
39.4.b.b | ✓ | 4 | 39.d | odd | 2 | 1 | |
117.4.b.e | 4 | 1.a | even | 1 | 1 | trivial | |
117.4.b.e | 4 | 13.b | even | 2 | 1 | inner | |
507.4.a.l | 4 | 39.f | even | 4 | 2 | ||
624.4.c.c | 4 | 12.b | even | 2 | 1 | ||
624.4.c.c | 4 | 156.h | even | 2 | 1 | ||
1521.4.a.w | 4 | 13.d | odd | 4 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{4} + 23T_{2}^{2} + 48 \)
acting on \(S_{4}^{\mathrm{new}}(117, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} + 23T^{2} + 48 \)
$3$
\( T^{4} \)
$5$
\( T^{4} + 260 T^{2} + 15552 \)
$7$
\( T^{4} + 780 T^{2} + 139968 \)
$11$
\( T^{4} + 3152 T^{2} + \cdots + 1572528 \)
$13$
\( T^{4} + 12 T^{3} - 962 T^{2} + \cdots + 4826809 \)
$17$
\( (T^{2} + 48 T - 11556)^{2} \)
$19$
\( T^{4} + 13884 T^{2} + \cdots + 3048192 \)
$23$
\( (T - 72)^{4} \)
$29$
\( (T^{2} - 192 T - 2916)^{2} \)
$31$
\( T^{4} + 100572 T^{2} + \cdots + 2389782528 \)
$37$
\( T^{4} + 110256 T^{2} + \cdots + 2060577792 \)
$41$
\( T^{4} + 133364 T^{2} + \cdots + 4431055872 \)
$43$
\( (T^{2} + 644 T + 91552)^{2} \)
$47$
\( T^{4} + 30128 T^{2} + \cdots + 116663088 \)
$53$
\( (T^{2} + 492 T - 133596)^{2} \)
$59$
\( T^{4} + 62576 T^{2} + \cdots + 457419312 \)
$61$
\( (T^{2} - 144 T - 60868)^{2} \)
$67$
\( T^{4} + 591948 T^{2} + \cdots + 918330048 \)
$71$
\( T^{4} + 917456 T^{2} + \cdots + 59484058032 \)
$73$
\( T^{4} + 896400 T^{2} + \cdots + 179358354432 \)
$79$
\( (T^{2} - 2160 T + 1144832)^{2} \)
$83$
\( T^{4} + 1464080 T^{2} + \cdots + 317023217328 \)
$89$
\( T^{4} + 561812 T^{2} + \cdots + 78903164928 \)
$97$
\( T^{4} + 137040 T^{2} + \cdots + 725594112 \)
show more
show less