Newspace parameters
Level: | \( N \) | \(=\) | \( 117 = 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 117.b (of order \(2\), degree \(1\), minimal) |
Newform invariants
Self dual: | no |
Analytic conductor: | \(6.90322347067\) |
Analytic rank: | \(0\) |
Dimension: | \(4\) |
Coefficient field: | 4.0.8112.1 |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
\( x^{4} + 5x^{2} + 3 \)
|
Coefficient ring: | \(\Z[a_1, a_2]\) |
Coefficient ring index: | \( 2^{2}\cdot 3^{2} \) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{U}(1)[D_{2}]$ |
$q$-expansion
Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.
Basis of coefficient ring in terms of a root \(\nu\) of
\( x^{4} + 5x^{2} + 3 \)
:
\(\beta_{1}\) | \(=\) |
\( \nu^{3} + 6\nu \)
|
\(\beta_{2}\) | \(=\) |
\( 2\nu^{2} + 5 \)
|
\(\beta_{3}\) | \(=\) |
\( -6\nu^{3} - 18\nu \)
|
\(\nu\) | \(=\) |
\( ( \beta_{3} + 6\beta_1 ) / 18 \)
|
\(\nu^{2}\) | \(=\) |
\( ( \beta_{2} - 5 ) / 2 \)
|
\(\nu^{3}\) | \(=\) |
\( ( -\beta_{3} - 3\beta_1 ) / 3 \)
|
Character values
We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/117\mathbb{Z}\right)^\times\).
\(n\) | \(28\) | \(92\) |
\(\chi(n)\) | \(-1\) | \(1\) |
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
Label | \(\iota_m(\nu)\) | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
64.1 |
|
− | 4.42782i | 0 | −11.6056 | 20.3925i | 0 | 0 | 15.9647i | 0 | 90.2944 | |||||||||||||||||||||||||||||
64.2 | − | 3.52058i | 0 | −4.39445 | − | 9.17304i | 0 | 0 | − | 12.6936i | 0 | −32.2944 | ||||||||||||||||||||||||||||
64.3 | 3.52058i | 0 | −4.39445 | 9.17304i | 0 | 0 | 12.6936i | 0 | −32.2944 | |||||||||||||||||||||||||||||||
64.4 | 4.42782i | 0 | −11.6056 | − | 20.3925i | 0 | 0 | − | 15.9647i | 0 | 90.2944 | |||||||||||||||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
39.d | odd | 2 | 1 | CM by \(\Q(\sqrt{-39}) \) |
3.b | odd | 2 | 1 | inner |
13.b | even | 2 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 117.4.b.c | ✓ | 4 |
3.b | odd | 2 | 1 | inner | 117.4.b.c | ✓ | 4 |
13.b | even | 2 | 1 | inner | 117.4.b.c | ✓ | 4 |
13.d | odd | 4 | 2 | 1521.4.a.y | 4 | ||
39.d | odd | 2 | 1 | CM | 117.4.b.c | ✓ | 4 |
39.f | even | 4 | 2 | 1521.4.a.y | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
117.4.b.c | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
117.4.b.c | ✓ | 4 | 3.b | odd | 2 | 1 | inner |
117.4.b.c | ✓ | 4 | 13.b | even | 2 | 1 | inner |
117.4.b.c | ✓ | 4 | 39.d | odd | 2 | 1 | CM |
1521.4.a.y | 4 | 13.d | odd | 4 | 2 | ||
1521.4.a.y | 4 | 39.f | even | 4 | 2 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
\( T_{2}^{4} + 32T_{2}^{2} + 243 \)
acting on \(S_{4}^{\mathrm{new}}(117, [\chi])\).
Hecke characteristic polynomials
$p$
$F_p(T)$
$2$
\( T^{4} + 32T^{2} + 243 \)
$3$
\( T^{4} \)
$5$
\( T^{4} + 500 T^{2} + 34992 \)
$7$
\( T^{4} \)
$11$
\( T^{4} + 5324 T^{2} + \cdots + 2056752 \)
$13$
\( (T^{2} - 2197)^{2} \)
$17$
\( T^{4} \)
$19$
\( T^{4} \)
$23$
\( T^{4} \)
$29$
\( T^{4} \)
$31$
\( T^{4} \)
$37$
\( T^{4} \)
$41$
\( T^{4} + 275684 T^{2} + \cdots + 9184890672 \)
$43$
\( (T - 452)^{4} \)
$47$
\( T^{4} + 415292 T^{2} + \cdots + 2077595568 \)
$53$
\( T^{4} \)
$59$
\( T^{4} + 821516 T^{2} + \cdots + 163107544752 \)
$61$
\( (T^{2} - 892372)^{2} \)
$67$
\( T^{4} \)
$71$
\( T^{4} + 1431644 T^{2} + \cdots + 21709693872 \)
$73$
\( T^{4} \)
$79$
\( (T^{2} - 174928)^{2} \)
$83$
\( T^{4} + 2287148 T^{2} + \cdots + 20406871728 \)
$89$
\( T^{4} + 2819876 T^{2} + \cdots + 67381252272 \)
$97$
\( T^{4} \)
show more
show less