Defining parameters
Level: | \( N \) | \(=\) | \( 117 = 3^{2} \cdot 13 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 117.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 13 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 5 \) | ||
Sturm bound: | \(56\) | ||
Trace bound: | \(4\) | ||
Distinguishing \(T_p\): | \(2\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{4}(117, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 46 | 18 | 28 |
Cusp forms | 38 | 16 | 22 |
Eisenstein series | 8 | 2 | 6 |
Trace form
Decomposition of \(S_{4}^{\mathrm{new}}(117, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
117.4.b.a | $2$ | $6.903$ | \(\Q(\sqrt{-1}) \) | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta q^{2}-q^{4}-3\beta q^{5}+5\beta q^{7}+7\beta q^{8}+\cdots\) |
117.4.b.b | $2$ | $6.903$ | \(\Q(\sqrt{-3}) \) | \(\Q(\sqrt{-3}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+8 q^{4}+\beta q^{7}+(-\beta+35)q^{13}+\cdots\) |
117.4.b.c | $4$ | $6.903$ | 4.0.8112.1 | \(\Q(\sqrt{-39}) \) | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}+(-8-\beta _{2})q^{4}+(-2\beta _{1}+\beta _{3})q^{5}+\cdots\) |
117.4.b.d | $4$ | $6.903$ | 4.0.5054412.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}+(-7+\beta _{3})q^{4}+\beta _{2}q^{5}-6\beta _{1}q^{7}+\cdots\) |
117.4.b.e | $4$ | $6.903$ | 4.0.1362828.1 | None | \(0\) | \(0\) | \(0\) | \(0\) | \(q+\beta _{1}q^{2}+(-4+\beta _{3})q^{4}+(2\beta _{1}-\beta _{2}+\cdots)q^{5}+\cdots\) |
Decomposition of \(S_{4}^{\mathrm{old}}(117, [\chi])\) into lower level spaces
\( S_{4}^{\mathrm{old}}(117, [\chi]) \simeq \) \(S_{4}^{\mathrm{new}}(13, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{4}^{\mathrm{new}}(39, [\chi])\)\(^{\oplus 2}\)